Math 20E

August 8, 2017
Question 1 Given a path $c(t)$ in \mathbb{R}^n, its derivative $c'(t)$ represents a tangent vector to the corresponding curve at all values of t where

A. the path $c(t)$ is continuous.

B. the derivative $c'(t)$ exists.

C. the derivative $c'(t)$ is not zero.

D. B and C.

*E. A, B and C. If $c'(t)$ exists at t, then $c(t)$ is continuous at t.
Question 2 Given a real-valued function \(f(x, y, z) \) (i.e., \(f : \mathbb{R}^3 \rightarrow \mathbb{R} \)), the gradient of \(f \) at \((a, b, c)\) is

A. \(Df(a, b, c) \), the derivative of \(f \) at \((a, b, c)\).

B. A vector that is normal to the level surface \(f(x, y, z) = f(a, b, c) \).

C. A vector that points in the direction of greatest increase of \(f(x, y, z) \) from \((a, b, c)\).

D. both B and C.

*E. A, B and C.
Question 3 A particle follows a path \(c(t) \). Its velocity is \(v(t) = c'(t) \), its acceleration is \(a(t) = v'(t) = c''(t) \), and its speed is \(||v(t)|| \) (the magnitude of its velocity). If the speed of the particle is constant, then its

*A. velocity and acceleration are orthogonal.

B. velocity is constant.

C. acceleration is zero.

D. path is a straight line.

E. B and C
Question 4 Consider the double integral \(\int\int_{R} xy \, dA \), where \(R = [0, 1] \times [0, 2] \). Then,

A. \(\int\int_{R} xy \, dA = \int_{y=0}^{1} \int_{x=0}^{2} xy \, dy \, dx \)

B. \(\int\int_{R} xy \, dA = \int_{x=0}^{2} \int_{y=0}^{1} xy \, dx \, dy \)

C. \(\int\int_{R} xy \, dA = \left(\int_{0}^{1} x \, dx \right) \left(\int_{0}^{2} y \, dy \right) \)

D. A and B

*E. A, B, and C