Cylindrical Coordinates

Cylindrical coordinates are related to rectangular coordinates as follows.
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The inverse relationship is as follows.

i=costle, —sinfey
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It is worth noting that the above computations also imply the following.
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The position vector R = xi + yj + zk is written

R =pe,+ ze,. (cylindrical coordinates)

IfR=R(t)isa parameterlzed curve, then B = %¢ 4 pdep + %e,. Since e, = cosfi+sinfj, it follows
that % = 9 e, Thus,
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Hence, dR = dpe, + pdf ey + dz e, and it follows that the element of volume in cylindrical coordinates is
given by

dV =pdpdf dz
If f= f(x,y,2) is a scalar field (that is, a real-valued function of three variables), then
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If we view x and y as functions of p and € and apply the chain rule, we obtain
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Writing this in terms of p, 6, and the cylindrical coordinate vectors yields
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Simplifying, we obtain the result
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If F = F(x,y,2) is a vector field (that is, a vector-valued function of three variables), then we can write

F = i+ Rj + F3k
= (cos0F, +sinfFy)e, + (—sin0F; + cos0F,)eg + Fze,

Thus, F = F e, + Fyey + I, e,, where

F,=cos0 Iy +sin0 I} Fy =cosf F, —sin0 Iy
Fy = —sinf F; + cosf Iy Fy =sin F, + cost Fy
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Now we can transform V - F and V X F into cylindrical coordinates. To transform V - F, we compute as
follows.
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After simplifying, we obtain
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V x F is handled similarly.
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Writing the partial derivatives of Fi, and Fj in terms of F},, Iy, and their partial derivatives, we obtain
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Writing i, j, and k in terms of e,, ey, and e, and simplifying, we obtain
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