Math 20E

August 17, 2015

Question 1 Given a path $\mathbf{c} : [a, b] \to \mathbb{R}^n$. \mathbf{c} is *regular* at t_0 means

- **A.** the derivative $c'(t_0)$ exists.
- **B.** the derivative $c'(t_0)$ exists and is not zero.
- **C.** the image curve $\mathbf{c}([a,b])$ has a tangent vector at $\mathbf{c}(t_0)$.
- **D.** $c'(t_0)$ is a unit vector.
- *E. both B and C.

Question 2 Two paths $c_1 : [0, 2\pi] \to \mathbb{R}^3$ and $c_1 : [0, 2\pi] \to \mathbb{R}^3$ are given by $c_1(t) = (\cos(t), \sin(t), t)$

$$\mathbf{c}_1(t) = (\cos(t), \sin(t), t)$$

$$\mathbf{c}_2(t) = (\cos(2\pi - t), \sin(2\pi - t), 2\pi - t)$$

The lengths of the corresponding curves are

- *A. the same since the curves defined by the paths are the same.
- **B.** of opposite sign since the paths traverse the curves in opposite directions.
- **C.** cannot be computed because the antiderivative of $||\mathbf{c}'_1(t)||$ and $||\mathbf{c}'_2(t)||$ cannot be computed.
- **D.** both **B** and **C**
- **E.** none of the above

Question~3 Two paths $c_1:[0,2\pi]\to\mathbb{R}^3$ and $c_1:[0,2\pi]\to\mathbb{R}^3$ are given by

$$\mathbf{c}_1(t) = \left(\cos(t), \sin(t), t\right)$$

$$\mathbf{c}_2(t) = \left(\cos(2\pi - t), \sin(2\pi - t), 2\pi - t\right)$$

Let $\mathbf{F}(x, y, z)$ be any C^1 vector field. The value of the line integrals $\int_{\mathbf{c}_1} \mathbf{F} \cdot d\mathbf{s}$ and $\int_{\mathbf{c}_2} \mathbf{F} \cdot d\mathbf{s}$ are

- A. the same since the curves defined by the paths are the same.
- *B. of opposite sign since the paths traverse the curves in opposite directions.
- **C.** cannot be computed because the antiderivative of $||\mathbf{c}'_1(t)||$ and $||\mathbf{c}'_2(t)||$ cannot be computed.
- D. both ${\bf B}$ and ${\bf C}$
- **E.** none of the above

Question 4 Given $f : \mathbb{R}^n \to \mathbb{R}$ a C^1 scalar-valued function and $\mathbf{c} : [a, b] \to \mathbb{R}^n$ a simple C^1 path,

A. $Df(t) = \nabla f(\mathbf{c}(t)) \cdot \mathbf{c}'(t)$ by the chain rule.

B.
$$\int_{\mathbf{c}} \nabla f \cdot d\mathbf{s} = \int_{a}^{b} \nabla f(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt.$$

- **C.** The value of $\int_{\mathbf{c}} \nabla f \cdot d\mathbf{s}$ is independent of the path c.
- **D.** $\int_{\mathbf{c}} \nabla f \cdot d\mathbf{s} = f(\mathbf{c}(b)) f(\mathbf{c}(a))$, which depends only on the value of f at the endpoints $\mathbf{c}(a)$ and $\mathbf{c}(b)$.
- *E. All of the above.