Math 20E Homework Assignment 1

Due 11:00pm Tuesday, April 16, 2024

1. Find an equation for the tangent plane to $f(x, y, z)=\frac{x y z}{x^{2}+y^{2}+z^{2}}$ at $\left(x_{0}, y_{0}, z_{0}\right)=(1,0,1)$.
2. Let $g(u, v)=\left(e^{u}, u+\sin (v)\right)$ and $f(x, y, z)=(x y, y z)$. Compute $\mathbf{D}(g \circ f)(0,1,0)$ using the chain rule.
3. Evaluate the iterated integral $\int_{1}^{3} \int_{1}^{2} \frac{x y}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}} d x d y$.
4. Evaluate the double integral $\iint_{R}\left(x^{2} y^{2}+x\right) d y d x$, where $R=[0,2] \times[-1,0]$.
5. Compute the volume of the solid bounded by the $x z$ plane, the $y z$ plane, the $x y$ plane, the planes $x=1$ and $y=1$, and the surface $z=x^{2}+y^{4}$.
6. Evaluate the double integral $\iint_{D} x y d A$, where D is the triangular region whose vertices are $(0,0),(0,2),(2,0)$.
7. Evaluate $\iint_{D} y d A$, where D is the set of points (x, y) such that $0 \leq \frac{2 x}{\pi} \leq y \leq \sin (x)$.
8. Change the order integration and evaluate:

$$
\int_{y=0}^{1} \int_{x=y}^{1} \sin \left(x^{2}\right) d x d y
$$

9. Change the order integration and evaluate:

$$
\int_{y=0}^{1} \int_{x=\sqrt{y}}^{1} e^{x^{3}} d x d y
$$

10. Evaluate the integral $\iiint_{W} z d x d y d z$; where W is the region bounded by $x=0, y=0$, $z=0, \quad z=1$, and the cylinder $x^{2}+y^{2}=1$, with $x \geq 0, y \geq 0$.
