Version A

Instructions

1. No calculators or other electronic devices are allowed during this exam.
2. You may use one page of notes, but no books or other assistance during this exam.
3. Write your Name, PID, and Section on the front of your Blue Book.
4. Write the Version of your exam at the top of the page on the front of your Blue Book.
5. Write your solutions clearly in your Blue Book
(a) Carefully indicate the number and letter of each question and question part.
(b) Present your answers in the same order they appear in the exam.
(c) Start each question on a new side of a page.
6. Read each question carefully, and answer each question completely.
7. Show all of your work; no credit will be given for unsupported answers.
8. (2 points) Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
9. (6 points) Find a parametrization (vector equation) for the line of intersection of the planes $2 x-y-3 z=-2$ and $-x+y+z=1$.
10. (6 points) Consider the function $f(x, y)=x^{3}+y^{3}+3 x^{2}-3 y^{2}+8$.
(a) Find the critical points of f.
(b) Classify each critical point of f as a local minimum, local maximum or saddle point of f.
11. (8 points) Consider the iterated integral $\int_{y=0}^{2} \int_{x=y}^{2} \frac{y \cos (x)}{x^{2}} d x d y$.
(a) Sketch the region of integration; clearly label each part of its boundary with the appropriate equation.
(b) Evaluate the integral. Reverse the order of integration, if necessary.
12. (6 points) Compute $\iint_{D} \frac{\cos \left(\sqrt{x^{2}+y^{2}}\right)}{\sqrt{x^{2}+y^{2}}} d A$, where D is the circle of radius 2 , centered at the origin $(0,0)$. Hint: use polar coordinates.

Note: Problems 5-8 are on the other side of this page.
5. (6 points) Find the points on the sphere $x^{2}+y^{2}+z^{2}=9$ that are closest to and farthest from the point $(6,6,-3)$. Be sure to state which of the points is closest and which is farthest from $(6,6,-3)$.
6. (6 points) The gradient of a function $g(x, y, z)$ at the point $(-3,4,5)$ is $\langle-2,1,2\rangle$.
(a) Find the values of the partial derivatives g_{x}, g_{y}, and g_{z} at the point $(-3,4,5)$.
(b) Find the maximum rate of change of g at the point $(-3,4,5)$ and the unit vector in the direction which the maximum rate of change occurs.
(c) Find the rate of change of g at the point $(-3,4,5)$ in the direction of the point $(-1,8,1)$. (Note:"in the direction of the point $(-1,8,1)$ " means "in the direction of the displacement vector from $(-3,4,5)$ to $(-1,8,1)$ ".)
7. (6 points) Let $f(x, y)=\ln (2 x-3 y)$.
(a) Find an equation for the tangent plane to $z=f(x, y)$ at the point $(2,1,0)$.
(b) Use a linear approximation to estimate $f(1.9,1.1)$.
8. (8 points) A particle follows a path given by $\mathbf{r}(t)=4 \cos (t) \mathbf{i}+4 \sin (t) \mathbf{j}+2 t^{2} \mathbf{k}$.
(a) Find the position of the particle at $t=0$ and $t=2$.
(b) Find the speed of the particle as a function of t.
(c) Express the distance the particle travels along the path for $0 \leq t \leq 2$ as an integral. You need not evaluate the integral.

