
J Wavrik - Deduction and Simplification - Page 1 of 15

Automated Simplification and Deduction
for Engineering Formulas

John J Wavrik
Dept. of Math

Univ. of Calif. - San Diego

Abstract

 The commutative version of the Gröbner Basis Algorithm has become one of the most
powerful tools in computer algebra. The recent adaptation of the algorithm to non-
commuting variables has potential applications to matrix and operator expressions. A
Forth-based research system was used to implement and study applications of a non-
commutative variant of the Gröbner Basis Algorithm. It has been used in automated sim-
plification and deduction for formulas in engineering. The paper will discuss this work
and the use of Forth in producing systems for mathematics research.

J Wavrik - Deduction and Simplification - Page 2 of 15

Introduction

 The Gröbner Basis Algorithm for polynomials in commuting variables was developed
in the mid 1960s. This algorithm has revolutionized the field of computational algebraic
geometry in the past decade. It also has become an important tool in solving systems of
algebraic equations and is now used for this purpose in all modern computer algebra sys-
tems.

 An adaptation of the Gröbner Basis Algorithm to polynomials in non-commuting vari-
ables was made in the late 1980’s. A Forth-based research system was created by the au-
thor to implement and this algorithm and its applications. In joint work with Prof. J Wil-
liam Helton, this system was used to study applications to simplification and deduction
for matrix and operator expressions which arise in engineering.

 This paper is in three parts. Part I contains background on the division algorithm for
several variables and Gröbner bases. Part II discusses the application to simplification
and deduction. Part III contains information about the use of Forth in the research system
used for this project.

Part I - Division and Gröbner Bases

 The Gröbner Basis algorithm arises in connection with a reduction process which gen-
eralizes the well-known “long division” algorithm to polynomials in several variables.
The standard algorithm divides a polynomial f by a polynomial g to yield a quotient q and
remainder r. We have f = q*g + r. The degree of r is less than the degree of g.

x x x
x

x x
x
x

+ + +
−

+
− +
− −

1 2 2
2 1

2 2
2
1

3

2

2

 In this algorithm we use the natural ordering of
polynomials by degree. The terms of g are in de-
scending order and the leading term LT(g) is used to
determine the partial quotient at each step. The
process continues until we obtain a polynomial
whose terms are not divisible by LT(g). This is the
remainder, r.

 The algorithm provides a test for deciding if a
polynomial f is or is not a multiple of g: f is a multi-
ple of g if and only if r = 0.

J Wavrik - Deduction and Simplification - Page 3 of 15

 The natural generalization to polynomials in several variables x1,..,xn is to “divide” a
polynomial f by a set of polynomials G. The goal is to find an algorithm for writing f =
a1g1 + ... + amgm + r (in the commutative case)1 where r is, in some sense, the remain-
der.

 There is no natural ordering on the monomials in several variables -- but an ordering
can be chosen from among several possibilities. In what follows we will assume a fixed
order2 so that every polynomial f has a leading term, LT(f), which is largest in this order-
ing. The essence of the division algorithm is to systematically eliminate terms in which
any LT(gi) occurs, replacing them by a sum of lower order terms.

Division Algorithm

Input: polynomials f, g1,...,gm
Output: r so that (1) f = LinComb(g1,...,gm) + r
 (2) no term of r is divisible by any LT(gi)

r := f
while ∃ i, t s.t. Divides(LT(gi),t) (t a term of r)
 write t = c L·LT(gi)·R
 r := r - c L·gi·R

The algorithm stops because each term of r is replaced by terms of lower order and we
use orderings for which there are no infinite descending sequences. It is easy to modify
this algorithm to keep account of the linear combination of gi, but is really r that is of im-
portance.3

 Notice that the algorithm, as given, depends on arbitrary choices: the order in which
the LT(gi) are used to test for divisibility, the order in which the terms of r are examined
for divisibility, and which occurrence of LT(gi) in t is used, if it occurs more than once.

EXAMPLE 1

 f = x2y, g1 = xy - 1, g2 = x2 - y
 We first reduce by g1, subtract f - xg1 to obtain r = x

 We first reduce by g2, subtract f - yg2 to obtain r = y2

!

1 In the non-commutative case, we write f a L g R ri i i i= +∑ where the Li and Ri are words in the

variables, gi ∈ G, and the sum is finite.
2 The ordering on monomials is required to satisfy (1) 1 < M (2) M1 < M2 ⇒ M⋅ M1 < M⋅ M2 and

M1 ⋅ M < M2 ⋅ M (3) < is a well-ordering (no infinite descending chains)
3 The algorithm is stated for a finite set of G, but it can be applied to an infinite set provided that the deci-

sion Divides(LT(g),t) can be made in finite time.

J Wavrik - Deduction and Simplification - Page 4 of 15

In each case the process stops because we obtain an r which is not divisible by any
LT(gi).

EXAMPLE 2

 With g1 and g2 as above, the polynomial y2 - x can be written as a linear combina-
tion of g1 and g2: y2 - x = x g1 - g2 y. However if we use the division algorithm we
get r = y2 - x which is not zero.

 There is, therefore, a natural and simple way to generalize the division algorithm to
polynomials in several variables. Unfortunately the division process is badly behaved in
general. As the first example shows, one can, in fact, get different remainders depending
on the choices made in carrying out the algorithm. If r=0 then f is a linear combination of
the gi. The second example shows that the converse need not be true.

Gröbner Bases
 A set, I, of polynomials is called an ideal if for all f,g ∈ I and all polynomials p we
have f + g, pf, and fp ∈ I. The set of all linear combinations of G = {gi} is an ideal
(called the ideal generated by G). G is called a basis of this ideal.

 G is called a Gröbner Basis for the ideal, I , it generates if the division algorithm is
nicely behaved in the sense that ∀ f, f ∈ I ⇔ r=04. It can be shown that, in this case, r is
independent of the choices -- so it is a canonical form (aka normal form) for f and is de-
noted N(f,G).

 The main theoretical results in the commutative case were obtained in the mid 1960’s.
Hironaka ([Hiro], 1964) proved the existence of a Gröbner Basis for any ideal. Buchber-
ger ([Buch1], 1965) showed this independently. He also provided an algorithm for obtain-
ing a Gröbner Basis from an arbitrary basis. By 1985, Buchberger [Buch2] substantially
improved the efficiency of the algorithm. He and others also explored a variety of appli-
cations.

 In the non-commutative case, ideals may have infinite bases. In 1986 Mora [Mora]
provided an algorithm which, if it terminates, gives a finite Gröbner Basis and conditions
under which an infinite basis satisfies the Gröbner property.

 The commutative case of the Gröbner Basis algorithm has been a breakthrough in
computational algebra. By providing a computational test for membership in an ideal

!

4 In view of the fact that r is not unique, it may be clearer to say G is not a Gröbner basis if we can find

an f ∈ I which has a non-zero remainder for some choice of reduction.

J Wavrik - Deduction and Simplification - Page 5 of 15

(among other things) it provides a tool for computing in quotient rings and working out
details of explicit examples. It has also been used in solving systems of equations: for
some term orderings, the Gröbner Basis yields an equivalent system of equations in which
the variables are successively eliminated (solving systems of linear equations by Gauss
elimination is a special case).

Part II - Simplification and Deduction

SIMPLIFICATION:
 The division algorithm can also be thought of as the repeated application of rewrite
rules derived from the polynomials gi. The process of multiplying y2 - x + 1 by suitable
factors and subtracting is equivalent to the process of scanning the terms of f for any oc-
currence of y2 and then making the replacement y2 → x - 1. Thus a divisor, g, gives rise
to a rewrite rule LHS → RHS where LHS = LT(g) and RHS = LT(g) - g. LHS is re-
placed, where it occurs, by a sum of terms of lower order.

 After I gave a talk about Gröbner Bases a colleague, Bill Helton, asked if this tech-
nology would be useful in simplifying complicated formulas which arise in engineering.
He supplied some examples. Here is one:

coexz = -tp[C1] ** C1 - XX ** B2 ** inv[d12] ** C1 - tp[C1] ** inv[tp[d12]] ** tp[B2] **
XX - XX ** inv[Id - YY ** XX] ** B1 ** inv[d21] ** C2 - XX ** inv[Id - YY ** XX] ** B1 **
tp[B1] ** XX + inv[YY] ** inv[Id - YY ** XX] ** B1 ** inv[d21] ** C2 + inv[YY] ** inv[Id -
YY ** XX] ** B1 ** tp[B1] ** XX - XX ** B2 ** inv[d12] ** inv[tp[d12]] ** tp[B2] ** XX -
XX ** inv[Id - YY ** XX] ** YY ** tp[C2] ** inv[tp[d21]] ** C2 - XX ** inv[Id - YY ** XX]
** YY ** tp[C2] ** inv[tp[d21]] ** tp[B1] ** XX + inv[YY] ** inv[Id - YY ** XX] ** YY **
tp[C2] ** inv[tp[d21]] ** inv[d21] ** C2 + inv[YY] ** inv[Id - YY ** XX] ** YY ** tp[C2] **
inv[tp[d21]] ** tp[B1] ** XX

tp denotes transpose, inv denotes inverse, C1, B2, etc are operators. Notice that this ex-
pression is a polynomial in variables like C1, inv[d12], etc. The only obvious relations
were those among variables which represented subexpressions and their inverses (for ex-
ample, d12 ** inv[d12] - Id). Thus I took for G a set of polynomials which represented
obvious identities. A Gröbner Basis, G’, was produced and the above expression was re-
duced by G’.

coexzsimp = YY ** (-tp[C1] ** C1 - XX ** B2 ** inv[d12] ** C1 - tp[C1] ** inv[tp[d12]] **
tp[B2] ** XX + tp[C2] ** inv[tp[d21]] ** inv[d21] ** C2 + tp[C2] ** inv[tp[d21]] ** tp[B1]
** XX - XX ** B2 ** inv[d12] ** inv[tp[d12]] ** tp[B2] ** XX) + B1 ** inv[d21] ** C2 + B1
** tp[B1] ** XX

Our success on these initial examples led to a systematic investigation ([HW], [HSW1],
[HSW2]).

J Wavrik - Deduction and Simplification - Page 6 of 15

 Automatic simplification by reduction is actually close to the way expressions are
simplified “by hand”. A human would scan an expression looking for ways to apply ma-
trix identities. The most obvious thing to look for is an operator next to its inverse.

 1 - x-1x + x2 simplifies to x2

An expert can bring to bear a large repertoire of identities.
 1 - x-1(1-xy)-1x simplifies to 1 - (1-yx)-1

using the identity (1-xy)-1x = x(1-yx)-1.

 We examined “models” consisting of a collection of simple expressions in one or
more matrix variables.

EXAMPLE 3

 The simplest model, RESOL, uses expressions which are polynomials in
x, x-1, and (1-x)-1. These three are taken as non-commuting variables in a
polynomial ring with three variables. We may assign a=x, b=x-1, c=(1-x)-1.
We choose the starting basis, G, to express obvious relations on a,b,c:
G={ ba - 1, ab - 1, ca - c + 1, ac - c + 1}5.

 If the starting basis, G = {gi } consists of matrix identities, then any linear combination
of the gi is a matrix identity. In particular, the Gröbner Basis, G’, obtained from G will
consist of are matrix identities. Moreover, N(f,G’) will be equivalent to f since it differs
from f by a matrix identity. In our models, the Gröbner Basis extended the initial set of
obvious identities by a collection of more sophisticated identities.

 Monomials are ordered first by word length and, for words of the same length, by lexi-
cographic order. The simple expressions constituting the model were assigned to poly-
nomial variables so that expressions which subjectively seem simpler were assigned ear-
lier letters than those which seemed more complicated. The example above illustrates
this for RESOL. Reduction is a simplification process: it replaces terms by terms lower in
order. It also reduces equivalent terms to the same form -- which makes it possible to
combine or cancel equivalent terms. The ordering has been chosen so that reduction will
tend to eliminate the more complex basic expressions in favor of the simpler ones.

INFINITE BASES:
 For all the models in our study, we obtained a Gröbner Basis which was either finite or
a finite collection of “special” relations together with several infinite parametrized fami-
lies.

!

5 For clarity, in what follows, we will write the corresponding matrix expression as the variable. The con-

text will establish whether we are talking about x-1 as an independent variable in a polynomial ring, or as
the inverse of the matrix x.

J Wavrik - Deduction and Simplification - Page 7 of 15

EXAMPLE 4

 Here is the Reduced6 Gröbner Basis obtained for expressions in
x < y < x-1 < y-1 < (1-x)-1 < (1-y)-1 < (1-xy)-1 < (1-yx)-1.

The 12 starting relations were just those that come from the definition of inverse.

 SPECIAL RELATIONS (starting relations marked with *)7

!

6 Each element, g, is replaced by N(g,G-{g}) -- and omitted if it reduces to 0.
7 The observant reader will only count 10 stars. Two of the starting relations reduce to 0 by other ele-

ments of the Gröbner Basis, and so are omitted.

1* xx-1 - 1
2* x(1-x)-1 - (1-x)-1 + 1
3* yy-1 - 1
4* y(1-y)-1 - (1-y)-1 + 1
5* x-1x - 1
6 x-1(1-x)-1 - (1-x)-1 - x-1
7 x-1(1-xy)-1 - y(1-xy)-1 - x-1
8* y-1y - 1
9 y-1(1-y)-1 - (1-y)-1 - y-1
10 y-1(1-yx)-1 - x(1-yx)-1 - y-1

11* (1-x)-1x - (1-x)-1 + 1
12 (1-x)-1x-1 - (1-x)-1 - x-1

13* (1-y)-1y - (1-y)-1 + 1
14 (1-y)-1y-1 - (1-y)-1 - y-1
15 (1-xy)-1x - x(1-yx)-1
16 (1-xy)-1y-1 - x(1-yx)-1 - y-1
17 (1-yx)-1y - y(1-xy)-1
18 (1-yx)-1x-1 - y(1-xy)-1 - x-1
19* xy(1-xy)-1 - (1-xy)-1 + 1
20* yx(1-yx)-1 - (1-yx)-1 + 1
21 (1-x)-1y(1-xy)-1 - (1-x)-1(1-xy)-1 -
 y(1-xy)-1 + (1-x)-1
22 (1-y)-1x(1-yx)-1 - (1-y)-1(1- yx)-1 -
 x(1-yx)-1 + (1-y)-1

 GENERAL RELATIONS

I x(1-yx)-n(1-x)-1 - (1-xy)-n(1-x)-1 + (1-xy)-n

II x(1-yx)-n(1-y)-1 - (1-xy)-n(1-y)-1 - x(1-yx)-n + (1-xy)-(n-1)(1-y)-1

III y(1-xy)-n(1-x)-1 - (1-yx)-n(1-x)-1 - y(1-xy)-n + (1-yx)-(n-1)(1-x)-1

IV y(1-xy)-n(1-y)-1 - (1-yx)-n(1-y)-1 + (1-yx)-n

V (1-x)-1(1-yx)-n(1-x)-1 - (1-x)-1(1-xy)-n(1-x)-1 -
 (1-yx)-n(1-x)-1 + (1-x)-1(1-xy)-n

VI (1-x)-1(1-yx)-n(1-y)-1 - (1-x)-1(1-xy)-n(1-y)-1 -
 (1-yx)-n(1-y)-1 - (1-x)-1(1-yx)-n +
 (1-x)-1(1-xy)-(n-1)(1-y)-1 + (1-yx)-n

VII (1-y)-1(1-yx)-n(1-x)-1 - (1-y)-1{S + 1}(1-x)-1 +
 S(1-x)-1 + (1-y)-1S - S
 where S = (1-xy)-n + ... + (1-xy)-1

VIII (1-y)-1(1-yx)-n(1-y)-1 - (1-y)-1(1-xy)-n(1-y)-1 +
 (1-xy)-n(1-y)-1 - (1-y)-1(1-yx)-n

J Wavrik - Deduction and Simplification - Page 8 of 15

DEDUCTION:
 The construction of Gröbner Bases, starting with a set of identities, provides an ex-
ample of deduction. The set of starting identities, G, are known to be true (they usually
are just obvious statements about inverses). Any new element in the Gröbner Basis G’ is
therefore also known to be an identity (since it is a linear combination of identities). Also
any f for which N(f,G’) = 0 is an identity. A formal proof of the new identity can be ob-
tained by tracing the basis computation to provide the linear combination explicitly.

EXAMPLE 5

The resolvent identity, (1-x)-1x-1 - (1-x)-1 - x-1 is a classical identity in operator the-
ory. It is not difficult to prove. However it was produced automatically (with an im-
plicit proof) because it occurs in the Gröbner Basis for RESOL (see previous exam-
ple). Therefore it must be a linear combination of these identities. In fact (1-x)-1x-1 -
(1-x)-1 - x-1 = x g2 - g3 x-1

 We have just examined the case in which the starting relations are identities. In this
case, the Gröbner process produces more identities and also provides an algorithmic test
for a polynomial expression to be a linear combination of a set of identities, and hence an
identity itself.

 Some theorems in operator theory can be stated in such a way that the hypotheses and
conclusion involve the vanishing of polynomial relations (see [HSW2] for examples). In
this case, we are trying to deduce that f=0, but not universally -- only under the condition
that the underlying matrices satisfy {gi = 0}. Any linear combination of the gi vanishes
where the gi vanish, so the members of the Gröbner Basis, G’, are consequences of the
hypotheses. If N(f,G’) = 0 then f =0 follows from {gi = 0}.

EXAMPLE 6 f = [y(1-xy)-1 - (1-yx)-1 + 1][(1-xy)-1 - 1]

f is a polynomial in the 4 variables x, y, (1-xy)-1 and (1-yx)-1 It is not an iden-
tity. We can show, however, that f = 0 provided x and y are idempotent (i.e.
x2 = x, y2 = y).

 Let G = { (1-xy)(1-xy)-1 - 1, (1-xy)-1(1-xy) - 1, (1-yx)(1-yx)-1 - 1,
 (1-yx)-1(1-yx) - 1, x2-x, y2-y }

 The Gröbner Basis, G’, for G has 18 elements. The division process shows
N(f,G’) = 0. Thus f is a linear combination of the polynomials in G and so
f=0 for any x, y satisfying them.

J Wavrik - Deduction and Simplification - Page 9 of 15

Part III - Forth Based Systems for Math Research

 Forth is useful as a base language for user-created mathematical research systems. It
provides the tools (e.g. low level access to hardware and language) and the features (e.g.
simplicity, control over compilation, high level constructs) for building high level lan-
guages and interactive systems. Research systems can be constructed which are tailored to
the needs of a specific project or area. They can be used interactively, are easily extended,
and are easily modified. Flexibility is achieved without great sacrifice in execution speed.
In this part we discuss some aspects of the Forth-based system used in research on Gröb-
ner Basis Theory.

DATA ABSTRACTION AND MODULARITY:
 Algebra programming often requires the ability to simultaneously handle a great many
types of data. The system used for this work handles integers, addresses, high-precision
integers, high-precision rationals, strings, ordered lists, pointers, and polynomials. It was
decided that all objects in a system should be manipulated on the stack as single stack
cells -- and subject to the ordinary stack manipulations of Forth. (Thus A B SWAP should
interchange A and B no matter what type of objects these are.)

 The most prominent objects in our previous discussion are polynomials in several vari-
ables. If the variables commute, we can write a polynomial (say of three variables) in the
form:

f a x y zijk
i j k= ∑

These are added and multiplied using the familiar rules of polynomial arithmetic. The aijk
are coefficients which lie in some specific domain which has addition and multiplication
(integers, rationals, integers mod p, etc.). If the variables do not commute, then polyno-
mials look like

f a Wi i= ∑

Where the Wi
 are “words” in the variables. (Example: f = xxy - 2xyx + 3 yxx)

 When polynomials are multiplied, the words are concatenated in the non-commutative
case -- while the exponents are added in the commutative case. Since polynomials of vari-
ous types occur so frequently in algebra, it is useful to implement an abstract data type
“Polynomial” as a module which can be linked to modules implementing the coefficients
and the “monomial type”. This module, in turn, is linked to client modules which use
polynomials (like a module to implement the Gröbner algorithm).

 A polynomial is a finite sum of terms. Each term always consists of a coefficient and
a monomial part. The arithmetic of polynomials depends on the arithmetic of the coeffi-
cient domain and a “multiplication” of monomials. An interface module provides the

J Wavrik - Deduction and Simplification - Page 10 of 15

polynomial module with a standard description of the coefficients: the coefficient arith-
metic operations are given by operations X+, X-, X*, and X/ which always take two coeffi-
cient objects from the stack, and return a coefficient object. Similarly there is a MONO*
which takes two monomial objects from the stack and returns a monomial object. The
arithmetic of polynomials can be described abstractly in terms of these operations to-
gether with a few others.

 A polynomial itself will be a circular linked list whose nodes contain, or point to, a
coefficient object and a monomial object. Polynomial operations are implemented by
running pointers along these lists. An abstract polynomial module will manage the stor-
age for this representation and provide for polynomial arithmetic, input, and output. To
do this, it is written in terms of operations which it imports from the modules which im-
plement the coefficient and monomial domains. It, in turn, exports polynomial arithmetic
operations (like P+, P-, P*, P.) as well as access words (like COEFF@, MONO@, COEFF!,
MONO!).

 The same package can be used to produce a variety of different polynomial types. We
just first load the module implementing the coefficients and monomials followed by a
small module interface module (indicated by I in the diagram) that tells the polynomial
module what it needs to know about coefficients. Similarly, an interface module provides
the polynomial package with knowledge of monomials. In the system used for the current
work, an order is imposed on the monomials and the terms are kept in descending order,
so the polynomial package must need to know how to compare two monomials.

Domain of
Monomials

I I

Domain of
Coefficients

J Wavrik - Deduction and Simplification - Page 11 of 15

 Extended precision integer and rational arithmetic is used heavily in algebraic compu-
tation. For most investigations, the coefficients were extended precision rationals imple-
mented in a package I created over 9 years ago. An extended precision rational package
requires a memory management scheme to be useful. I used a method which provides a
collection of 16 storage locations for temporaries used in a conjunction with a program to
manage them. The same storage management package is used for extended precision in-
tegers, extended precision rationals, strings, and polynomials. [Wav]. The basic arithme-
tic words are written in assembly language.

 Forth encourages a writing style in which functionality is distributed over a relatively
large number of specialized “words”. It therefore encourages (although does not coerce)
data abstraction: the hiding of details about implementation of data structures from client
words which use the data structures. The top level of this system appears to manipulate
mathematical objects on the stack. Lower level words implement the data structures and
export the “access words” for manipulating them. Details of implementation are encapsu-
lated and so can be changed without affecting other parts of the code.

 A number of changes have taken place in the implementation of the polynomial pack-
age since it was first written in 1984. The value of hiding implementation details can be
illustrated by mentioning the changes that have taken place in just one area: representa-
tion of terms and memory allocation:

 In 1984 the package was intended to perform simple computations on polynomials in
non-commuting variables. This imitated an earlier package for polynomials in commuting
variables. Everything was in the 64k code segment. The terms of a polynomial were rep-
resented by nodes of linked lists which consisted of a link field, coefficient field (integer),
and monomial field (string of length up to 32). A pointer was a variable containing the
address of a node. The access word COEFF@ was defined by
 : COEFF@ (ptr -- coeff) IA + ; 8

 The commutative case of the Gröbner Basis algorithm was implemented in 1986 using
the abstract polynomial idea. Capacity was increased by moving data to separate seg-
ments outside the code segment. The nodes, for example, were in a separate 64k “pointer
segment” and pointers were variables containing offsets in that segment. To hide informa-
tion about where the data for pointers is located, all of the words involving them use two
basic access words PT@, PT! which are used just like @ and ! (in fact, are @ and ! if
pointers lie in the code segment). Putting a class of objects into its own segment and ad-
dressing objects by offset allows objects to be represented on the stack by a single cell.
This approach seems preferable, for portability and ease of programming, to using a two-

!

8 IA is the number of addressable units needed to represent an integer. It is what we now call CELL. This

notation was inherited from Kitt Peak VAX-Forth.

J Wavrik - Deduction and Simplification - Page 12 of 15

cell (segment-offset) representation. Code is clearer if objects have their own access
words -- rather than using general-purpose architecture dependent words.

 The nodes, which lie in the same segment as the pointers, consisted of a link field and
the segment/offset pair of the coefficient and monomial. The access word COEFF@ be-
came:

: COEFF@ (ptr -- x) \ transfer coeff from node to temp
 DT@ (offs seg) \ location of coeff
 XTEMP \ address of temporary
 DUP >R XSIZE F>MOVE R> ;

XTEMP returns the address of the next available storage location for coefficients. A coeffi-
cient is moved to a temporary location in the code segment, and the address is returned.

 When writing words for dealing with polynomials as linked lists, it is important to
create a set of words which have conceptual appeal. For example, we often advance a
pointer along the terms of the polynomial (nodes in the list). Thus we define

 : ADVANCE (ptr --) \ set pointer to next term
 DUP PT@ PT@ SWAP PT! ;

Where we assume that the pointer points to the link field of a node. Psychologically, this
is a word which makes the following change:

 The non-commutative Gröbner algorithm was implemented in 1990. Near the end of
the year, work started on the operator theory project. Eventually more memory was
needed, and the system was modified to use “expanded memory” which involves paging.
Nodes now contain the offset and page of the data (coefficient and monomial). COEFF@
looks the same, but DT@ now must get the offset/page, map the page to a buffer, and re-
turn the offset/segment of the data within the page buffer.

 It may be argued that most of the problems above were inflicted by the idiosyncracies
of the Intel segmented architecture -- but what is important is that Forth supports a writ-
ing style which conceals idiosyncracies of hardware within the data access words. If a
system is carefully written, there will be less that a dozen words that really need to know
where the coefficients and monomials are actually located in memory or how memory is
configured. This information is contained in words like COEFF@ and COEFF!. Thus the
changes mentioned above were made with almost no impact on the rest of the code.

J Wavrik - Deduction and Simplification - Page 13 of 15

 IMPLEMENTING INFINITE BASES:
 We previously gave an example in which the Gröbner Basis is infinite. In this example
there are 8 infinite parametrized families of polynomials together with a relatively small
set of special polynomials that do not fall into these classes. The Division algorithm is
easily extended to the case in which G is infinite provided that the decision Di-
vides(LT(g),t) can be made in finite time. In an allowable term ordering, if M1 divides
M2, then M1 ≤ M2. In the ordering we use, M1 ≤ M2 implies length(M1) ≤ length(M2).
Thus, for a given monomial, there are only a finite number of candidates for divisors. In a
reduced Gröbner Basis, the LT(g) are distinct. So there are only finitely many candidates
for g such that Divides(LT(g),t).

 The preceding paragraph shows that to reduce polynomials whose terms have length
bounded by N, it suffices to have stored in memory all basis polynomials with leading
terms ≤ N. Thus only a finite number of basis elements are needed to reduce polynomi-
als below a given order. In practice, the fact that the basis is infinite can be ignored.

 For experiments supporting theoretical work, however, it became necessary to apply
the division algorithm for polynomials of arbitrarily high order. It was not feasible to gen-
erate and store all the basis polynomials that would be needed. A method was devised to
perform reductions using an infinite basis.9

 It is simple to implement parametrized families like those above: we define a word,
GR (n m -- poly) which generates the nth element of the mth family upon demand. If the
polynomial G(n,m) is not in memory initially, it can be created. Notice that the length of
LT(g) increases with n -- so to test Divides(LT(g),t) only a finite number of these poly-
nomials would need to be generated. This shows that carrying out division by our Gröb-
ner Basis G is at least a task that can be carried out in finite time.

 Now we can become concerned with efficiency. We wish to avoid generating any
GR(n,m) which is not needed. Remember that only the leading term is used to check di-
visibility -- so the test for divisibility does not require generation of the polynomial. The
polynomial is only needed when a multiple of it is to be subtracted. Here is how the di-
visibility decision, based on leading terms, is implemented.

 Internally, the polynomials variables are denoted a,b,c,... Thus, in our example, a = x, b
= y, c = x-1, d = y-1, e = (1-x)-1, f = (1-y)-1, g = (1-xy)-1, h = (1-yx)-1. The leading terms
are:

!

9 It should be noted that this method is applied ad hoc, using information about the particular basis. The

process of identifying families, finding formulas, and implementing reduction for an infinite bases has
not yet been automated.

J Wavrik - Deduction and Simplification - Page 14 of 15

General Classes Special Relations
I ah(n)e 1 ac 9 df 17 hb
II ah(n)f 2 ae 10 dh 18 hc
III bg(n)e 3 bd 11 ea 19 abg
IV bg(n)f 4 bf 12 ec 20 bah
V eh(n)e 5 ca 13 fb 21 ebg
VI eh(n)f 6 ce 14 fd 22 fah
VII fh(n)e 7 cg 15 ga
VIII fh(n)f 8 db 16 gd

 To check for divisibility a monomial was scanned for occurrence of pairs of letters
which start these monomials. What happens next depends on the pair. If ah, for example,
the number of successive h was counted and then the routine looks for a terminating e or
f. A hash coding scheme for the pairs was used to quickly classify the pair and determine
further treatment. The result of this scan is the precise first location of LT(g) as a sub-
string in t, and the precise g, or else a FALSE flag.

FLEXIBILITY:
 The most important attribute of a Forth-based system is flexibility. The ability to eas-
ily modify and extend the language is extremely important for research systems. It is
rarely clear, at the start of a project, what will be discovered and the tools which will be
needed to discover it. The software system must therefore adapt to the project’s needs.
The system used for this project, in addition to changes in data representation, acquired
several sets of input and output words as it was used. My colleague and his students are
incorporating the results of this work in a Mathematica package for engineers, thus a pro-
vision was added to accept input and provide output in the form of Mathematica expres-
sions. When we reached the stage of writing papers, I added the ability to produce output
in TeX (to minimize transcription errors in final papers). One of the major problems in
this project was the interpretation of output. Special output words were implemented to
assist in this task. I also needed to trace and experiment with some steps in the algorithm
-- this was easily accomplished by changing the behavior of key words. It was important
to me that a Forth system allows modifications to be made incrementally, loading sup-
plementary code (or even patching existing code) without recompiling the entire system
and losing the existing data.

SPEED:
 While execution speed is not the most important advantage Forth has to offer, it
should be noted that Forth-based systems are substantially faster than commercial com-
puter algebra systems (like Mathematica, Maple, Macsyma, REDUCE, and Derive).
Some timing studies showed that the Forth-based system (on a 486/33) performs arithme-
tic on polynomials in non-commuting variables over 20x faster than my colleague’s
Mathematica package (running on a SPARC II). Some of the basis computations which

J Wavrik - Deduction and Simplification - Page 15 of 15

took several hours on the Forth-based system would have taken several days using
Mathematica.

CONCLUSION:
 Algebraic computation benefits from a dynamic view of language and system. The
needs of someone exploring new algorithms and new applications are best met by provid-
ing the user with tools for creating and modifying both the language and the system. Forth
provides a good foundation for this model of computation.

References

[Buch1] B. Buchberger, “Ein Algorithmus zum auffinden der basiselemente des

restklassenringes nach einem nulldimensionalen polynomideal”,
Doctoral Dissertation Math Inst University of Innsbruck, Austria.

[Buch2] B. Buchberger, “Gröbner bases: an algorithmic method in polynomial

 ideal theory”, Recent Trends in Multidimensional System Theory,
Reidel (1985), pp. 184-232.

[Hiro] H. Hironaka, “Resolution of singularities of an algebraic variety over a

field of characteristic zero: I, II”, Annals of Math, 79 (1964), pp 109-326.

[HW] J. W. Helton and J. J. Wavrik “Rules for computer simplification of the

formulas in operator model theory and linear systems”,
Operator Theory: Advances and Applications, 73 (1994), pp. 325-254.

[HSW1] J. W. Helton, M. Stankus and J. J. Wavrik “Computer simplification of

engineering systems formulas”,
Proc IEEE Conference on Decision and Control (1994), pp. 1893-1898.

[HSW2] J. W. Helton, M. Stankus and J. J. Wavrik “Computer simplification of

engineering formulas”, submitted to
IEEE Transactions on Automatic Control (preprint 35 pages, 1995).

[Mora] F. Mora, “Groebner Bases for non-commutative polynomial rings”
 Lecture Notes in Computer Science, 229 (1986), pp. 353-362.

 [Wav] J. J. Wavrik, “Handling multiple data types in Forth”,

Journal of Forth Application and Research, v. 6 no 1 (1990), pp 65-76.

	Introduction
	Part I - Division and Gröbner Bases
	Gröbner Bases

	Part II - Simplification and Deduction
	SIMPLIFICATION:
	INFINITE BASES:
	DEDUCTION:

	Part III - Forth Based Systems for Math Research
	DATA ABSTRACTION AND MODULARITY:
	IMPLEMENTING INFINITE BASES:
	FLEXIBILITY:
	SPEED:
	CONCLUSION:

	References

