1. Evaluate the path integral $\int_{\mathbf{c}} f(x, y, z) d s$ with $f(x, y, z)=x+y+z$ and $\mathbf{c}(t)=(\sin (t), \cos (t), t)$ for $t \in[0,2 \pi]$.
2. Evaluate $\int_{\mathbf{c}} f d s$, where $f(x, y, z)=z$ and $\mathbf{c}(t)=(t \cos (t), t \sin (t), t)$ for $0 \leq t \leq t_{0}$.
3. Find the average z coordinate on the path $\mathbf{c}(t)=(t \cos (t), t \sin (t), t)$ for $0 \leq t \leq t_{0}$.
4. Evaluate $\int_{\mathbf{c}} \mathbf{F} \cdot d \mathbf{s}$, where $\mathbf{F}(x, y)=\left(-x y, x^{2}\right)$ and \mathbf{c} is the path along the unit circle $x^{2}+y^{2}=1$ beginning at $(1,0)$ and ending at $(0,1)$.
5. Evaluate the line integral $\int_{\mathbf{c}} y z d x+x z d y+x y d z$, where \mathbf{c} consists of the straight-line segments joining $(1,0,0)$ to $(0,1,0)$ to $(0,0,1)$.
6. Evaluate the line integral $\int_{C}\left(y^{2}+2 x z\right) d x+\left(2 x y+z^{2}\right) d y+\left(2 y z+x^{2}\right) d z$, where C is an oriented simple curve from $(1,1,1)$ to $(0,2,3)$.
7. Let S be the surface determined by the equation $x^{3}+3 x y+z^{2}=2$, with $z \geq 0$.
(a) Find a parametrization $\Phi: D \subseteq \mathbb{R}^{2} \rightarrow S \subseteq \mathbb{R}^{3}$.
(b) Find an equation for the tangent plane to S at the point $(1,1 / 3,0)$.
8. Find the area of the portion of the unit sphere that is inside the mouth of the cone $z \geq \sqrt{x^{2}+y^{2}}$.
9. The cylinder $x^{2}+y^{2}=x$ divides the unit sphere S into two regions S_{1} and S_{2}, where S_{1} is outside the cylinder and S_{2} is inside the cylinder.
Find the ratio $A\left(S_{1}\right) / A\left(S_{2}\right)$ of the areas of S_{1} and S_{2}.
10. Find the area of the surface S defined by $x+y+z=1$, with $x^{2}+3 y^{2} \leq 1$.
