Math 20E

September 3, 2014

Question 1 Suppose \mathbf{F} is a C^{1} vector field on \mathbb{R}^{3}. Let H be the unit hemisphere given by $x^{2}+y^{2}+z^{2}=1$ with $z \geq 0$, let D be the unit disk given by $z=0$ with $x^{2}+y^{2} \leq 1$, and let $S=H \cup D$. Then,
A. $\partial H=\partial D$, including orientation when H and D are both oriented with the upward-pointing unit normal vector.
B. $\iint_{H}(\boldsymbol{\nabla} \times \mathbf{F}) \cdot d \mathbf{S}=\iint_{D}(\boldsymbol{\nabla} \times \mathbf{F}) \cdot d \mathbf{S}$.
C. $\iint_{S}(\boldsymbol{\nabla} \times \mathbf{F}) \cdot d \mathbf{S}=\iint_{H}(\boldsymbol{\nabla} \times \mathbf{F}) \cdot d \mathbf{S}+\iint_{D}(\boldsymbol{\nabla} \times \mathbf{F}) \cdot d \mathbf{S}$.
D. $\iint_{S}(\boldsymbol{\nabla} \times \mathbf{F}) \cdot d \mathbf{S}=0$.
*E. A, B and D

Question 2 Suppose \mathbf{F} is a C^{2} vector field on \mathbb{R}^{3}, and let S be the unit sphere given by $x^{2}+y^{2}+z^{2}=1$.
Then, $\iint_{S}(\boldsymbol{\nabla} \times \mathbf{F}) \cdot d \mathbf{S}$
A. by Stokes' Theorem is equal to $\int_{\partial S} \mathbf{F} \cdot d \mathbf{s}$.
B. by Gauss's Theorem is equal to $\iiint_{B} \nabla \cdot(\nabla \times \mathbf{F}) d V$, where B is the unit ball given by $x^{2}+y^{2}+z^{2} \leq 1$.
C. is 0 .
D. A and B
*E. A, B, and C

