Math 20E Homework Assignment 2 Due 11:00pm Thursday, February 2, 2023

1. Change the order integration and evaluate:

$$\int_{y=0}^{1} \int_{x=y}^{1} \sin(x^2) \, dx \, dy.$$

2. Change the order integration and evaluate:

$$\int_{y=0}^{1} \int_{x=\sqrt{y}}^{1} e^{x^3} \, dx \, dy.$$

- 3. Evaluate the integral $\iiint_W z \, dx \, dy \, dz$; where W is the region bounded by x = 0, y = 0, z = 0, z = 1, and the cylinder $x^2 + y^2 = 1$, with $x \ge 0$, $y \ge 0$.
- 4. Let D^* be the parallelogram with vertices at (-1,3), (0,0), (2,-1), and (1,2). Let D be the rectangle $D = [0,1] \times [0,1]$. Find a T such that D is the image set of D^* under T; that is, $D = T(D^*)$.
- 5. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the spherical coordinate mapping defined by $(\rho, \phi, \theta) \mapsto (x, y, z)$, where

$$x = \rho \sin(\phi) \cos(\theta), \qquad y = \rho \sin(\phi) \sin(\theta), \qquad z = \rho \cos(\phi).$$

Let D^* be the set of points (ρ, ϕ, θ) such that $\rho \in [0, 1], \phi \in [0, \pi], \theta \in [0, 2\pi].$

- (a) Find $D = T(D^*)$.
- (b) Is T one-to-one? If not, can we eliminate a subset $S \subseteq D^*$ so that T is one-to-one on the remainder $D^* \setminus S = \{(x, y, z) \in D^* \mid (x, y, z) \notin S\}$?
- 6. Evaluate $\iint_D x^2 dx dy$ where D is determined by the two conditions $0 \le x \le y$ and $x^2 + y^2 \le 1$.
- 7. Evaluate $\iiint_W \sqrt{x^2 + y^2 + z^2} e^{-(x^2 + y^2 + z^2)} dx dy dz$, where W is the solid bounded by the two spheres $x^2 + y^2 + z^2 = a^2$ and $x^2 + y^2 + z^2 = b^2$ with 0 < a < b.
- 8. Evaluate $\iint_R (x+y) dx dy$, where R is the rectangle in the xy-plane with vertices at (0,1), (1,0), (3,4), (4,3).
- 9. Show that the path $\mathbf{c}(t) = (\sin(t), \cos(t), e^t)$ is a flow line of the vector field $\mathbf{F}(x, y, z) = (y, -x, z)$.
- 10. Let $\mathbf{F}(x,y,z) = (yz,xz,xy)$. Find a function $f: \mathbb{R}^3 \to \mathbb{R}$ such that $\mathbf{F} = \nabla f$.