Math 20E

August 26, 2015

Question 1 Given a simple domain D with C^{1} boundary ∂D, the area of D is given by
A. $A(D)=\iint_{D} d x d y$
B. $A(D)=-\int_{\partial D} y d x$
C. $A(D)=\frac{1}{2} \int_{\partial D} x d y-y d x$
D. A and C
*E. A, B and C

Question 2 Consider the following domain D :

A. By Green's theorem, the area of D may be computed by evaluating $\frac{1}{2} \int_{\partial D} x d y-y d x$.
B. Green's theorem cannot be applied on D since D is not a simple region.
C. The area of D could be measured by tracing ∂D with a planimeter.
*D. A and C
E. B and C

Question 3 Given a C^{1} surface S parameterized by $\Phi: D \rightarrow S$, and given $\mathbf{F}(x, y, z)$ a continuous vector field defined on S. Then,
A. $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$, where \mathbf{n} is the unit normal vector at each point of S.
B. The unit normal vector \mathbf{n} at each point of the parametrized surface Φ is given by $\mathbf{n}=\frac{\mathbf{T}_{u} \times \mathbf{T}_{v}}{\left\|\mathbf{T}_{u} \times \mathbf{T}_{v}\right\|}$
C. The average value of the normal component of \mathbf{F} on S is $\frac{1}{A(S)} \iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $A(S)$ is the area of the surface S.
D. A and B
*E. A, B and C

Question 4 Given an orientable surface S with boundary curve C, and a C_{1} vector field \mathbf{F}. Then,
A. $\iint_{S} \boldsymbol{\nabla} \times \mathbf{F} \cdot d \mathbf{S}=\int_{C} \mathbf{F} \cdot d \mathbf{s}$.
B. Given a path c that parametrizes the curve C, $\int_{\mathbf{c}}^{\boldsymbol{F}} \cdot d \mathbf{S}= \pm \iint_{S} \boldsymbol{\nabla} \times \mathbf{F} \cdot d \mathbf{S}$, depending on the orientation chosen for S.
C. Given a parametrization $\Phi: D \rightarrow S$,

$$
\iint_{\Phi} \boldsymbol{\nabla} \times \mathbf{F} \cdot d \mathbf{S}=\int_{\partial \Phi} \mathbf{F} \cdot d \mathbf{S},
$$

where $\partial \Phi$ is the positively oriented boundary curve with respect to the orientation of Φ.
D. A and C
*E. B and C

