1. Find \(r, 0 < r < 101 \) so that \(2^{102} \equiv r \mod (101) \).

[101 is a prime]

\[2^{101} \equiv 2 \mod (101) \] by Fermat’s Theorem, so \(2^{102} \equiv 4 \mod (101) \).

2. Let \(a = [3]_{19} \). Show that \(a \) has an inverse under multiplication and find the inverse.

\[1 \cdot 19 + (-6) \cdot 3 = 1 \] so \([-6] = [13]\) is the inverse of \([3]\)

3. a. Find a permutation \(\sigma \) in \(S_5 \) so that \((1 2 3) \sigma = (1 2 3 4 5) \)

 b. Find a permutation \(\tau \) in \(S_5 \) so that \(\tau (1 2 3) = (1 2 3 4 5) \)

Notice that \((1 3 2) \) is the inverse of \((1 2 3) \)

\[\sigma = (1 3 2)(1 2 3 4 5) = (3 4 5) \]

\[\tau = (1 2 3 4 5)(1 3 2) = (1 4 5) \]

4. Let \(a, b, \) and \(n \) be positive integers and \(p \) a (positive) prime number

a. Show that if \(p \mid ab \) then either \(p \mid a \) or \(p \mid b \).

b. Show that \((a,n)=1 \) and \((b,n)=1 \) implies \((ab,n)=1 \).

Since \(p \) is prime we have \((a,p) \) is either \(p \) or \(1 \). If \((a,p)=p \) then \(p \mid a \) and we are done. If \((a,p)=1 \) then \(Aa + Bp = 1 \) for some \(A,B \). But then \(Aab + Bpb = b \). Since \(p \mid Aab \) and \(p \mid Bpb \) we have \(p \mid b \).

If \((a,n)=1 \) we have \(Aa + Bn = 1 \) for some \(A,B \). Thus \(Aab + Bnp = b \). If \(g=(ab,n) \) this shows that \(g \mid b \). We also have \(g \mid n \). So \(g \mid (b,n)=1 \) We therefore have \(g=1 \) as desired.
5. Let \(n \) be an integer > 1. Fermat's (little) Theorem says that if \(n \) is prime then \(n \) satisfies the condition:
\[
(*) \forall \ x, \ 1<x<n, \ \text{we have } x^{n-1} \equiv 1 \mod n.
\]

Show that the converse is true (i.e. if \(n \) satisfies (*) then it must be prime).
[Hint: If \(n \) is not prime then show there are zero divisors in \(\mathbb{Z}_n \). Show that a zero divisor cannot have an inverse (under multiplication). Observe that \(x^{n-1} \equiv 1 \) implies \(x \) has an inverse in \(\mathbb{Z}_n \).]

If \(n \) is not prime then \(n = ab \) for some \(1 < a,b < n \). So \(a \) is a zero divisor in \(\mathbb{Z}_n \).
If \(a^{n-1} \equiv 1 \mod n \) then \(a \) has an inverse (namely \(c = a^{n-2} \)) We have \(ab \equiv 0 \). Multiply by \(c \) and we find \(b \equiv 0 \) which cannot happen if \(1 < b < n \)

Extra Credit Prove or disprove that if there is a permutation \(\sigma \) in \(S_5 \) which satisfies \((1 \ 2 \ 3) \ \sigma = (1 \ 2 \ 3 \ 4 \ 5) \) then \(\sigma \) is unique.

Theorem: \(\sigma \) is unique.
Proof: If \((1 \ 2 \ 3) \ \sigma = (1 \ 2 \ 3 \ 4 \ 5) \) and \((1 \ 2 \ 3) \ \tau = (1 \ 2 \ 3 \ 4 \ 5) \) then \((1 \ 3 \ 2)(1 \ 2 \ 3) \ \sigma = (1 \ 3 \ 2)(1 \ 2 \ 3) \ \tau \)
so \(\sigma = \tau \)