Version A

Instructions

1. No calculators or other electronic devices are allowed during this exam.
2. You may use one page of notes, but no books or other assistance during this exam.
3. Write your Name, PID, and Section on the front of your Blue Book.
4. Write the Version of your exam at the top of the page on the front of your Blue Book.
5. Write your solutions clearly in your Blue Book
(a) Carefully indicate the number and letter of each question and question part.
(b) Present your answers in the same order they appear in the exam.
(c) Start each question on a new side of a page.
6. Read each question carefully, and answer each question completely.
7. Show all of your work; no credit will be given for unsupported answers.
8. (1 point) Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
9. Let $P=(6,4,-1), Q=(5,7,1)$ and $R=(6,9,0)$ be three points in \mathbb{R}^{3}.
(a) (4 points) Find a formula $a x+b y+c z=d$ for the plane containing the points P, Q and R.
(b) (2 points) The points P, Q and R form a triangle $\triangle P Q R$ in \mathbb{R}^{3}. Determine whether $\angle Q$ (the angle at the vertex Q) is an acute, obtuse or right angle. Be sure to justify your answer.
10. (6 points) Find a vector parametrization $\mathbf{r}(t)=\mathbf{r}_{0}+\mathbf{v} t$ for the line of intersection of the two planes given by $6 x-3 y+2 z=2$ and $x+2 y-2 z=1$.
11. Tom is chasing Jerry up a spiral staircase. The position of Tom at time t is
$\mathbf{T}(t)=\langle\cos (3 \pi t), \sin (3 \pi t), 3 t\rangle$ and the position of Jerry is
$\mathbf{J}(t)=\langle\cos (\pi t), \sin (\pi t), t+4\rangle$. The chase starts at time $t=0$.
(a) (3 points) At what time does Tom catch Jerry?
(b) (3 points) What is the distance covered by Tom from time $t=0$ until he catches Jerry?
12. (6 points) A particle follows a path $\mathbf{r}(t)$ that satisfies $\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t)=0$. The particle's velocity at time $t=0$ is $\mathbf{r}^{\prime}(0)=\langle 2,4,4\rangle$. Determine the total distance traveled by the particle along the path from $t=0$ to $t=1$.
