Math 20E

August 12, 2015

Question 1 In order for a transformation $T: R \rightarrow S$ to be a coordinate transformation that can be used to change variables in a double or triple integral, it should
A. be a one-to-one mapping mapping of R
B. map R onto S
C. both A and B
*D. both \mathbf{A} and \mathbf{B}, except that would be OK if it failed to be one-to-one on parts of the boundary of R
E. none of the above: "one-to-one" and "onto" have nothing to do with coordinate transformations.

Question 2 Given domains $D \subset \mathbb{R}^{2}$ and $S \subset \mathbb{R}^{2}$ and a one-to-one transformation $T: D \rightarrow S$ that maps D onto S. Then T can be used to change variables as follows:
A. $\iint_{S} f(x, y) d x d y=\iint_{D} f(T(u, v))|\operatorname{det}[\mathbf{D} T(u, v)]| d u d v$.
B. $\iint_{D} f(u, v) d u d v=\iint_{S} f(T(x, y))|\operatorname{det}[\mathbf{D} T(x, y)]| d x d y$.
C. $\iint_{D} f(u, v) d u d v=\iint_{S} f\left(T^{-1}(x, y)\right)\left|\operatorname{det}\left[\mathbf{D} T^{-1}(x, y)\right]\right| d x d y$.
D. Both A and B
*E. Both \mathbf{A} and \mathbf{C}
Note: The regions of integration of the integrals in each equation determine the required domain and range of the transformation.

- $T: D \rightarrow S$ in part A,
- $T: S \rightarrow D$ in part B,
- $T^{-1}: S \rightarrow D$ in part C.

Thus, B contradicts the definition of $T: D \rightarrow S$ given in the question.

Question 3 Consider the integral $\iiint_{B} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d x d y d z$ over the unit ball B given by $x^{2}+y^{2}+z^{2} \leq 1$.
A. It may be integrated by using the change of variables

$$
\Phi(\rho, \theta, \phi)=(\rho \sin (\phi) \cos (\theta), \rho \sin (\phi) \sin (\theta), \rho \cos (\phi)) .
$$

B. It may be written in the form

$$
\int_{\rho=0}^{1} \int_{\theta=0}^{2 \pi} \int_{\phi=0}^{\pi} e^{\rho^{3}} \rho^{2} \sin (\phi) d \phi d \theta d \rho .
$$

C. It is an easy integral to evaluate after changing to spherical coordinates.
D. It cannot be evaluated analytically because $e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$ does not have an elementary antiderivative.
*E. A, B, and C

