Math 20E

September 3, 2014

Question 1 Suppose F is a C^1 vector field on \mathbb{R}^3 . Let H be the unit hemisphere given by $x^2 + y^2 + z^2 = 1$ with $z \ge 0$, let D be the unit disk given by z = 0 with $x^2 + y^2 \le 1$, and let $S = H \cup D$. Then,

A. $\partial H = \partial D$, including orientation when H and D are both oriented with the upward-pointing unit normal vector.

B.
$$\iint_{H} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \iint_{D} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}.$$

C.
$$\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \iint_{H} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} + \iint_{D} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}.$$

D.
$$\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = 0.$$

*E. A, B and D

Question 2 Suppose **F** is a C^2 vector field on \mathbb{R}^3 , and let *S* be the unit sphere given by $x^2 + y^2 + z^2 = 1$. Then, $\iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$

A. by Stokes' Theorem is equal to $\int_{\partial S} \mathbf{F} \cdot d\mathbf{s}$.

- **B.** by Gauss's Theorem is equal to $\iiint_B \nabla \cdot (\nabla \times F) dV$, where *B* is the unit ball given by $x^2 + y^2 + z^2 \leq 1$.
- **C.** is 0.
- D. A and B
- *E. A, B, and C