Math 10A Final Examination December 6, 2011

. . .

## Version A

## Instructions

- 1. No calculators or other electronic devices are allowed during this exam.
- 2. You may use one page of notes, but no books or other assistance during this exam.
- 3. Write your Name, PID, and Section on the front of your Blue Book.
- 4. Write the Version of your exam at the top of the page on the front of your Blue Book.
- 5. Write your solutions clearly in your Blue Book
  - (a) Carefully indicate the number and letter of each question and question part.
  - (b) Present your answers in the same order they appear in the exam.
  - (c) Start each question on a new side of a page.
- 6. Read each question carefully, and answer each question completely.
- 7. Show all of your work; no credit will be given for unsupported answers.
- 0. (1 point) Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
- 1. (12 points) Evaluate the following limits. If the limit does not exist, write "does not exist". Please justify your answers.
  - (a)  $\lim_{x \to 0} \frac{x^2 + 3x}{2x^2 1}$
  - (b)  $\lim_{x \to \infty} \sin(x)$
  - (c)  $\lim_{x\to 9} \frac{\sqrt{x}-3}{x-9}$
- 2. (12 points) Let f be a differentiable function with f(3) = 2 and f'(3) = -5.
  - (a) Let  $p(x) = \ln(f(x))$ . Find p'(3).
  - (b) Let  $q(x) = \frac{f(x)}{x}$ . Find q'(3).

3. (9 points) The graph of a function f is given below. For each of the following pairs of numbers, determine which is greater. No justification is required.



- (a) f'(1) , f'(2)
- (b)  $\frac{f(1) f(0)}{1 0}$ ,  $\frac{f(2) f(1)}{2 1}$
- (c) f'(2),  $\frac{f(2) f(1)}{2 1}$
- 4. (12 points) A function f is given by:

$$f(x) = \begin{cases} b & \text{if } x < -2, \\ x^2 + 4x & \text{if } -2 \le x \le 0, \\ ax & \text{if } x > 0. \end{cases}$$

where a and b are fixed constants.

- (a) For which value(s) of a is f differentiable at x = 0?
- (b) For which value(s) of b is f differentiable at x = -2?
- 5. (a) (10 points) Find an equation for the tangent line to the graph  $y = e^{\frac{x}{3}}$  at x = 0.
  - (b) (5 points) Using calculus (and part (a)), explain why  $\frac{4}{3} < e^{\frac{1}{3}}$ .
- 6. (8 points) Given  $\cos(xy) = y^2$ , find  $\frac{dy}{dx}$  using implicit differentiation.
- 7. (15 points) Find all the critical points of  $f(x) = x^2 e^{-x}$  and classify each critical point as a local minimum, local maximum, or neither.
- 8. (16 points) Farmer John has 1200 feet of fencing and wishes to use it to fence a rectangular plot divided into two subplots as in the figure below. What are the dimensions of the plot with maximum area?