Version A

Instructions

1. No calculators or other electronic devices are allowed during this exam.
2. You may use one page of notes, but no books or other assistance during this exam.
3. Write your Name, PID, and Section on the front of your Blue Book.
4. Write the Version of your exam on the front of your Blue Book.
5. Write your solutions clearly in your Blue Book
(a) Carefully indicate the number and letter of each question and question part.
(b) Present your answers in the same order they appear in the exam.
(c) Start each question on a new side of a page.
6. Read each question carefully, and answer each question completely.
7. Show all of your work; no credit will be given for unsupported answers.
8. (1 point) Carefully read and complete the instructions at the top of this exam sheet and any additional instructions given during the exam.
9. (6 points) Let $A=\left[\begin{array}{rrr}1 & 1 & -2 \\ 0 & 1 & 1 \\ 2 & 4 & -3\end{array}\right]$. If A is invertible, find A^{-1}. Otherwise, explain why A is not invertible.
10. (8 points) The matrices $A=\left[\begin{array}{rrrr}3 & 1 & 11 & 8 \\ 2 & 1 & 9 & 5 \\ 0 & -1 & -5 & 1\end{array}\right]$ and $B=\left[\begin{array}{rrrr}1 & 0 & 2 & 3 \\ 0 & 1 & 5 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$ are row equivalent.
(a) Explain why the nonzero rows of B form a basis for $\operatorname{Row}(A)$, the row space of A.
(b) Find a basis for $\operatorname{Col}(A)$, the column space of A.
(c) Find a basis for $\operatorname{Nul}(A)$, the null space of A.
(d) Find a basis for $\operatorname{Row}(A)^{\perp}$, the orthogonal complement of the row space of A. Be sure to explain how you know that it is a basis for $\operatorname{Row}(A)^{\perp}$.
11. (6 points) Let A be a $m \times n$ matrix and B a $n \times p$ matrix. Suppose that the columns of B are linearly dependent. Show that the columns of the $m \times p$ matrix $C=A B$ are linearly dependent. Be sure to justify your answer.

Exam continues with Problems $4-8$ on the other side of this sheet.

4. (6 points) Given an $n \times n$ matrix A for which $A^{2}=0$; that is, A^{2} is the zero matrix. Show that 0 is the only eigenvalue of A.
5. (a) (6 points) Solve the initial value problem $\mathbf{y}^{\prime}(t)=A \mathbf{y}(t) ; \mathbf{y}(0)=\mathbf{c}$, where

$$
A=\left[\begin{array}{rr}
-2 & 1 \\
1 & -2
\end{array}\right] ; \quad \mathbf{c}=\left[\begin{array}{l}
1 \\
3
\end{array}\right] .
$$

(b) (2 points) Is A diagonalizable? If yes, determine the matrix P and the diagonal matrix D for which $A P=P D$.
6. (8 points) Given a 3×3 matrix A with eigenvalues $-3,2$, and 5 .
(a) Explain why A is diagonalizable.
(b) Show that the determinant of A is equal to the product of the eigenvalues of A.
(c) Explain why A is invertible.
7. (9 points) Given the matrix $A=\left[\begin{array}{rrr}1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0\end{array}\right]$
(a) Find an orthonormal basis for the column space of A.
(b) Factor A into a product $Q R$, where Q is an orthogonal matrix and R is an upper triangular matrix.
8. (8 points) Consider the following system of linear equations.

$$
\begin{aligned}
x_{1}+x_{2} & =5 \\
2 x_{1}+3 x_{2} & =3 \\
2 x_{1}+x_{2} & =-1
\end{aligned}
$$

(a) Explain why the system is inconsistent.
(b) Find the least-squares solution to the system.

