Math 20E

August 26, 2015

Question 1 Given a simple domain D with C^1 boundary ∂D , the area of D is given by

$$\mathbf{A.} \ A(D) = \iint_D dx \, dy$$

$$\mathbf{B.} \ A(D) = -\int_{\partial D} y \, dx$$

$$\mathbf{C.} \ A(D) = \frac{1}{2} \int_{\partial D} x \, dy - y \, dx$$

D. A and C

*E. A, B and C

Question 2 Consider the following domain *D*:

- **A.** By Green's theorem, the area of D may be computed by evaluating $\frac{1}{2}\int_{\partial D}x\,dy-y\,dx.$
- **B.** Green's theorem cannot be applied on D since D is not a simple region.
- **C.** The area of D could be measured by tracing ∂D with a planimeter.
- *D. A and C
- E. B and C

Question 3 Given a C^1 surface S parameterized by $\Phi: D \to S$, and given $\mathbf{F}(x,y,z)$ a continuous vector field defined on S. Then,

- **A.** $\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS, \text{ where } \mathbf{n} \text{ is the unit normal vector at each point of } S.$
- B. The unit normal vector $\mathbf n$ at each point of the parametrized surface Φ is given by $\mathbf n = \frac{\mathbf T_u \times \mathbf T_v}{||\mathbf T_u \times \mathbf T_v||}$
- **C.** The average value of the normal component of \mathbf{F} on S is $\frac{1}{A(S)} \iint_S \mathbf{F} \cdot d\mathbf{S}$, where A(S) is the area of the surface S.
- D. A and B
- *E. A, B and C

Question 4 Given an orientable surface S with boundary curve C, and a C_1 vector field \mathbf{F} . Then,

A.
$$\iint_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \int_{C} \mathbf{F} \cdot d\mathbf{s}.$$

- **B.** Given a path c that parametrizes the curve C, $\int_{c} \mathbf{F} \cdot d\mathbf{s} = \pm \iint_{S} \mathbf{\nabla} \times \mathbf{F} \cdot d\mathbf{S}, \text{ depending on the orientation chosen for } S.$
- **C.** Given a parametrization $\Phi: D \to S$,

$$\iint_{\Phi} \mathbf{\nabla} \times \mathbf{F} \cdot d\mathbf{S} = \int_{\partial \Phi} \mathbf{F} \cdot d\mathbf{s},$$

where $\partial \Phi$ is the positively oriented boundary curve with respect to the orientation of Φ .

- D. A and C
- *E. B and C