Math 20E Homework Assignment 2 Due 11:00pm Tuesday, April 23, 2024

- 1. Let D^* be the parallelogram with vertices at (-1,3), (0,0), (2,-1), and (1,2). Let D be the rectangle $D = [0,1] \times [0,1]$. Find a T such that D is the image set of D^* under T; that is, $D = T(D^*)$.
- 2. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the spherical coordinate mapping defined by $(\rho, \phi, \theta) \mapsto (x, y, z)$, where

$$x = \rho \sin(\phi) \cos(\theta), \qquad y = \rho \sin(\phi) \sin(\theta), \qquad z = \rho \cos(\phi).$$

Let D^* be the set of points (ρ, ϕ, θ) such that $\rho \in [0, 1], \phi \in [0, \pi], \theta \in [0, 2\pi].$

- (a) Find $D = T(D^*)$.
- (b) Is T one-to-one? If not, can we eliminate a subset $S \subseteq D^*$ so that T is one-to-one on the remainder $D^* \setminus S = \{(x, y, z) \in D^* \mid (x, y, z) \notin S\}$?
- 3. Evaluate $\iint_D x^2 dx dy$ where D is determined by the two conditions $0 \le x \le y$ and $x^2 + y^2 \le 1$.
- 4. Evaluate $\iiint_W \sqrt{x^2 + y^2 + z^2} e^{-(x^2 + y^2 + z^2)} dx dy dz$, where W is the solid bounded by the two spheres

$$x^{2} + y^{2} + z^{2} = a^{2}$$
 and $x^{2} + y^{2} + z^{2} = b^{2}$ with $0 < a < b$.

- 5. Evaluate $\iint_R (x+y) \, dx \, dy$, where *R* is the rectangle in the *xy*-plane with vertices at (0,1), (1,0), (3,4), (4,3).
- 6. Show that the path $\mathbf{c}(t) = (\sin(t), \cos(t), e^t)$ is a flow line of the vector field $\mathbf{F}(x, y, z) = (y, -x, z)$.
- 7. Let $\mathbf{F}(x, y, z) = (yz, xz, xy)$. Find a function $f : \mathbb{R}^3 \to \mathbb{R}$ such that $\mathbf{F} = \nabla f$.
- 8. Evaluate the path integral $\int_{\mathbf{c}} f(x, y, z) ds$ with f(x, y, z) = x + y + z and $\mathbf{c}(t) = (\sin(t), \cos(t), t)$ for $t \in [0, 2\pi]$.
- 9. Evaluate $\int_{\mathbf{c}} f \, ds$, where f(x, y, z) = z and $\mathbf{c}(t) = (t \cos(t), t \sin(t), t)$ for $0 \le t \le t_0$.
- 10. Find the average z coordinate on the path $\mathbf{c}(t) = (t \cos(t), t \sin(t), t)$ for $0 \le t \le t_0$.