Math 20E

August 18, 2015

Question 1 Two vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^3 are orthogonal (or perpendicular or normal) if and only if $\mathbf{v} \cdot \mathbf{w} = 0$. Thus,

- A. the angle between two nonzero orthogonal vectors is $\frac{\pi}{2}$
- **B.** the zero vector is orthogonal to every vector.
- **C.** the zero vector is normal to every plane.
- **D.** the zero vector is the only vector orthogonal to itself.
- *E. All of the above. (see page 24 of your textbook)

Question 2 Given a parametrized surface $\Phi: D \to \mathbb{R}^3$. Φ is *regular* at (u_0, v_0) means

- **A.** the vector $\mathbf{T}_u \times \mathbf{T}_v$ is normal to the surface $S = \Phi(D)$ at (u_0, v_0) .
- **B.** the vector $\mathbf{T}_u \times \mathbf{T}_v$ is not zero at (u_0, v_0) .
- **C.** the surface $S = \Phi(D)$ has a tangent plane at $\Phi(u_0, v_0)$.
- **D.** $\mathbf{T}_u \times \mathbf{T}_v$ at (u_0, v_0) is a unit vector.
- *E. both B and C.

Question 3 The surface $x^2 + y^2 + z = 1$ for $z \ge 0$ is parametrized by $\Phi : D \to \mathbb{R}^3$, where D is the unit disk $u^2 + v^2 \le 1$ and $\Phi(u, v) = (u, v, 1 - u^2 - v^2)$. Then, $T_u \times T_v = (2u, 2v, 1)$ and

- **A.** Φ is a one-to-one mapping of D onto $S = \Phi(D)$.
- **B.** The parametrized surface Φ is regular at every point of *S*.
- **C.** The surface $S = \Phi(D)$ has a tangent plane at every point of S.
- *D. A, B and C
- E. none of the above

Question 4 The surface $x^2 + y^2 + z = 1$ for $z \ge 0$ is parametrized by $\Psi : R \to \mathbb{R}^3$, where R is the rectangle $[0,1] \times [0,2\pi]$ and $\Psi(u,v) = (u\cos(v), u\sin(v), 1 - u^2)$. Then, $\mathbf{T}_u \times \mathbf{T}_v = u(2u\cos(v), 2u\sin(v), u)$ and

- **A.** Ψ is a one-to-one mapping of R onto $S = \Psi(R)$.
- **B.** The parametrized surface Ψ is regular at every point of *S*.
- *C. The surface $S = \Psi(R)$ has a tangent plane at every point of S.
- D. A, B and C
- E. none of the above