Evolution of a Computer Application
John J. Wavrik
Department of Mathematics
University of California – San Diego

Abstract

In this article I discuss the process of producing a computer software system for mathematical research or instruction. I show how a mathematician can create a special-purpose computer language to facilitate development of a system.

Mathematical work benefits from the use of software that can be modified and extended as it is used. I show the process of creating a software system of this type by discussing several critical stages in the development of Groups32, a system for working with groups of low order.
A version of the Groups32 system being discussed in this article is accessible on the Internet at http://math.ucsd.edu/~jwavrik/g32/. This web page contains instructions for accessing Groups32 via telnet and some written material including a sample session.
Table of Contents

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Listing Subgroups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tips on reading this article</td>
<td>Some Simple Programs</td>
</tr>
<tr>
<td>The Forth language (a brief introduction)</td>
<td></td>
</tr>
<tr>
<td>Groups16 (1990 version)</td>
<td>Groups32</td>
</tr>
<tr>
<td>Comments on Improvements</td>
<td>Permutations</td>
</tr>
<tr>
<td>Back to the Isomorphism Problem</td>
<td>Search</td>
</tr>
<tr>
<td>Groups16 – Transition</td>
<td></td>
</tr>
<tr>
<td>First Subgroups Package</td>
<td>User Interface</td>
</tr>
<tr>
<td>Sets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summary</td>
</tr>
<tr>
<td></td>
<td>Resources</td>
</tr>
</tbody>
</table>
Introduction

I address this article to mathematicians and mathematics educators. It is not about the use of a piece of software but rather about a methodology for producing software and about the electronic representation and manipulation of mathematics. In the article I show how a mathematician can produce a special purpose language for a subject area to facilitate writing programs in that area.

Computer programs are often "end products" -- like books, they remain relatively fixed after creation. The design and implementation of large software projects are most often in the hands of teams of experts in computer programming. The end user is not interested in the programming language or the developmental techniques, and, in fact, these things become invisible in the end product. The choice of language, however, can be a significant factor for ease in development, maintenance, and modification.
In this article I discuss production of dynamic software systems that are targeted at specialized research and instructional areas and are extended and modified as part of their use. The user, designer, and implementer are often the same person. We need, for this work, a language and methodology that allow software to be developed and modified easily. We need to make it feasible for a mathematician, whose expertise lies in other areas, to become involved in the task of creating languages and software systems.

A source of difficulty in programming with conventional general-purpose languages is the gap between the means of expression provided by the language and the concepts of the subject area. We can reduce this gap by using a language specifically designed for a particular subject area. To do this in the realm of conventional compiled languages would require writing a custom compiler – a formidable task. I will discuss and illustrate an approach that is the moral equivalent of writing a compiler – but that is viable for a working mathematician.
It has been clear for some time that one cannot portray the process of creation by writing an article that describes it. The reader must have direct experience with the systems under discussion. This journal facilitates exposition that combines written material and access to software. We are interested in electronic representation and manipulation of mathematics and in factors that influence the development of software. The best way to address these matters is to discuss the development and evolution of a particular software system. I have chosen a system written for elementary group theory, Groups32, because the subject matter is familiar to most mathematicians.

I will not distinguish in this article between research and instructional systems. Groups32 is not an "instructional program" – that is, it does not contain expository material to teach group theory. Rather, it is a research program that has been made suitable for instructional use. It provides students with a tool for experimentation. In a theoretical abstract algebra course, I have found it a good system for providing experience, examples, and experimentation.
History of Groups32

My first step in developing what came to be Groups32 was inspired by Kenneth Almquist’s electronic publication in 1989 of a set of tables for groups of orders 1-16. I wrote the first stages of the program (then Groups16) just to solve a problem stemming from an accident: Almquist's posting contained some tables that represented isomorphic groups. A natural question was to determine what one must know about groups of order 1-16 to determine quickly whether two tables represent isomorphic groups. Eventually, Groups32 evolved into a more substantial program that now contains tables for all groups of orders 1-32 and a collection of algorithms to compute a variety of information about these groups. I developed the program using the same techniques as for several special-purpose research systems.
Tips on Reading This Article

This article is intended to be read in conjunction with a computer application that is accessible on the Internet.

1. The Groups32 Web page contains instructions for accessing Groups32 via Telnet and also includes some written material.

I use this site with students. This way of making software available has the advantage that students can use it at home with any computer or operating system. The instructor can add material during the course. The Telnet version is not programmable. It does not require knowledge of a programming language.

2. I include with this article, for readers who would like to experiment with programming, a ZIP file containing executable versions of an early (1990) version of the groups program and the current version. These executables will run only under Windows 95 or later.

 a. Groups16 was written in 1990. I include it for paleontological purposes.
 b. Groups32 is the current version. I have used it in courses in abstract algebra at the undergraduate and beginning graduate level and for REU projects.
Unless you are unusually well endowed – with extremely good eyesight and a very large monitor — it is neither realistic nor necessary to have both the article and the software visible at the same time. It is enough to have them running in separate windows that you can switch between quickly.

A. Start the Groups32 software (either via Telnet or using a downloaded version on your own computer). Run the software in a large window.

B. Start the article (using Adobe Reader) in a separate large window. The article is intended to be read without scrolling. Its pages fit comfortably within a large Adobe Reader window. Make sure the view is set to "fit to width" and the window is as large as possible. Use the navigation arrows on the toolbar at top and navigation links in the article to move from screen to screen. If you are reading with the Adobe Reader inside a browser window, you may need to hide some of the browser toolbars.

C. Switch back and forth by using whatever method your operating system provides for switching between windows. (In the case of Windows you can switch using the buttons on the taskbar at the bottom of the screen.)
FORTH

I have used the computer language Forth as the base language for this work because it is well suited for the task of implementing special-purpose languages and creating highly interactive mathematical systems.

It is not the purpose of this article to make readers expert in Forth. The interested reader will find a variety of resources (Forth implementations, books, tutorials, etc.). *Most of this article requires the development of a reading knowledge of the language.* This means that you should be able to understand the simpler code and get the flavor of the more technical code. It also means that, if you are using one of the downloadable versions, you should be able to write some simple procedures. You should be able to read lightly through the main parts of the article first and then look at the section on Forth to get background for more detailed reading.
To program in Forth you need a development system. The downloadable versions of the Groups system include Win32Forth, a high quality Forth development system written by Tom Zimmer and Andrew McKewan, which is in the public domain. It is distributed with permission of the authors. I would like to express my thanks to Tom Zimmer for making it possible to provide a development system with this article.

Table of Contents
For the benefit of those who are trying to execute some of the examples in the articles on the downloadable systems, we have color-coded the code fragments that appear in the article.

The Color Coding Explained

- **RED** code is found in the 1990 version, Groups16.
- **GREEN** code is found in the current Groups32.
- **BLUE** represents code that was not in the 1990 version and did not survive to the current Groups32. For the most part, this code represents important stages in the transition.
The next section is a brief introduction to Forth. If you are using one of the programmable versions, you should try some of the examples in this section and conduct experiments to get the "hang" of the language.

The section after that discusses an early version of the groups program. The most important documentation in Forth is a glossary. Appendix A (a separate PDF file) is a glossary of the standard Forth words used in this article, and Appendix B is a glossary of the words defined in Group32. Individual words in the glossaries are bookmarked. A description of an individual word can be located most rapidly if the Adobe Reader is set to display bookmarks when using a glossary.

I suggest that you run the Groups16 (1990) program in one window while reading the article in another, and try some of the examples. The glossary should also be available for reference – it can either be open in another window or printed.

Table of Contents
The Forth Language

Forth is a language designed to create languages. It is easy to learn by understanding how it works! Unlike most conventional languages, its syntax is based on semantics: The emphasis is on what is done rather than on how it is said. The quickest way to introduce you to the process of programming is to examine and discuss some code, and that is what I will do in the remainder of the article. I start with some background information.

The Dictionary

The Forth language is a collection of commands, which we may think of as words in a dictionary. The name for a command (which is called a "word") can be any collection of printable characters delimited by spaces. Each command has an associated action. The dictionary consists of the names and some stored representation of the action.
The process of programming in Forth consists of adding new words (and actions) to the dictionary. A glossary of standard Forth words used in this article is found in Appendix A. Individual words can be accessed using the bookmarks in Adobe Reader.

Forth maintains its dictionary in chronological (rather than alphabetical) order. The dictionary looks like a linked list: When a new word is defined, it is added at the end of the dictionary.
Interpreting

The Forth system has two modes. The first – interpreting – occurs when the system reads a line of input. When a word is encountered in the input stream, the dictionary is searched, starting from the most recent entry. If the word is found, its action is performed. If a word is not found, the system tries to interpret it as a number. Since a word's action is performed when the word is encountered, any parameters it needs for its action must be already available. Thus the words (or numbers) that are used as parameters must occur before the word in the input stream. Some means must be provided for storing these parameters – a stack is used for this. By convention, most words act by removing their arguments from the stack and placing their results on the stack. (While numbers are not stored in the dictionary, they can be thought of as words whose action is to put themselves on the stack.)
Example:
3 2 +

This sequence (reading left to right) puts 3 on the stack, and then puts 2 on the stack. + is a word that takes two numbers from the stack, adds them, and puts the result (5 in this case) on the stack. Here are some examples with two operations:

- 3 2 + 7 * leaves 35 on the stack
- 3 2 7 * + leaves 17 on the stack
- 3 2 7 + * leaves 27 on the stack

There is no hierarchy of operations or use of parentheses to postpone operations. The sequence 3 2 7 puts these numbers on the stack (with 7 on top). The operations + and * are performed on the top two numbers on the stack.

NOTE: If you try these examples you will not see the results. The numbers on the stack are not usually displayed. Read on to find out how to see numbers on the stack.
The stack is a central feature of Forth. It (rather than named variables) is the means by which words communicate with one another. In most languages data items must be named before they can be used. A typical Forth word takes some unnamed parameters from the stack, performs some operation on them, and leaves the result(s) on the stack. The action of a word is usually documented by a "stack diagram" that shows what the word expects on the stack before it acts and what it leaves after. Often the programmer adds a further note of explanation, but sometimes this is obvious from the name chosen for the word. The stack diagram for + or * is

(n1 n2 – n3)

which indicates that each expects two integers on the stack and leaves one integer. The names + and * indicate quite clearly what these words are intended to do.
Seeing what is on the stack

If you type 3 2 + (and press enter) you will not see anything! The result is on the stack, which is not visible. There are two operations that you must know about for seeing results:

<table>
<thead>
<tr>
<th>.</th>
<th>(n –)</th>
<th>This is a dot (period). It prints the number on top of the stack (and removes it).</th>
</tr>
</thead>
<tbody>
<tr>
<td>.S</td>
<td>(--)</td>
<td>This (dot S) prints the stack without removing anything. The numbers are printed horizontally with the top of the stack on the right.</td>
</tr>
</tbody>
</table>
Example:

<table>
<thead>
<tr>
<th>3 2 7 + .S [2] 3 9 ..</th>
</tr>
</thead>
<tbody>
<tr>
<td>We started with 3, 2 and 7 on the stack, but the top two numbers were added leaving 3 and 9. In Win32Forth the number of elements on the stack is shown (by .S) in square brackets followed by the stack elements themselves. Win32Forth also prints dots at the end of each line showing how many numbers are on the stack. In this case two dots indicate two numbers on the stack.</td>
</tr>
</tbody>
</table>

| After multiplication, .S shows that there is only 1 number on the stack and it is 27. In both cases .S does not remove numbers. |

. 27

| Finally we type . (dot) and the 27 is printed and removed from the stack. |
There are several words in the Forth language whose action is to rearrange the items on the stack. Here are the basic ones:

<table>
<thead>
<tr>
<th>Word</th>
<th>Syntax</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUP</td>
<td>(n – n n)</td>
<td>duplicate number on top of stack</td>
</tr>
<tr>
<td>DROP</td>
<td>(n --)</td>
<td>drop number on top of stack</td>
</tr>
<tr>
<td>SWAP</td>
<td>(n1 n2 – n2 n1)</td>
<td>swap numbers on top of stack</td>
</tr>
<tr>
<td>ROT</td>
<td>(n1 n2 n3 – n2 n3 n1)</td>
<td>bring 3rd number to top</td>
</tr>
<tr>
<td>OVER</td>
<td>(n1 n2 – n1 n2 n1)</td>
<td>copy second element to top</td>
</tr>
</tbody>
</table>

To see the number on top of the stack without removing it, you can use DUP. (DUP followed by dot). This will duplicate the number before printing it.
Compiling
Programming in Forth is equivalent to adding new words to the dictionary. Here is the main way new words are added. The Forth word : (colon) is used to start a definition – it is followed by the name of the word to be added. The definition is terminated by the Forth word ; (semicolon). The action of the : (colon) is to create a new dictionary header and switch the system to compiling mode. The action of ; (semicolon) is to compile a termination word and to return the system to the interpreting mode. The other words in the definition describe a sequence of actions to be taken when the new word executes. At the time of definition, these words do not carry out their action – the action is stored in the new definition.¹

Example:
: 2* DUP + ;

We have chosen to name the new word 2*. The action of this word is to perform the action of DUP followed by the action of +. This adds the number on the stack to itself.

¹ For the curious: Traditional Forth systems store the address (within the dictionary) of the component words. In some recent versions of Forth, words are subroutines in machine language and component words are compiled as subroutine calls. In either case, no dictionary search for component words is required when a word executes – the dictionary search takes place during compilation.
Compiling the action of component words results in a major speed increase without sacrificing the interactive nature of the language. The most time-consuming step is the search of the dictionary. The new word AddTest:

```
: AddTest 3 2 + DROP ;
```

executes 10,000,000 times in 1 second. The sequence of component words:

```
3 2 + DROP
```

takes 600 seconds to evaluate 10,000,000 times. This increase of 600x in execution speed occurs because, in interpreting mode, the dictionary must be searched each time the sequence is executed. In the compiled word, the dictionary is searched only when AddTest is compiled. Compilation is incremental: It occurs only when a new word is added and affects only the new definition. (It is neither desirable nor necessary to recompile an entire system to add a new command.) Indeed, new definitions can be made and compiled while in the midst of an interactive session. Execution speed for (compiled) Forth words is comparable to the execution speed for conventional compiled languages.

2 Modern computer algebra systems (such as Maple and Mathematica) use a similar approach: They provide an extensible, interactive environment while retaining execution speed by compiling new procedures to an internal code.
Terminology and Naming Convention

The words : and ; function as if they were called something like "DEFINE" and "END-DEF". The definition of 2* might seem clearer if we were to write

<table>
<thead>
<tr>
<th>DEFINE 2*</th>
<th>Make a new dictionary header with name 2*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUP +</td>
<td>body – describe the action of the new word</td>
</tr>
<tr>
<td>END-DEF</td>
<td>end the definition</td>
</tr>
</tbody>
</table>

3 One can, in fact, easily add these new names to the dictionary and use them instead.
Forth tends to use punctuation marks as names for frequently performed operations. Typing speed is not the only reason: These punctuation marks are often used as part of a naming convention to indicate what new words do. The words : and ; are often used by programmers to suggest opening and closing something: Win32Forth has words COMMENT: and COMMENT; that are used to open and close multi-line comments.

The word . (dot), used to print the number on the top of the stack, is often used as part of the name of a word that prints something. A Forth programmer who sees a word with a dot in it will automatically assume that this word is intended to print. Later in this paper, for example, we will define a word "Set." that (as the naming convention suggests) is a word that prints a set.

It is extremely helpful, when writing Forth programs, to choose names well. A good name should suggest its action. The use of programming conventions involving the punctuation marks is also very helpful.
Control Structures

Forth provides control structures, such as IF .. THEN, which are like those found in most languages. IF and THEN are Forth words that are in the dictionary and, like other Forth words, they have associated actions. As noted already, most Forth words do not act during compilation – they are, instead, compiled into the current definition. Control structures change the flow of execution and are implemented by words that carry out their action during compilation. The dictionary header for a word contains both the name of the word and some extra information about it. A word can be tagged (a so-called "immediate" word) so that its action is performed immediately, regardless of the state of the system. Because these words make changes in a dictionary entry, they are used only during compilation.
The placement of words such as IF and THEN in sentences can be best understood if one knows their action. Let A, B and C be collections of words. We stipulate that A must leave a number on the stack – zero is interpreted as FALSE, any non-zero number as TRUE. We do not want to execute A, B, C, in sequence – we wish to execute B only if the result of A is TRUE. A flow diagram for this behavior is:

Before B there must be a test of the number on the stack. If this number is 0 (FALSE), then we want to jump past B to the point right before C. Our source code must indicate where the test takes place and the target of the jump. The word IF compiles the conditional branching instruction, and the word THEN indicates the target.
Thus, in the definition of a new word, we write:

A IF B THEN C

This will be compiled into the dictionary entry of the word to look like this:

| code for A | ?BRANCH | target_addr | code for B | code for C |

The target address is right before the code for C. IF compiles the conditional branching instruction and leaves space for the target address (which it, of course, does not know at the moment), so it leaves on the stack the location of the missing address. The word THEN occurs after B and THEN knows where it is! It also knows (because IF left the information) where it must fill in the address of where it is. So THEN fills in the proper target address – and we are left with compiled code that looks like the diagram above.

Notice that IF and THEN do not themselves occur in the dictionary entry of the word currently being defined (although we sometimes talk as if they do). Their job is to act during compilation. Their action is to leave behind code that will, when it executes, provides the proper control flow.
The conditional branching instruction follows the convention of other Forth words: It removes the number tested (its argument) from the stack.

Example:

```forth
: ABS
  DUP 0< IF NEGATE THEN ;
```

ABS negates a negative number but not a non-negative number. The definition can be written up with the stack comment and additional comments:

```forth
: ABS  ( n – n' )
  \ n' is the negative of n
  DUP 0< IF NEGATE THEN ;
```

This word has the stack diagram (n – n') where n' is the absolute value of n. The word 0< has the stack diagram (n – t/f) and NEGATE has the diagram (n – n') with n' = -n.
Besides IF .. THEN, there are other control structures:

```plaintext
IF .. ELSE .. THEN
BEGIN .. UNTIL
BEGIN .. WHILE .. REPEAT
DO .. LOOP
```

Forth does not have a separate program called "the compiler" – the functionality of a conventional compiler is delegated to the action of the "immediate" words.
Data

The last thing that must be discussed in this brief introduction is how data is handled. The word `:` (colon) is called a defining word because it is used to add new words to the dictionary. There are other defining words that come with a Forth system, and Forth provides a mechanism for the user to make others. The defining words for data items create new words (children) in the dictionary and allocate memory for the data associated with those words. They also specify the run-time action of their children. The child word usually will put either the address of the data item or the item itself on the stack. For integer data, we use three defining words: CONSTANT, VALUE, and VARIABLE. Here is how each of these creates a new word in the dictionary:
<table>
<thead>
<tr>
<th>Example</th>
<th>When word is created</th>
<th>When word is used</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 CONSTANT xxx</td>
<td>Create a constant xxx initialized to 5</td>
<td>xxx puts 5 on the stack. A constant cannot be changed once it is defined.</td>
</tr>
<tr>
<td>5 VALUE yyy</td>
<td>Create a value yyy initialized to 5</td>
<td>yyy puts 5 on the stack but 7 TO yyy will change the stored value to 7.</td>
</tr>
<tr>
<td>VARIABLE zzz</td>
<td>Create a variable zzz (some implementations initialize to 0)</td>
<td>zzz puts the address of the storage on the stack. Words @ (fetch) and ! (store) can access and store data.</td>
</tr>
</tbody>
</table>
The numbering of groups in this section is different from that in later sections and in the current Groups32 program. (Some of the groups in this section are isomorphic.)

Groups16 is an early version of the groups system. The system originated with a posting to Usenet in 1989 by Kenneth Almquist. He had generated tables for groups of orders 1-16, apparently as an exercise in combinatorics programming. In his original posting some of the tables represented isomorphic groups. Groups16 started in an effort to find out how much (or how little) one must know about groups to distinguish which tables were isomorphic.

Data Representation
Input and Output
Some First Procedures
Evolution of ORDERS
Finding Isomorphisms

Return to Table of Contents
The Almquist tables looked like this:

<table>
<thead>
<tr>
<th>1 group of order 1:</th>
<th>2 groups of order 4:</th>
<th>1 group of order 5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C D A B</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>D C B A</td>
<td>D</td>
</tr>
</tbody>
</table>

1 group of order 2:		1 group of order 5:		
---------------------------		---------------------------		
___		___		
A	A B		A	A B C D
B	B A		B	B C D E A
C	C D E A B		C	C D E A B
D	D E A B C		D	D E A B C
E	E A B C D		E	E A B C D

1 group of order 3:			

A	A B C		
B	B C A		
C	C A B		
An interesting thing happened: Some readers pointed out that Almquist had posted more groups of certain orders than the literature claimed. He traced the problem to the fact that his algorithm had not detected that some of the original tables were isomorphic. A subsequent posting corrected the error. However, this raised an interesting question: How much do you need to know about a group of order 1-16 to be able to easily detect isomorphism?

It is obvious that, even for groups of order 16, one does not try all possible bijective mappings to see if two groups are isomorphic. Instead, one hopes to look at properties of the groups that must be preserved under isomorphism. The original steps in the system were to represent the data in a suitable way, and to implement words that computed various information about the groups.
Data Representation

The original version was implemented on a computer that had only 64K of memory. The version of Forth used 16-bit integers and so could address only this much memory. The Forth system and DOS used 26K of memory – and a nicer editor had been added to bring this to 44K. This left just 20K for the group theory system and data. Fortunately the Forth systems commonly available at that time provided a rather clever way to use the hard disk for virtual memory. The disk was organized into 1024 byte blocks, and the system provided a word BLOCK with stack diagram (n – addr). Using 5 BLOCK, for example, the system would check if block 5 on the disk had already been loaded into memory. If not, it would be read from disk into a buffer. In either case, the base address of the buffer would be returned. With this scheme, one could create the illusion that a large amount of data was in memory.

For purposes of this article, I have moved the earlier code to a modern (32-bit) version of Forth on a computer that has 128 megabytes of memory. I therefore put the tables into a section of the dictionary. To make the earlier code run without rewriting, I redefined the word BLOCK to refer to parts of this section of memory.
The original tables were converted to an internal format by stripping everything except the interior squares of the tables. These were arranged sequentially by row:

```
AABBAABCBCACABABCDBADCCDABDCBAAABCDBCDACDABDABCABCDEBCDEACDEABDEA
BCEABCDABCDEFBCAEFDCAFBDFEDFEDCBAABCDDEFBCDEFAQDFAFABDEF
ABCEFAABCDFACDEABCDEFGBPDEFGACDFGABDEFGABCEFGABCDFGABCDGABCDG
ABCDREGBADCFEHEGHCDABGHEFDCBAHGFEDFBAGCBHDFCGHEFCDABHGFEDCBA
```

eetc.

This amalgamation of the group tables was put in Blocks 1-10. They were spaced so that tables did not straddle disk blocks. In order to locate a particular group, it is necessary to know the order of the group, the block in which the data are contained, and the number of bytes from the beginning of the block where the data are located. With this information we can calculate the address in memory for a particular table.

Block 0 was used to store the triples Gnum, Gblk, Goffs for each group.

```
0 CONSTANT IDXBLK   65 CONSTANT ID
0 VALUE GNUM   0 VALUE GORD
0 VALUE GBLK   0 VALUE GOFFS
```
At this point I made an important decision. Most of my computations would be for a certain group, fixed for the moment. Rather than write procedures to which I would have to pass the group number as a parameter, I designated the group of interest at the moment (given by number) as "the current group", and I wrote all procedures to refer to that current group.

My word to assign the current group is \texttt{GROUP} – it stores the group number as the value \texttt{Gnum}, as well as the triple mentioned above. It is therefore not necessary to go back to block 0 each time we do a group computation, nor is it necessary to re-read the table from disk for each computation. Once the current group is specified, vital information about it is read into memory.

In the current version of Groups32, all the tables are stored in memory and the word \texttt{GROUP} is replaced by an appropriate version. The virtual memory scheme is not used, and it is not essential for the reader to understand how it is used. It is, however, interesting that (1) there was such a mechanism for dealing with the limited memory of early computers and (2) code written to use this scheme can be updated fairly easily. Click for more information about \texttt{virtual memory and the code for \texttt{GROUP}}.
We now have the group data stored, together with information needed to locate the start of a particular table. Next we want to implement multiplication – which means to locate an element in a particular row and column of the table. If we number the rows and columns from 0 to Gord-1, the entry in the i-th row and j-th column will be located i*Gord + j bytes from the start of the table.

Remember that we are storing group elements as letters A, B, C, ... that a computer is representing by ASCII codes 65, 66, 67, If we want to multiply B and C in the current group, we must first subtract 65 (the ASCII code for "A") to get the row and column, and then compute the location of the product in the table.

We now have the group data stored, together with information needed to locate the start of a particular table. Next we want to implement multiplication – which means to locate an element in a particular row and column of the table. If we number the rows and columns from 0 to Gord-1, the entry in the i-th row and j-th column will be located i*Gord + j bytes from the start of the table.

We now have the group data stored, together with information needed to locate the start of a particular table. Next we want to implement multiplication – which means to locate an element in a particular row and column of the table. If we number the rows and columns from 0 to Gord-1, the entry in the i-th row and j-th column will be located i*Gord + j bytes from the start of the table.
Now we can define a word to print the table of a group. We first define a word that takes two elements and returns their product:

\[G^* (\text{ele1 ele2} - \text{ele1*ele2}) \]

\text{\texttt{ELE C@}}

Notice we have named this word \texttt{G*} suggesting it computes the product of two elements in a group.

\[.ELE (\text{ele} --) \]
\text{\texttt{EMIT SPACE}}

The following word produces the limits for loops over all elements in the current group.

\[\text{GLIMITS (-- u l)} \]
\text{\texttt{GORD ID + ID}}

You can't usually tell much about a group by looking at its table. I have found that the ability to generate tables in various formats is a useful way to transport information to other computer programs.

\text{Example:}

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>E</td>
<td>F</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>F</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

\text{Return to Top}
At this point we have a way of representing and storing the main pieces of data for the program – the group tables. We can "install" a group as the current group. We have defined the main "group theory" word, G^*, which determines multiplication in the current group. We have the output word TABLE to display the table of a given group. In some sense, the word \texttt{GROUP} is an input word: It allows us to specify the number of the group currently of interest.

The next step is to develop words that compute group information by chasing around the table. We need a way to input an element of the current group. We cannot, at this moment, type "B C G*" to get the product of B and C in the current group. We could, however, type 66 67 G*. WHY? First note that G* takes two parameters that are expected to be ASCII codes of upper case letters within the range of the current group. The parameters for G* must be on the stack in advance. If we type B C G*, the system will start reading from the left and will try to find B and C as words in the dictionary. If it cannot find them, it will try to interpret them as numbers in the current base (10). So 66 67 G* will work – and the letters won’t.
Here is what happens on the current Forth system (Win32Forth) running the original code:

\begin{verbatim}
8 >group ok
B C G*
\end{verbatim}

\textbf{Error: C is undefined}

In this case, B is actually a word in the dictionary (having something to do with the editor) – but its action is not to put 66 in the stack! On the other hand, C is neither a word in the dictionary nor a recognized number.\footnote{Forth systems print "ok" after completing execution of a line of input to let the user know that the commands have been processed and the system is waiting for input. In this article the "ok" prompts have been removed from the printout for most examples.}

Keep in mind that G* is expecting ASCII codes for group letters. An input format that requires the user to remember and put in these codes is not friendly. There are several ways to handle the input of group letters.
Input of Elements – method 1 (using a handler)

Forth is perfectly happy to work with strings that are not names for words in the dictionary (and not numbers): We just precede them by a "handler," a word that reads a string from the following input and does something specific with it.

The Forth word ASCII (which is replaced by CHAR in the current Forth Standard) takes a following string and returns the ASCII code of its first character. In the following example we use the word . (dot) to print the number on top of the stack (and remove it).

```
ASCII A . 65
ASCII B . 66
ASCII b . 98
ASCII C . 67
66 EMIT B
98 EMIT b
```

So, for example, we could say ASCII B ASCII C G* to multiply elements B and C.
In the 1990 version, I introduced a new handler, GETE:

: GETE BL WORD 1+ C@ ;

The Forth word \texttt{WORD} does not take parameters from the stack – it reads the input stream. \texttt{WORD}, preceded by a delimiter, takes the next string from the input stream up to the delimiter and returns the address as a counted string.

So \texttt{GETE} gets the next word (up to blank) and returns its first character. It is used just like ASCII but has a name that suggests that we are getting a group element.
Input of Elements – method 2 (making group elements dictionary words)

If we wish to use the simple syntax B C G* we could just make A, B, C, etc. words in the dictionary whose action is to put their ASCII codes on the stack. The easiest way to do this is to make them constants:

```
65 CONSTANT A    66 CONSTANT B
67 CONSTANT C    68 CONSTANT D
69 CONSTANT E    70 CONSTANT F
71 CONSTANT G    72 CONSTANT H   etc.
```

There is a major disadvantage to this: The words I and J are the names used in Forth for loop indices. If they are redefined, they cannot be used with their original meanings. Any particular Forth implementation may already have some useful meaning attached to other letters. ⁵

⁵ There is a vocabulary mechanism in Forth which makes it possible to have different actions for the same name (it's is-- it's like having a set of dictionaries). I actually tried this first. This mechanism is suitable if a new meaning is needed for a period of time (e.g. the assembler and editor in many systems are put in separate vocabularies). It is not convenient to frequently switch back and forth between vocabularies, so this proved to be an inconvenient solution.
A better approach is to use slightly different names, /A, /B etc for the group elements:

65 CONSTANT /A 66 CONSTANT /B
67 CONSTANT /C 68 CONSTANT /D
69 CONSTANT /E 70 CONSTANT /F
71 CONSTANT /G 72 CONSTANT /H etc.

This allows the syntax /B /C G* when typing from the keyboard.
Some First Procedures

: EORDER (ele -- ord) ID GLIMITS
 DO OVER G* DUP ID =
 IF 2DROP I ID - 1+ LEAVE THEN
 LOOP ;

This computes the order of an element by taking powers until the identity is found.
<table>
<thead>
<tr>
<th>Output using EORDER for group 8</th>
<th>Table of group 8 for reference</th>
<th>definition of EORDER</th>
<th>comments for definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>/A EORDER . 1</td>
<td>8 table</td>
<td>: EORDER ID GLIMITS DO (x x^n) OVER G* DUP ID = IF 2DROP I ID - 1+ LEAVE THEN LOOP ;</td>
<td>loop over ASCII codes <- loop invariant (x x^n x) (x x^[n+1]) If pwr is ident compute order</td>
</tr>
<tr>
<td>/B EORDER . 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/C EORDER . 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/D EORDER . 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/F EORDER . 6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/A</th>
<th>A B C D E F</th>
</tr>
</thead>
<tbody>
<tr>
<td>/B</td>
<td>B C D E F A</td>
</tr>
<tr>
<td>/C</td>
<td>C D E F A B</td>
</tr>
<tr>
<td>/D</td>
<td>D E F A B C</td>
</tr>
<tr>
<td>/E</td>
<td>E F A B C D</td>
</tr>
<tr>
<td>/F</td>
<td>F A B C D E</td>
</tr>
</tbody>
</table>

This computes and prints the powers of an element in the given group. Note that the group letter comes after the `POWERS` command:
There are two groups of order 4 (numbers 4 and 5 in our list of groups). They are not isomorphic – which can be immediately seen by computing the orders of their elements.

<table>
<thead>
<tr>
<th>4 >GROUP</th>
<th>5 >GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>/A EORDER . 1</td>
<td>/A EORDER . 1</td>
</tr>
<tr>
<td>/B EORDER . 2</td>
<td>/B EORDER . 4</td>
</tr>
<tr>
<td>/C EORDER . 2</td>
<td>/C EORDER . 2</td>
</tr>
<tr>
<td>/D EORDER . 2</td>
<td>/D EORDER . 4</td>
</tr>
</tbody>
</table>

At this point I intended the program just to find a quick way to determine whether two groups of order 1-16 are isomorphic. An obvious step toward solving the isomorphism problem is to recognize that certain properties of a group (such as the order of the group and the order of its elements) must be preserved. It seemed useful, therefore, to write a command to loop through all elements in a group and print their orders.

Here is a very simplified version of ORDERS. In the next section we will develop fancier versions:

```
: ORDERS ( grp# -- ) >GROUP
  GLIMITS DO I EORDER . LOOP ;
```

| 4 ORDERS | 1 2 2 2 |
| 5 ORDERS | 1 4 2 4 |

Return to Top
The Evolution of ORDERS

In this section I discuss several attempts to improve the functionality of ORDERS. The process illustrated here, where several versions of a word are produced, each improving upon the previous in some respect, is common. We always have the older version available for comparison – the system is never "broken" at any point. We try to write so that individual words can be improved without affecting other parts of the system.

The ORDERS command provides important information, but group letters may be rearranged in an isomorphism, so the orders of elements may be in a different order for two isomorphic tables. It may not be easy to see at a glance if two groups have the same number of elements of each order. It would also be much easier to compare two groups if the outputs were in a matching form. One approach would be to sort the list of orders of elements. A simpler approach, since we just want the number of elements of each order, is to define a new version of ORDERS that does book-keeping. We need an array to save the number of times each order occurs. Here we look at a way to build special types of array structures by allocating memory and producing words to access it.
I wrote the original version of Groups16 using F83, a 16-bit version of Forth (integers occupied 16 bits or 2 bytes) so a sequence of integers in memory had addresses 2 units apart. To allocate a block of memory for storage of up to 20 integers I used

```
CREATE OCNT 40 ALLOT
```

Invoking the word *OCNT* puts the base address of this block of storage on the stack. We now need to locate the address of the *k*th integer in this block:

```
: 'OCNT ( k - addr ) 2* OCNT + ;
```

We need to be able to increment the number at this location:

```
: +OCNT ( k -- ) 'OCNT 1 SWAP +! ;
```

And we need to be able to initialize the array (setting all integers to zero):

```
: OCLEAR OCNT 40 ERASE ;
```

This code contains assumptions about the size of an integer and is one of the few places where modification of the code was needed when I transported it to Win32Forth for this article. Win32Forth is a 32-bit version, and addresses for consecutive integers are 4 bytes apart. The "bit-ness" assumptions in the earlier code are in the use of 40 ALLOT to make space for 20 integers and in the use of 2* in the calculation of the address for a particular table entry.
What is bad about this is that one cannot update the code automatically. (Sometimes 2* is used for multiplication by 2 – it cannot be just changed to multiplication by 4 everywhere.)

Here is a way to make the code "implementation independent": Rather than introduce "magic numbers" in the code, we introduce a word or words to contain the implementation-specific information used for allocation and address calculations. The word CELL is used to refer to the size of an integer or stack element. For F83 it has the value 2, and for Win32Forth it has the value 4. The word CELLS multiplies a number on the stack by CELL. With this understanding, the following definitions would work on either version of Forth:

```
CREATE OCNT 20 CELLS ALLOT
: 'OCNT ( k – addr ) CELLS OCNT + ;
: +OCNT ( k – – ) 'OCNT 1 SWAP +! ;
: OCLEAR OCNT 20 CELLS ERASE ;
```

The use of CELLS rather than 2* (which does the same in F83) has the advantage of alerting the reader to the fact that memory allocation is the issue here, rather than arithmetic. It can be useful to have different names for the same action to clarify the purpose for which the action is being taken.

6 These words are part of the ANS-Forth standard, so are already part of modern Forth systems and do not have to be defined by the user.
We now define an improved version of \textsc{ORDERS}:

\begin{verbatim}
: ORDERS (grp# --) >GROUP
 OCLEAR
 GLIMITS DO I EORDER +OCNT LOOP
 GNUM 3 .R GORD 3 .R 2 SPACES
 20 1 DO
 GORD I MOD 0=
 IF I 'OCNT @ . THEN
 LOOP ;
\end{verbatim}

There are two sections of this code, one to count the orders and the second to print the results. Notice that we print the number of elements of order k only when k is a divisor of the order of the group.

\begin{verbatim}
8 orders 8 6 1 1 2 2
21 orders 21 12 1 3 8 0 0 0
\end{verbatim}

A slight further refinement of the output section makes it possible to produce a comma- and quote-delimited file for use in a spreadsheet. For future reference, here are words that print a comma or quotation marks, respectively:

\begin{verbatim}
: COMMA ASCII , EMIT ;
: QUOTES ASCII " EMIT ;
\end{verbatim}

These can be used to produce "comma-delimited" output that is accepted by most spreadsheet programs. The spreadsheet file looks like this:
The ability to export these results to a spreadsheet program (where they can be sorted and examined) proved to be a major step in identifying which of the original set of groups might be isomorphic. The number of elements of each order is preserved under isomorphism – groups that differ in this invariant are certainly not isomorphic. We ask whether the following theorem is true:

<table>
<thead>
<tr>
<th>gnum</th>
<th>gord</th>
<th># elements of each order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>"1"</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>"1 1"</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>"1 2"</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>"1 3 0"</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>"1 1 2"</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>"1 4"</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>"1 3 2 0"</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>"1 1 2 2"</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>"1 6"</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>"1 7 0 0"</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>"1 3 4 0"</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>"1 5 2 0"</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>"1 1 6 0"</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>"1 1 2 4"</td>
</tr>
</tbody>
</table>
Theorem? Two groups of order \(n \) are isomorphic if and only if they have the same number of elements of each order.

I think most of us would regard such a theorem as unlikely. (If it were true, it would have been proved by Lagrange or Cauchy, and we would find it in textbooks.) If it is false, what is the first counter-example?

Notice that the chart above shows that up to order 8, groups are distinguished by the numbers of elements of various orders. The theorem is also true if we require the groups to be abelian. (Two abelian groups are isomorphic if and only if they have the same number of elements of each order.) For what \(N \) is the theorem true for \(n \leq N \)?

My last step in modifying ORDERS was to produce output in a more pleasant format.

<table>
<thead>
<tr>
<th>4 orders</th>
<th>5 orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group number 4 of Order 4</td>
<td>Group number 5 of Order 4</td>
</tr>
<tr>
<td>1 elements of order 1: A</td>
<td>1 elements of order 1: A</td>
</tr>
<tr>
<td>3 elements of order 2: B C D</td>
<td>1 elements of order 2: C</td>
</tr>
<tr>
<td>0 elements of order 4:</td>
<td>2 elements of order 4: B D</td>
</tr>
</tbody>
</table>
Producing this output requires saving not only the count but also the order of each element. The original code, as mentioned, had built-in assumptions that integers were 16-bit. We show both the original and modified version of the code for this final version of ORDERS.

<table>
<thead>
<tr>
<th>Original version for F83 - 24Mar90jjw</th>
<th>Revised for Win32Forth</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE OTABLE 40 ALLOT</td>
<td>CREATE OTABLE 20 CELLS ALLOT</td>
</tr>
<tr>
<td>CREATE OCNT 40 ALLOT</td>
<td>CREATE OCNT 20 CELLS ALLOT</td>
</tr>
<tr>
<td>: 'ORD (ele -- addr)</td>
<td>: 'ORD (ele -- addr)</td>
</tr>
<tr>
<td>1D - 2* OTABLE + ;</td>
<td>1D - CELLS OTABLE + ;</td>
</tr>
<tr>
<td>: 'OCNT (i -- addr)</td>
<td>: 'OCNT (i -- addr)</td>
</tr>
<tr>
<td>2* OCNT + ;</td>
<td>CELLS OCNT + ;</td>
</tr>
<tr>
<td>: +OCNT (ord --)</td>
<td>: +OCNT (ord --)</td>
</tr>
<tr>
<td>'OCNT 1 SWAP +! ;</td>
<td>'OCNT 1 SWAP +! ;</td>
</tr>
<tr>
<td>: ORD! (ord ele --)</td>
<td>: ORD! (ord ele --)</td>
</tr>
<tr>
<td>'ORD ! ;</td>
<td>'ORD ! ;</td>
</tr>
<tr>
<td>: OCLEAR</td>
<td>: OCLEAR</td>
</tr>
<tr>
<td>OTABLE 40 ERASE</td>
<td>OTABLE 20 CELLS ERASE</td>
</tr>
<tr>
<td>OCNT 40 ERASE ;</td>
<td>OCNT 20 CELLS ERASE ;</td>
</tr>
</tbody>
</table>
Using these auxiliary words, the new definition of ORDERS is:

```plaintext
: ORDERS ( grp# -- ) CR >GROUP
  ." Group number " GNUM .
  ." of Order " GORD .  CR  OCLEAR
GLIMITS DO
  I EORDER DUP +OCNT I ORD!  LOOP
  GORD 1+ 1 DO  GORD I MOD 0=
    IF  3 SPACES I 'OCNT @ 2 .R
  ." elements of order " I 2 .R ." : 
  GLIMITS DO I 'ORD @ J =
    IF  I .ELE THEN
      LOOP CR
    THEN  LOOP ;
```

This code is hard to read. Too many different functions are combined in one word. It takes a sharp eye to discern that part of this code is devoted to computing orders and part to printing results. Code that is designed to produce aligned output is mixed with code to perform computations. Code that is essentially routine "boiler-plate" conceals the main ideas. By the time of Groups32, I paid some attention to writing style, as I will discuss shortly.

Here is the current version of ORDERS:

```plaintext
: Orders ( grp# -- ) CR >Group
  ." Group number " Gnum .
  ." of Order " Gord .  CR
  Calc-Orders  Prt-Orders ;
```
Finding Isomorphisms

All of the groups in Almquist's list have different distributions for the orders of elements until we get to his groups of order 12. Here we find, for the first time, two groups in his list that have the same number of elements of each order.

<table>
<thead>
<tr>
<th>Gnum</th>
<th>Gord</th>
<th>#elements of each order</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>12</td>
<td>"1 1 2 2 2 4"</td>
</tr>
<tr>
<td>24</td>
<td>12</td>
<td>"1 1 2 6 2 0"</td>
</tr>
<tr>
<td>22</td>
<td>12</td>
<td>"1 3 2 0 6 0"</td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>"1 3 8 0 0 0"</td>
</tr>
<tr>
<td>21</td>
<td>12</td>
<td>"1 3 8 0 0 0"</td>
</tr>
</tbody>
</table>

Groups #20 and #21 are, therefore, the first groups in the original set that could be isomorphic. To show that they are isomorphic, we need to display an isomorphism between them. A first attempt at displaying an isomorphism is to create a mechanism for showing what happens to a table under a mapping of elements. We imagine a mapping X that sends the letters A, B, C, ... to the same letters in a permuted order.
CREATE 'XG 20 ALLOT \ This will contain the images of A,B,C,...

: XG (ele - xele) \ given ele this returns the image xele
 ID - 'XG + C@ ;

: XG' (xele - ele) \ this finds the inverse image of a letter
 GLIMITS DO I XG OVER =
 IF DROP I LEAVE THEN LOOP ;

: XG* (x1 x2 - x3) \ Multiply in image group
 XG' SWAP XG' SWAP G* XG ;

: >XG (follow by string in letters)
 \ this allows input of the mapping
 BL WORD COUNT 'XG SWAP CMOVE ;

: RTABLE (n --) \ This prints the table of the image group
 >GROUP CR
 2 SPACES GLIMITS DO ." __" LOOP CR
 GLIMITS DO I .ELE ." |"
 GLIMITS DO J I XG* .ELE LOOP CR
 LOOP CR ;
This applies map $A \rightarrow A$, $B \rightarrow C$, $C \rightarrow B$, $D \rightarrow D$

<table>
<thead>
<tr>
<th>5 TABLE</th>
<th>Original table for group 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>_A_C_B_D</th>
<th>Intermediate table obtained by interchanging B and C wherever they occur.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 RTABLE</th>
<th>Final table obtained by rearranging rows and columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

We have applied the isomorphism X and obtained the resulting table. Can we apply an isomorphism like this to Group #20 and transform its table to that of Group #21?
There are $12! = 479,001,600$ candidates for X. However, if X is an isomorphism from group 20 to group 21, it must send A to A, it must send an element of order k to an element of order k, and it must send a product in the first group to the product of the images in the second group. (In fact, the map is determined by what it does to the generators – but we do not yet have tools to determine the generators.)

<table>
<thead>
<tr>
<th>20 orders</th>
<th>21 orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group number 20 of Order 12</td>
<td>Group number 21 of Order 12</td>
</tr>
<tr>
<td>1 elements of order 1:</td>
<td>1 elements of order 1:</td>
</tr>
<tr>
<td>3 elements of order 2:</td>
<td>3 elements of order 2:</td>
</tr>
<tr>
<td>8 elements of order 3:</td>
<td>8 elements of order 3:</td>
</tr>
<tr>
<td>0 elements of order 4:</td>
<td>0 elements of order 4:</td>
</tr>
<tr>
<td>0 elements of order 6:</td>
<td>0 elements of order 6:</td>
</tr>
<tr>
<td>0 elements of order 12:</td>
<td>0 elements of order 12:</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>D I K</td>
<td>E I K</td>
</tr>
<tr>
<td>B C E F</td>
<td>B C D F</td>
</tr>
<tr>
<td>G H J L</td>
<td>G H J L</td>
</tr>
</tbody>
</table>
If we map B to B, then we must map C to C, since C is B*B in both groups. D must get mapped to an element of order 2. Let’s try D→E. B*D is F in Group 20, B*E is F in group 21 so we should map F→F. Continue working in this fashion.
This can be seen to be the same as the table for group 21. We have, therefore, shown that groups 20 and 21 are isomorphic by displaying an isomorphism between them.

The **ISOMORPHISM** command in Groups32 developed from this idea. It is much more sophisticated: It allows the user to experiment with images of elements (undoing trials if they do not seem to work), automatically computes and fills in all consequences of a partial mapping, checks for inconsistencies, etc.
Comments on Improvements

It is possible to criticize and improve upon almost everything done so far. While it is good to reevaluate and improve code, it has proved to be bad to do this prematurely. The first goal should be to produce something that works and to experiment with options. A working system is the most important tool for developing improved versions. The modularity of Forth-produced systems often makes it possible to revise segments of a system while retaining code that comes before and after.

It is often not possible, or even desirable, to pre-conceive a system and design it on paper before writing any code. Forth does not require this (an advantage for this type of work). It usually becomes apparent only when a system is used what parts of it need speeding up, what parts could use a more congenial nomenclature, what functions are really needed, how they should work, and what form is best for the information they produce. This approach to system design can be called "middle out" coding: A rudimentary version of a system is produced, and it is refined and expanded as it is being used.
Changing the language to fit the program

I preferred, for this article, to transport the earlier code to Win32Forth, which is used to run the current Groups32. The earlier Forth system used 16-bit integers and the current system uses 32-bit integers. In the earlier version, the group data were stored on disk using a virtual memory mechanism. In the modern version, the data are stored in memory as part of the dictionary. This change in the way data are stored did not actually require altering the code for the rest of the system – it was handled by an approach that may be unique to Forth: Instead of changing the code, change the language. We define a word BLOCK that reads data stored in a segment of memory. It appears to the rest of the code to act just as if the older virtual memory scheme was being used:

\ ++++++++++++++++++++++++++++++++++++++
\ + pseudo block structure +
\ ++++++++++++++++++++++++++++++++++++++

CREATE PSEUDO 12 1024 * ALLOT
: BLOCK (n -- addr)
 1024 * PSEUDO + ;

When the program is loaded, group data are read from the original block file into this segment of memory. The rest of the program does not know that the definition of BLOCK has been given a new meaning.
Choosing better names for words

Now let me talk about some of the things I didn't like and that were changed. For one thing, I didn't like the names that I gave to some things in the original version. The word GLIMITS, for example, is used to put the loop limits on the stack for a loop over all elements of the current group. The etymology is obvious – but it is a name for how the word does something rather than what it does. In use I found myself always having to look up what name I had used – there is something not at all memorable about the name "GLIMITS". In Groups32, this has been replaced by the word "For-All-Elements". For similar reasons, the word EORDER has been replaced by EleOrder.

7 Some readers might like "ElementOrders" better. The choice of names is a matter of taste. Very terse names like "EO" tend to make code hard to read. Very long names can also be hard to read. I prefer "Orders", for example, to "Display_the_Number_of_Elements_of_Each_Order". The maximum length of a name in Win32Forth is 63 characters – so this would be legal but unwise.
When I have used this code with others new to Forth, I found that it was helpful to distinguish words that come as part of the Forth language and those that have been added as part of the Groups package. Words that are part of Forth are typed in caps, words added for the system are in mixed case. Contrast:

: ORDERS (grp# --) >GROUP
 GLIMITS DO I EORDER . LOOP ;

: Orders (grp# --) >Group
 For-All-Elements
 DO I EleOrder . LOOP ;

As I have used Forth, the importance of a good choice of names has become clear. With proper choices, one can often read a section of code without having to refresh one's memory by looking up a description of the word in a glossary or in the source code. A properly chosen name for a word can often suggest what it does.
Inconsistent methods of action

I also do not like inconsistencies among actions of words. To enter elements as parameters, we have several possibilities. In the code above we have words that require the ASCII code of group letters in advance – and we introduced special words such as /A, /B, /C to allow this to be done conveniently. The word EORDER uses this approach: We say /B EORDER to get the order of B. The word POWERS, however, is based on the handler GETE. We say POWERS B to get the powers of B. Both are words that take an element of the current group as a parameter. Both approaches are valid.

I have found it confusing to have some words that take the parameter in advance, and some that take it afterwards. This practice requires that you remember this matter of placement for each word. It is better to have similar words act consistently, if possible. Words that act on elements should all either take their argument in advance or take it afterward. It is more consistent with the style of Forth to have parameters for the word occur in advance – so, eventually, I eliminated the approach based on GETE. It is easy to change the definition of POWERS to take its argument from the stack:
When faced with this kind of choice, it is usually not wise to spend a lot of time in meditation before writing the code. The best approach is to implement both possibilities and use them for a while before deciding the winner. (In keeping with the evolutionary theme of this article, one adopts a "survival of the fittest" approach to modifications.)

<table>
<thead>
<tr>
<th>Syntax: POWERS B</th>
<th>Syntax: /B POWERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>: POWERS GETE ID GLIMITS DO DUP .ELE OVER G* DUP ID = IF 2DROP LEAVE THEN LOOP ;</td>
<td>: POWERS ID GLIMITS DO DUP .ELE OVER G* DUP ID = IF 2DROP LEAVE THEN LOOP ;</td>
</tr>
</tbody>
</table>
Improving speed

Notice that the group tables store letters A, B, C, ... for the table entries. Since finding the product of two elements involves calculating a location in memory, every use of G* involves first subtracting ID (the ASCII code for the identity) from the two letters. It should be possible to use integers 0, 1, 2, ... for the internal representations of the group elements, which would eliminate some extra calculations for G*. It does require, however, that group elements be converted to and from ASCII upon input and output. Speeding up G* (used many times within a computation) is far more important than speeding up printout (which occurs only at the end). Input and output operations occur relatively infrequently and tend to be sufficiently fast.

I should also be mention at this point that one can define selected Forth directly in assembly language. The word G* is executed very frequently, since most words in the system use it either directly or indirectly. In the following chart, I compare execution times for three different definitions for G*: the original Group16 definition (group elements stored as letters), a Groups32 version using a "high level" Forth definition, and the current Groups32 version using an assembly language definition.
The timings were obtained using the same version of Forth (Win32Forth) running on the same computer – so differences are due entirely to the way the data are represented and the way \texttt{G*} is coded.

<table>
<thead>
<tr>
<th>Timing for 10,000,000 executions of G*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Groups16 // table stores group letters A, B, C, ...</td>
<td>98420 ms</td>
</tr>
<tr>
<td>Current Groups32 ver 7.0 // table stores 0, 1, 2, ...</td>
<td>35750 ms</td>
</tr>
<tr>
<td>Same as above with G* written in assembly language</td>
<td>7300 ms</td>
</tr>
</tbody>
</table>
Of course, the value of trying to improve the speed of a single word depends on how much gain can be achieved, how frequently the word is used, and whether or not the additional performance is needed. If a word is used mainly interactively (i.e. a command usually issued from the keyboard) and it returns an answer in 1/10 second, it is hardly worthwhile to try to get it to execute in 1/100 second. A word like G^*, however, is executed quite frequently.

8 The most time-consuming command in Groups32 searches all groups of orders 1-32 for those having given generators and relations. In an example using this command which took about 1.5 minutes, the G^* word was executed 176,777,081 times.

One should check code to see if the same computation is made repeatedly and should be replaced by code that computes once and stores the result. A number can be retrieved from a table far more quickly than it can be found by looping through a list. An example of this is the word XG' (badly named) that finds the inverse of an element under a map. In order to compute the product XG^*, the inverse must be found twice. In order to display the translated table (RTABLE), the product XG^* must be computed for each pair of elements. It is possible to rewrite $>XG$ (the word that stores the map) so that it computes and stores the inverses. I made improvements like this in the eventual ISO-MORPHISM command in Groups32.
Forth Style

Groups32 is a software system that is designed to be modified and expanded as it is used. We will gradually produce a collection of "top level" commands to be used interactively. These are supported by a collection of foundational and auxiliary words.

The fact that Forth programming results in a large collection of words enhances the ability of a user to extend and modify the system. Forth style typically emphasizes the production of words with fairly short definitions. Deeply nested loops and control structures can be avoided by introducing auxiliary words. By keeping definitions short and uncomplicated, it is easier to spot errors. Equally important for system development is the fact that words can be executed interactively – one can test individual words in piecewise fashion as they are being written.
This process of breaking definitions into smaller parts is called "factoring". The most complicated word we have written so far is ORDERS:

```
: ORDERS ( grp# -- ) CR >GROUP
       ." Group number " GNUM .
       ." of Order " GORD . CR OCLEAR
       GLIMITS DO I EORDER DUP +OCNT I ORD! LOOP
       GORD 1+ 1 DO GORD I MOD 0= IF 3 SPACES I 'OCNT @ 2 .R
       ." elements of order " I 2 .R ." : ".
       GLIMITS DO I 'ORD @ J =
       IF I .ELE THEN
       LOOP CR
       THEN LOOP ;
```
Notice that some factoring has taken place: Clearing the tables (OCLEAR), computing the order of an element (EORDER), incrementing the count (+OCNT), storing the order (ORD!), and printing an element (.ELE) have all been delegated to separate words. When writing ORDERS, we need to be able to perform these tasks, but we can forget the details of how they were performed.

It is certainly possible to factor ORDERS still further. Some Forth writers like to make the top-level word look like this:

```forth
: ORDERS ( grp# -- )
    Install-Group
    Initialize-Tables
    Compute-Counts
    Display-Info ;
```

There is another reason for factoring: to separate sections of code that may be independently useful. Here is a hypothetical word that, for some reason, needs to determine if the current group is abelian. The highlighted code accomplishes this by testing whether each pair of elements commutes.

```forth
: BigWord
    \ <some stuff>
    TRUE
    GLIMITS DO
        GLIMITS DO
            J I G* I J G* <>
        IF DROP FALSE THEN
    LOOP LOOP
    \ <more stuff> ;
```
Making this a separate word will clarify the definition of BigWord, and it will also produce a word that is potentially useful elsewhere:

: Abelian? (-- t/f)
\ is current group abelian?
TRUE
GLIMITS DO GLIMITS DO
 J I G* I J G* <>
 IF DROP FALSE THEN
LOOP LOOP ;

Then we replace the code segment in BigWord by the word Abelian?

: BigWord
 <some stuff>
 Abelian?
 <more stuff> ;
Eliminating Magic Numbers

A feature of good style in any programming language is the elimination of "magic numbers," that is, numbers that have special significance to the system or program and that appear in the code as literal numbers. Examples of magic numbers are 16 (which appears as the maximum order of a group in Groups16), or 49 (which is the number of tables in the original Almquist posting), or 20 (which is used to allot storage for arrays – probably because it was bigger than 16 and seemed like a nice number).

It is preferable to define magic numbers as constants and use the names rather than the numbers. This has the effect of making code more readable. The reader (most often the author) does not have to wonder why a certain number appears in the code. MaxOrder more clearly indicates that (in the current system) the maximum order of a group is being used. This is preferable to using 16, which could be the maximum order of a group – but, then again, something else. Or that may be the maximum order now, but not when the system is extended. The elimination of magic numbers is also helpful if the code is used in a different setting. In the present case, the system was eventually changed to handle groups of order up to 32 and it was transported from a Forth system with 16-bit stack elements to one with 32.
We have already discussed the use of the word CELLS. This concept (with a different name) was introduced to me by the Kitt Peak VAX-Forth. At one time Forth was used very heavily by astronomers, and Kitt Peak produced a version of Forth allowing code to be written to run, without change, on 16 and 32-bit systems. I avoided a lot of grief in converting Groups16 to Groups32 by the fact that magic numbers appeared mainly in a few low-level words.

It is wisest to write code assuming that you will want to understand it yourself in 10 years, and perhaps modify it and use it for a different purpose. Mathematicians tend to treat computer code like theorems: They prefer not to re-prove something they already have proved.

Table of Contents
Back to the Isomorphism Problem

We can distinguish groups of order up to 15 by the orders of the elements. The only groups in Almquist’s list with the same set of element orders are groups 20 and 21 (of order 12), and we have found an explicit isomorphism between them.

Groups of order 16 provide the first counterexample to the hypothetical theorem. Groups 43 and 45 have the same numbers of elements of each order, but group 43 is abelian, while group 45 is not.

Further isomorphisms occur in Almquist’s tables among groups of order 16. There are also groups of order 16 that are not isomorphic but that agree in element orders and in commutativity (abelian or not). Thus we still do not have enough properties to classify groups of order 16 up to isomorphism.

Here are some additional, easily computed, properties that may be useful – I wrote them as experiments to find useful invariants. They do not appear in either Groups16 or Groups32, since they did not seem to be of lasting interest. They were, in fact, used to distinguish the original set of group tables.
Number of Commuting Pairs
Eventually (in Groups32) we compute the center of a group and can easily compute the size of the center. At this point we just run through all pairs of elements and count those pairs that commute:

```plaintext
: #Commuting ( grp -- n ) >GROUP
  0
  GLIMITS DO GLIMITS DO
  J I G* I J G* =
  IF 1+ THEN
  LOOP LOOP ;
```

Number of Squares
We can define `#SQUARES` to count how many elements in a group are squares:

```plaintext
CREATE SQ 20 ALLOT

: #SQUARES ( grp# -- n ) >GROUP
  SQ 20 ERASE
  GLIMITS DO
    I I G* ID - SQ + 1 SWAP C!
    LOOP
  0
  20 0 DO SQ I + C@ + LOOP ;
```

If one actually wishes to see which elements are squares, the following word will display the squares:

```plaintext
: SQUARES ( grp# -- ) >GROUP
  SQ 20 ERASE
  GLIMITS DO
    I I G* ID - SQ + 1 SWAP C!
    LOOP
  20 0 DO SQ I + C@
    IF I ID + .ELE THEN
    LOOP ;
```
The task that motivated this work was accomplished at this point.

It turns out that, at this point, we have implemented enough properties to classify groups up to order 16. Coupled with the mechanism for exhibiting isomorphisms, we can detect which of Almquist's tables are for isomorphic groups. (There are actually only 42 groups of orders 1-16 up to isomorphism.)

The following tables were found to be isomorphic: (20,21), (33,40), (36,38), (32,39,42), (34,41). In the process, I produced a method that will quickly identify any group of order 1-16 up to isomorphism. Table of Contents
Groups16 – Transition

From this point on, the numbering of groups corresponds to the intermediate revisions of Groups16 and to Groups32. The duplicate groups have been eliminated, and the numbering for groups of orders 1-16 is changed. Eventually groups of orders 17-32 will be added.

In the transition to Groups32, I made a number of changes. ID appears so often in the code above because we stored group elements as A, B, C, ... , and we often need to use the corresponding numbers 0, 1, 2, ... to access tables or arrays. We have already pointed out that the group multiplication word G* would be faster if this conversion from the letters to indices were eliminated. I changed the group tables to store 0, 1, 2, ... for the elements, which required revising many of the existing words that use tables and arrays. GLIMITS (which put loop limits on the stack) was renamed to For-All-Elements, and the limits are now indices rather than ASCII codes. The words /A, /B, /C, ... that put ASCII codes on the stack were changed to put 0, 1, 2, ... on the stack. I changed the display word .ELE from

: .ELE (ele --) EMIT SPACE ;

to

: .ELE (ele --) ID + EMIT SPACE ;
These changes were not as disruptive as it might seem at first. Many of the words in the system are not aware of how the data are represented and so required no change.

A consideration in implementing a system is precisely this: Can the programming be done in such a way that details of data representation are hidden in lower level words? Do most of the words in the system need to know whether group elements are represented by indices or by ASCII codes? Do most of the words in the system need to know where or how the data are stored?

These questions have repercussions when changes are made in the system. They also have psychological repercussions: How much is the mathematician allowed to think in terms of mathematical objects (groups, elements, etc.), and how much must he or she think in terms of computer representation. The purpose of some of the changes in this transition is to make the language and concepts more in terms of mathematical objects and procedures applied to them. Even the small change in name from GLIMITS to For-All-Elements is significant.
I had an important change in attitude in the transition: Several procedures were originally written to produce output on the screen – they were regarded as top-level. I found while extending the system that it would be useful to separate the generation of information from printing it. An example of this is a factoring of the Orders command (discussed previously) into a procedure to calculate the orders of elements and a procedure to print them:

\[
: \text{Orders} \ (\text{grp#} \ -- \) \ \text{CR} \ >\text{Group}
\]

\[
.\text{" Group number " } \ Gnum .
\]

\[
.\text{" of Order " } \ Gord . \ \text{CR}
\]

\[
\text{Calc-Orders Prt-Orders ;}
\]

This allows other commands to use information about orders of elements. This, in turn, required the development of data structures that could be used to transmit information from one procedure to another. In the case of subgroups and sets, it involved representing data in a form that could be transmitted on the stack. In the case of element orders, it meant providing other procedures access to the locations in memory where data were stored.

The transition also was marked by the addition of other features – most notably, a way to deal with subgroups and a permutation group package – plus refinement of existing features.
First Subgroups Package

My subgroups code represents a first effort to introduce some of the further structure of group theory into the system. It is transitional code and does not represent the way that subgroups are handled in Groups32. It was, however, very useful, providing a way to test later code as it was being developed. It displays the subgroup generated by a collection of elements. In the transition period, I had not yet introduced the idea of treating a set as an object that could be put on the stack.

In this package, a particular subgroup (the current subgroup) is treated as a counted table or array. This approach was eventually replaced by a more sophisticated one. While the code in this section does not appear in Groups32, it does mark an important stage in the transition.
Overview

The main purpose of this code is to find a way to exhibit the subgroup generated by a collection of elements. The subgroup being generated is represented by a counted array or table of bytes. This is a list of the elements found (so far) to be in the subgroup. The first byte is the count, and the remaining bytes are subgroup elements.

The most important top level words in the package are SGfirst (ele --) and SGnext (ele --), which are used to enter the first and subsequent elements. The main words used in implementation are >SGtable (ele --) and SGsweep. >SGtable adds a new element to the table (subgroup) if it is not already there. SGWEEP repeatedly computes products of pairs of elements currently in the subgroup, and uses >SGtable to add the products to the subgroup. This continues until no new elements are added.

Return to Top
Top Level words and Examples

<table>
<thead>
<tr>
<th>Top Level Words</th>
<th>Use this for first element to initialize the table</th>
<th>Use this for remaining elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>: SGfirst (ele --)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG-init >SGtable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGsweep SG. ;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>: SGnext (ele --)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>SGtable SGsweep SG. ;</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When I first introduced these words, I was using the conventions of the 1990 version. In the 1990 system, they had a slightly different form, using GETE to get the input element from the input stream – so one would use "SGfirst B" to start a subgroup with element B. The examples below were produced using the current version of Groups32. It is necessary to add the constants.

```
0 CONSTANT /A  1 CONSTANT /B
2 CONSTANT /C  3 CONSTANT /D
```
The input is in the form "/B SGfirst". This output also assumes the new numbering of groups.

32 >GROUP
/B SGfirst B C D A
/E SGnext B C D A E F G H
/I SGnext B C D A E F G H I J K L M N O P

The subgroup generated by B, E, and I is the whole group.
Details

We are storing the elements of a subgroup in SGtable. The first byte of SGtable is the number of elements already in the table. The others are the stored subgroup elements (the data) in whatever order they have been generated. Let us say we have already found that elements B, F, and E are in the subgroup and have been found in that order. The SGtable will look like this:

```
3  B  F  E
```

 addr addr1 addr_end

The word SGtable puts the address of the table on the stack (marked addr). The standard Forth word COUNT takes the address of a counted structure and returns the pair address_of_data and count. Thus COUNT would return the pair addr1 3 in this case. The sequence COUNT + will take addr and return addr_end (the next available position at the end of the table).
We would like to add a new element to the table if it is not already there. We use a clever (but well known) trick to do this. The strategy is to put the new element in the position at the end of the table and then scan to see if it is found. It will be found, of course.

I am torn, in this section, between clarity and authenticity. I have decided to present code in the form in which it appears in some of the transitional versions of the system. I have, however, presented the code with component sections separated by blank lines. For clarity, >SGtable should have been factored. The structure is

: >SGtable (ele --)
 \ add ele to table if new
 DUP
 Put_at_end
 Find_position (pos)
 Found_at_end? (t/f)
 IF Update-count THEN ;

There are obvious inefficiencies in the code: SGsweep, for example, recomputes products that have already been computed. It really should take only products with any newly added elements. Remember, however, this code is intended to display a subgroup as elements are added from the keyboard – so its speed is really limited by the input and output.
<table>
<thead>
<tr>
<th>Auxiliary Words</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE SGtable 40 ALLOT</td>
<td>Print the subgroup</td>
</tr>
<tr>
<td>: SG. SGtable COUNT 0</td>
<td>Return the k-th element, k=0, 1, 2, ...</td>
</tr>
<tr>
<td>?DO DUP C@ .ELE 1+ LOOP DROP CR ;</td>
<td></td>
</tr>
<tr>
<td>: SG@ (k - ele[k])</td>
<td></td>
</tr>
<tr>
<td>SGtable 1+ + C@ ;</td>
<td></td>
</tr>
<tr>
<td>: SG-init SGtable 40 ERASE ;</td>
<td></td>
</tr>
<tr>
<td>: >SGtable (ele --)</td>
<td>Put the element at the end of the table.</td>
</tr>
<tr>
<td>DUP SGtable COUNT + C!</td>
<td></td>
</tr>
<tr>
<td>SGtable COUNT + 1+</td>
<td></td>
</tr>
<tr>
<td>SGtable 1+</td>
<td></td>
</tr>
<tr>
<td>DO (ele)</td>
<td></td>
</tr>
<tr>
<td>I C@ OVER =</td>
<td></td>
</tr>
<tr>
<td>IF DROP I LEAVE THEN LOOP</td>
<td></td>
</tr>
<tr>
<td>SGtable COUNT + =</td>
<td></td>
</tr>
<tr>
<td>IF SGtable C@ 1+</td>
<td></td>
</tr>
<tr>
<td>SGtable C! THEN ;</td>
<td></td>
</tr>
</tbody>
</table>

Loop over data addresses.
Check if stored element is ele.
If so, put address where found on stack.
Check if found at end of table (where we stored it) – if so, increment count of table.
SGord (-- sgord)

\[\text{SGtable C@ ;} \]

SG* (k1 k2 - prod)

\[\text{SG@ SWAP SG@ SWAP G* ;} \]

SGsweep

\[
\begin{align*}
\text{SGord } 0= \\
\text{ABORT" Table is Empty "} \\
\text{BEGIN SGord} \\
\text{SGord } 0 \ \text{DO SGord } 0 \ \text{DO} \\
\text{J I SG* } >\text{SGtable} \\
\text{LOOP LOOP} \\
\text{SGord } = \ \text{UNTIL ;}
\end{align*}
\]

Take products of existing elements in SGtable and add to table. Repeat this until no new elements are added.

Top Level Words

- **SGfirst (ele --)**

 SG-init >SGtable

 SGsweep SG.

- **SGnext (ele --)**

 >SGtable SGsweep SG.

Use this for first element to initialize the table.

Use this for remaining elements.
Sets

In previous sections, the top level words have printed information to the screen. The information they produced was not intended to be used by further words. In this section we introduce a representation for sets (subsets of group elements) as objects that can be transmitted to other words on the stack.

Overview
Top Level Words and Examples
Details
Sets and Subgroups

Return to Table of Contents
Overview

In October, 1991 I wrote a new version of Groups16, using a newer and more extensive 16-bit version of Forth (FPC). This rewrite included some of the changes above. The most notable new idea, however, was to introduce tools for representing and manipulating sets. Some of the commands could be written to produce a set as a result, rather than print a list of elements. Sets could be transmitted on the stack from one procedure to another.

Sets are represented by "bit maps": stack elements (the same as integers) in which a bit is set when an element is in the subset. For example, the set \{B, D\} contains elements 1 and 3 (A is element 0) and so is represented by 10, which is 1010 in binary. This allows the representation of subsets of \{A, B, ..., P\}. Procedures are provided for input and output, as well as standard set manipulations, test of set membership, etc.
Top Level Words and Examples

<table>
<thead>
<tr>
<th>Word</th>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Set</td>
<td>(set -- #ele)</td>
<td>Returns number of elements in set</td>
</tr>
<tr>
<td>2^n</td>
<td>(n -- 2^n)</td>
<td>Raise 2 to the input power. (See Singleton).</td>
</tr>
<tr>
<td>Contains</td>
<td>(set1 set2 -- f)</td>
<td>Returns true if set1 contains set2.</td>
</tr>
<tr>
<td>Empty-Set</td>
<td>(-- 0)</td>
<td>Returns the empty set</td>
</tr>
<tr>
<td>Member!</td>
<td>(ele set -- set')</td>
<td>Make ele a member of set</td>
</tr>
<tr>
<td>Member?</td>
<td>(ele set -- f)</td>
<td>Returns true if ele is a member of set</td>
</tr>
<tr>
<td>Set-</td>
<td>(sub1 sub2 -- sub1-sub2)</td>
<td>Returns difference of sets</td>
</tr>
<tr>
<td>Set&</td>
<td>(sub1 sub2 -- intersection)</td>
<td>Returns intersection of sets</td>
</tr>
<tr>
<td>Set*</td>
<td>(set1 set2 -- product)</td>
<td>Returns the set of products of elements in set1 set2 in given group.</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Set.</td>
<td>(set --) Prints set (given as integer bitmap) using letters for elements</td>
<td></td>
</tr>
<tr>
<td>Set+</td>
<td>(sub1 sub2 -- union) Returns union of sets</td>
<td></td>
</tr>
<tr>
<td>Set-G</td>
<td>(-- gset) Returns underlying set of current group</td>
<td></td>
</tr>
<tr>
<td>Singleton</td>
<td>(n -- {n}) Returns set with ele as only member</td>
<td></td>
</tr>
<tr>
<td>SubGrp.</td>
<td>(subg -- ;;; print subg) Prints subgroup (bitmap as set) using letters. This is the same as Set.</td>
<td></td>
</tr>
</tbody>
</table>
Examples

\{ \text{ABC} \} \{ \text{BC} \} \text{ Contains } -1 \text{ (true)}
\{ \text{ABC} \} \{ \text{BD} \} \text{ Contains } 0 \text{ (false)}

/B \{ \text{ABC} \} \text{ Member? } -1
/D \{ \text{ABC} \} \text{ Member? } 0
/D \{ \text{ABC} \} \text{ Member!}

Set. \{ \text{A B C D} \}

/B \text{ Singleton Set. } \{ \text{B} \}
\{ \text{ABC} \} \{ \text{BCD} \} \text{ Set- Set. } \{ \text{A} \}
\{ \text{ABC} \} \{ \text{BCD} \} \text{ Set+ Set. } \{ \text{A B C D} \}
\{ \text{ABC} \} \{ \text{BCD} \} \text{ Set& Set. } \{ \text{B C} \}
\{ \text{ABCD} \} \# \text{Set} . 4

Group number 8 of Order 6
1 elements of order 1: \text{A}
3 elements of order 2: \text{D E F}
2 elements of order 3: \text{B C}
0 elements of order 6:
\{ \text{B} \} \text{ Generates Set. } \{ \text{A B C} \}
\{ \text{BD} \} \text{ Generates Set. } \{ \text{A B C D E F} \}

Center Set. \{ \text{A} \}

/B \text{ Centralizer Set. } \{ \text{A B C} \}
\{ \text{B} \} \text{ Generates Normalizer Set. } \{ \text{A B C D E F} \}
\{ \text{D} \} \text{ Generates Normalizer Set. } \{ \text{A D} \}
Details

\[2^N \ (n - 2^n) \ \text{integer with bit } n \text{ set} \]
1 SWAP 0 ?DO 2* LOOP ;

: Singleton (n - set) 2^N ;

: Contains (set1 set2 - t/f) \ TRUE if set1 contains set2
 SWAP OVER AND = ;

: Member? (ele subg - t/f)
 SWAP Singleton Contains ;

: Member! (ele subg -- subg')
 SWAP Singleton OR ;

Notice the use of "bitwise" operations AND and OR. 5 2 OR gives 7 while 5 2 AND gives 0.

5 (1 0 1)
2 (0 1 0)
Here is a word for printing a set:

```
: SubGrp. ( subg -- ) \ print subg
  " { " 1 ( bit mask )
  16 0 DO 2DUP AND \ check if bit is set
   IF I .ELE THEN
    2* \ left shift mask
   LOOP 2DROP." } " ;
```

Notice that the idea of representing sets (and subgroups) as arrays has been abandoned in favor of using a representation as integers. The word SubGrp. here is defined to print a subgroup represented as an integer – it supercedes the early version of SG. in which a set is represented as an array – but it has the same function.

```
: Set. SubGrp. ;
```
Here is a word for inputting a set. The definition uses some features of Forth compilation to make it "state smart" (i.e., it acts differently if the system is compiling). Notice that, when interpreting, this word produces an integer, which is put on the stack. When the system is compiling, it stores the integer in the definition. This definition is not included in Groups32, since the command completion interface used in Groups32 prompts for input of sets. The details of this definition are beyond the scope of this article.

: { (-- set ;;; interpret string up to } as a set)
 0 \ start with empty set
 ASCII } WORD \ get string up to }
 COUNT 2DUP UPPER \ convert to upper case
 0 DO DUP C@ ID - DUP 0 15 BETWEEN \ check if valid
 IF ROT Member! SWAP \ set addr
 ELSE DROP THEN 1+ \ next address
 LOOP DROP
 STATE @ IF [COMPILE] LITERAL THEN ; IMMEDIATE
Some basic set operations:

: Set- (set1 set2 -- set1-set2)
\ set difference
 OVER AND XOR ;

: Set+ (set1 set2 -- union)
\ set union
 OR ;

: Set& (set1 set2 -- intersection)
\ set intersection
 AND ;

: #Set (set -- #ele)
 0 SWAP
 BEGIN (cnt n) DUP
 WHILE 0 2 (cnt lsb msb 2)
 UM/MOD (cnt r n/2)
 >R + R> \ update cnt
 REPEAT DROP ;

In #Set we shift bits to the right by dividing by 2. The Forth word

 UM/MOD (ud un – ur uq)

takes a double precision unsigned integer and divides by a single precision integer. It
produces an unsigned remainder and unsigned quotient. In each step in the loop
we are dividing by 2, the remainder (0 or 1) is added to the count, and the quotient
is used in the next step.

A double precision integer is represented by two stack elements; the top of the stack is the most significant part.
An important operation on subsets of a group is to form \[S \ast T = \{ s \ast t \mid s \in S, t \in T \}. \]

Here is the high-level Forth version:

```forth
VARIABLE Stemp
: Stemp! ( ele -- ) Stemp @ Member! Stemp ! ;

: Set* ( set1 set2 -- set1*set2 ) 0 Stemp !
  For-All-Elements DO   OVER I SWAP Member?
    IF ( first ele is member of set1 )
      For-All-Elements DO  I OVER Member?
        IF ( second ele is member of set2 )
          J I G*  Stemp!
        THEN    LOOP
      THEN  LOOP  2DROP Stemp @ ;
```

Return to Top
Sets and Subgroups

We are now in a position to write a word “Generates” that finds the subgroup generated by a given set. Notice that the idea here is the same as used previously in SGsweep: We repeatedly take all products of elements in a subgroup under construction until we get something closed under products. In this case we take only products using new elements. The subgroup is represented as a set, so adding new elements uses the set operations we have just defined. We use the following notation in the comments for Generates:

- S is the originally given set of generators.
- X is the total set of products formed so far.
- Y is the set of products yet to be multiplied by S.
Since Set-G, the underlying set of G, occurs in subgroup operations, we have >Group calculate and save it when a new group is installed.
: LCoset (ele subg -- lcos) SWAP Singleton SWAP Set* ;
: RCoset (ele subg -- rcos) SWAP Singleton Set* ;

: Centralizer (ele -- centrz) 1
 For-All-Elements
 DO OVER I OVER G* SWAP I G* =
 IF I SWAP Member! THEN
 LOOP SWAP DROP ;

: Center (-- center) 1
 For-All-Elements
 DO I Centralizer Set-G =
 IF I SWAP Member! THEN LOOP ;

: Normalizer (subg -- normal) 1
 For-All-Elements
 DO OVER I OVER LCoset I ROT RCoset =
 IF I SWAP Member! THEN LOOP SWAP DROP ;

: Normal? (subg - t/f)
 Normalizer Set-G = ;
Listing Subgroups

We wish to make a list of all distinct subgroups and also maintain a list of the corresponding generators. Thus the ordered list will be indices into a table of subgroups and generators. **SUBGTABLE** is a record structure that holds subgroups and generators for them. The comparison function **SGCOMP** was chosen so that subgroups get listed in increasing size. After generating all subgroups, one can access them as an array **SUBGROUP** with indices 0..#SUBGROUPS-1.

Ordered Lists Package

We make use of a package for handling ordered lists that was written in 1989. Rather than exhibit the code for this package, we describe the words used here.

Note: The implementation of **ORDLIST** used here uses single bytes for indices and therefore can contain at most 256 indices.
An **ORDLIST** is paired with an array-like structure that holds the actual data. The ordered list is a list of indices of data. When we create an ordered list, we supply a comparison function.

Suppose i and j are two indices and L[i], L[j] the corresponding data. The comparison function has stack diagram

\[
(i \ j \ -- \ -1 \ | \ 0 \ | \ 1)
\]

-1 if L[i] < L[j],
0 if L[i] = L[j], and
1 if L[i] > L[j].

One of the uses of ordered lists in this system is to keep a list without duplicates.

| ORDLIST | <number> ORDLIST <name><comparison> | This is a defining word. <number> is the maximum number of elements in the list. <comparison> is the name of a comparison function with the stack diagram (i j -- -1 | 0 | 1) |
|-----------|-----------------------------------|--|
| >LST | (list --) | Install list as the current list |
| ISIN? | (n list -- i t/f) | Check if the element of index n is in the list. If it is, i is the position, and the flag is TRUE. If it is not on the list, then i is the place where it should be inserted. |
| (INS) | (n i --) | Insert n at position i |
| LST@ | (i -- n) | n is the entry at position i in the current list. |
| OL-EMPTY | (list --) | Empty the given list. |
In the following code, we establish an array `SUBGTABLE` that holds subgroups and generators. The comparison function `SGCOMP` compares subgroups. $S1 < S2$ if $S1$ has fewer elements than $S2$ or, if they have the same number of elements, $S1$ comes before $S2$ as unsigned integers. `SUBGLIST` is the name for the ordered list. When this name is used, an address is put on the stack. >LST uses this address to make `SUBGLIST` the current ordered list and all the ordered list words refer to it.

```
CREATE SUBTABLE 100 2* CELLS ALLOT
: 'SUBG ( index -- addr_of_subg )
  2 CELLS * SUBTABLE + ;
: 'GEN ( index -- addr_of_gen ) 'SUBG CELL + ;
: SGCOMP ( idx1 idx2 -- -1|0|1 )
  'SUBG @ SWAP 'SUBG @ SWAP
  OVER #SET OVER #SET - ?DUP 0=
  IF    2DUP U< IF 2DROP 1 ELSE U> THEN
  ELSE >R 2DROP R> 0> IF -1 ELSE 1 THEN
  THEN ;
100 ORDLIST SUBGLIST SGCOMP
VARIABLE SGPTR
: >SGTABLE ( genset -- ) \ put at end
  DUP 1 SGPTR +! SGPTR @ 'GEN !
  GENERATES SGPTR @ 'SUBG ! ;
```

9 In Groups32 this array was made somewhat larger to handle groups up to order 32.
NEWSUB takes an element and the index of a subgroup in SUBTABLE. It will produce a new subgroup if the element is not in the existing one.

2DUP 'SUBG @ MEMBER?
IF 2DROP
ELSE 'GEN @ MEMBER!

>SGTABLE

SGPTR @ SUBGLIST ISIN?
IF DROP -1 SGPTR +!
ELSE SGPTR @ SWAP
 (INS) THEN
THEN ;
GENERATE-SUBGROUPS repeatedly tries to add generators to existing subgroups. Notice that the inner loop is over all elements, while the outer loop is over only the indices of SUBTABLE corresponding to subgroups added in the previous pass. (Any subgroups prior to that already have been processed.)

: GENERATE-SUBGROUPS (grp# --)
 >GROUP SUBGLIST OL-EMPTY
 SUBGLIST >LST 0 SGPTR !
 1 0 'SUBG ! 0 0 'GEN ! 0 0 (INS)
 -1
 BEGIN (old_top) \ previous top of SUBTABLE
 1+ SGPTR @ DUP >R \ save current SGPTR value
 1+ SWAP \ use only recently added subgroups
 DO \ loop over subgroups
 FOR-ALL-ELEMENTS
 DO \ loop over elements
 I J LST@ NEWSUB LOOP
 LOOP
 R> SGPTR @ OVER = \ compare old SGPTR with current
 UNTIL \ exit when no more subgroups have been added
 DROP ;
Once the subgroups have been generated, we display them in increasing order, first ordered by size then by lexicographic order of elements.

: SHOW-SUBGROUPS
 SUBGLIST >LST
 CR ." * = Normal subgroup"
 CR ." Generators" 25 TAB ." Subgroup"
 SGPTR @ 1+ 0
 DO CR I 3 .R 2 SPACES I LST@ DUP
 'GEN @ SET. 25 TAB 'SUBG @
 DUP NORMAL? IF 42 ELSE BL THEN EMIT SG.
 LOOP CR ;

After GENERATE-SUBGROUPS, the subgroups are in an array. <k> 'SUBG gives the address of the subgroup in position k, 0 <= k < N (where N is the number of subgroups). The index of the k-th subgroup in the ordered list is <k> LST@

: #SUBGROUPS SGPTR @ 1+ ;

: SUBGROUP (indx -- subg or empty)
 SUBGLIST >LST DUP 0 #SUBGROUPS WITHIN
 IF LST@ 'SUBG @
 ELSE DROP 0 THEN ;

: SUBGROUPS (grp# --)
 GENERATE-SUBGROUPS SHOW-SUBGROUPS;

Example:
8 SUBGROUPS
 * = Normal subgroup
 Generators Subgroup
 0 { } *{ A }
 1 { D } { A D }
 2 { E } { A E }
 3 { F } { A F }
 4 { B } *{ A B C }
 5 { B D } *{ A B C D E F }

Return to Table of Contents
Some Simple Programs

Notice that we are developing a group theory language that can be used when we do further programming. Here are some examples of new words created using this language:

: Abelian? (-- t/f)
 \ is current group abelian?
 CENTER SET-G = ;

: IsAnOrder? (n - t/f)
 \ is n the order of some element?
 \ Assume CALC-ORDERS has been run
 FALSE (n flag)
 MaxOrd 0 DO OVER I 'ORD @ =
 IF DROP TRUE THEN
 LOOP SWAP DROP ;

: Cyclic? (grp# -- t/f)
 >GROUP CALC-ORDERS
 GORD IsAnOrder? ;
When put in a loop over all groups, Cyclic? allows us to identify the cyclic groups. Here are some variants on the IsAnOrder? command:

```
: OfOrder ( n - ele t | f )
  \ find element of order n
  FALSE   ( n flag )
  For-All-Elements
  DO    OVER I EleOrder =
        IF 2DROP I TRUE LEAVE THEN
        LOOP
        DUP 0= IF SWAP DROP THEN ;

0 CONSTANT Empty-Set
: OrderN ( n -- set )
  \ set of all elements of order n
  Empty-Set ( n set )
  For-All-Elements DO
    OVER I EleOrder =
    IF I SWAP Member! THEN
    LOOP SWAP DROP ;
```
The following is an *incorrect* attempt to identify the dihedral groups. It looks for groups of order n that contain an element of order 2 and an element of order $n/2$ and that are non-abelian:

```
: Oops-Dihedral? ( grp# -- t/f )
   >GROUP   CALC-ORDERS
   Abelian?  NOT
   2 IsAnOrder?  AND
   GORD 2 / IsAnOrder?  AND ;
```

A dihedral group certainly satisfies these conditions, but some groups satisfy these conditions without being dihedral.
Here, for example, are the two non-abelian groups of order 8. One of them actually is the dihedral group, and the other is the group of quaternionic units. It should be easy to spot group 13 as the dihedral group – it has lots of reflections (elements of order 2) and only two rotations (elements of order 4). However both groups are non-abelian and have elements of order 2 and n/2.

<table>
<thead>
<tr>
<th>Group number 13 of Order 8</th>
<th>Group number 14 of Order 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 elements of order 1: A</td>
<td>1 elements of order 1: A</td>
</tr>
<tr>
<td>5 elements of order 2: C E F G H</td>
<td>1 elements of order 2: C</td>
</tr>
<tr>
<td>2 elements of order 4: B D</td>
<td>6 elements of order 4: B D E F G H</td>
</tr>
<tr>
<td>0 elements of order 8:</td>
<td>0 elements of order 8:</td>
</tr>
</tbody>
</table>
An easy way to locate the dihedral groups in the current Groups32 system is to use the _SEARCH_ command. A dihedral group has two generators \(x \) and \(y \), \(x \) is of order 2, the order of \(y \) can be left unspecified, and the relation is \(xy = y'x \) where ' denotes inverse. It is an interesting exercise at this point to try to write a word DIHEDRAL? with the stack diagram (grp# -- t/f) that determines if the given group is dihedral. Here is a solution:

```
: Dihedral? ( grp# -- t/f )
  >GROUP FALSE
  For-All-Elements DO
    For-All-Elements DO
      I EleOrder 2 =
      J EleOrder Gord 2/ = AND
      J I G* J G* I = AND
      IF DROP TRUE THEN
      LOOP LOOP ;
```

I will use this as an example to explore some issues in the performance of code. It is obvious that this code is not efficient in several ways: (1) It runs through all pairs of elements of the group – it should exit the double loop if it finds a pair that satisfies the conditions. (2) If the first element, \(I \), is not of order 2, it nevertheless chooses all possible second elements, \(J \). (3) There are three conditions to be tested, and they are tested in sequence – but all three are evaluated (and combined using AND), even if the first is false. The code, however, is direct, simple, and easily written. It has actually been optimized for clarity rather than for execution speed.
Be aware of the modern perversion that everything must run as fast as possible. Your time is valuable! This is a word that will identify, interactively, only one group for each even order – and it will do so in less than one second. It is simply not worth the programming time required to make this particular word run faster. It may, nevertheless, be instructive to use this as an example for examining ways to increase speed.

We introduce a way to test the conjunction of conditions that stops testing when one is found to be false. Here is a way to synthesize this behavior from existing control structures.

We want to create words ?IF and ?THEN so that ?IF cccc ?THEN behaves as follows. We assume a flag on the stack. If this flag is TRUE, it is removed from the stack and cccc is executed (leaving behind a new flag). If this flag is FALSE, then cccc is not executed, and the FALSE flag is left on the stack. This is logically equivalent to the sequence IF cccc ELSE FALSE THEN.
This version of Dihedral? will now execute a condition only if the previous conditions have evaluated to TRUE. With this change it takes only 234 milliseconds to find the dihedral groups of order up to 32 rather than 411 milliseconds.

\[\text{Dihedral? (grp# -- t/f)}\]
\[\text{>GROUP FALSE}\]
\[\text{For-All-Elements DO}\]
\[\text{For-All-Elements DO}\]
\[\text{I EleOrder 2 =}\]
\[\text{?IF J EleOrder Gord 2/ = ?THEN}\]
\[\text{?IF J I G* J G* I = ?THEN}\]
\[\text{IF DROP TRUE THEN}\]
\[\text{LOOP LOOP ;}\]

--

10 The phrase POSTPONE xxx is used in the definition of an immediate word WWW to prevent the action of xxx from being compiled into WWW. Instead it causes WWW to compile the action of xxx into any word in which WWW is used.
We have previously used the word LEAVE to exit prematurely from a DO .. LOOP construct. LEAVE, however, exits only from the current loop. Forth provides a word EXIT that exits *from the current procedure* and a word UNLOOP that discards the current loop parameters. Thus

```
: Dihedral? ( grp# -- t/f )
  >GROUP FALSE
  For-All-Elements DO
    For-All-Elements DO
      I EleOrder 2 =
      ?IF  J EleOrder Gord 2/ = ?THEN
      IF DROP TRUE
        UNLOOP UNLOOP EXIT 11
      THEN
    THEN
  LOOP LOOP ;
```

11 It should be noted that EXIT exits not just from the control structure, it exits from the entire procedure. You cannot use EXIT to leave a loop and continue with later code in the same procedure.
Since we have gone this far, here is a version of Dihedral? that takes care of all three of the objections:

```lisp
: Dihedral? ( grp# -- t/f )
  >GROUP FALSE
  For-All-Elements DO
    I EleOrder 2 =
      IF For-All-Elements DO
        I EleOrder Gord 2/ =
        ?IF I J G* I G*
          J = ?THEN
            IF DROP TRUE
              UNLOOP UNLOOP EXIT
            THEN
              LOOP
          THEN
        LOOP ;
```
Now, if one frequently needs to determine whether a group is dihedral, there is a rather interesting further possibility: Generate results by a method that might be slow – and then use the stored results rather than re-calculating.

CREATE DIHEDS MaxTables ALLOT \ number of groups

: 'DIHED (grp# -- addr)
 DIHEDS + ;

: Old-Dihedral? Dihedral? ;

: Dihedral? (grp# -- t/f)
 'DIHED C@ ;

Now the time for executing Dihedral? is reduced to .03 milliseconds, not counting the time it takes to create the table. The moral of the story is that one should first optimize for clarity and go further only if it is necessary. The Forth language does support a variety of ways to make things faster and also perhaps clearer, ranging from the ability to introduce new control constructs to the ability to store previously computed information.

Return to Table of Contents
At this point, if you are using Windows, you should run the Groups32 program in a separate window. This will make it possible to see how the program works and to try examples. Examples can be copied and pasted from the article or a text editor to Groups32. If you want to do more extended programming, Win32Forth uses plain text files that can be created by an external editor and loaded into Groups32 by using INCLUDE <filename>. When Groups32 starts, it is in the commands completion interface (to be described later). To do programming, one must QUIT this interface.

A useful Forth word is "see". SEE <name>, where <name> is a word in the dictionary, will decompile the dictionary entry for the word, allowing you to see the definition of the word.

Reminder: Code in RED is found in the early 1990 version, Groups16; Code in GREEN is found in the current Groups32; BLUE is used to represent code that was not in the early version and did not survive to Groups32.
Permutations

This package provides the basic representation and manipulation of permutations. It also provides a procedure for computing the group generated by a given set of permutations.

Overview
Top Level Words and Examples
Details
Permutation Groups
Bugs, Error Traps, Etc.

Return to Table of Contents
Overview

A permutation is represented as an array of bytes. If P is a permutation of 1...n, byte 0 is used to store n and bytes 1...n store P(1)...P(n). A permutation is represented on the stack by the base address of this block of memory.

Access words are provided to manipulate permutations.
If P sends \(i \rightarrow j \), then **i P Sends** returns \(j \). To make P send \(i \rightarrow k \), do **k i P Send!**.

(The order is chosen to be consistent with Forth "k addr !" to store k at addr.)

In the earliest version of this package, I used a defining word to declare a permutation and set aside storage for it. I provided words for input, output, and multiplication of permutations. Eventually I added a mechanism to deal with the storage of intermediate results to allow permutations to be used in chain computations. I also added a procedure to find the group generated by a set of permutations.

Return to Top
Top Level Words and Examples

We start with the earliest attempt. Notice that not all of these words are in the current version of Groups32. We make a defining word `MakePerm` that allocates a block of storage for a named permutation. We will access the storage as an array of bytes. If the permutation is understood to permute $1, \ldots, n$, we store n in byte 0. In general, byte k will contain the image of k under the permutation. The word `PInit` (n perm) initializes a permutation to be the identity. The word $P.$ (perm) prints a permutation. To store a permutation, I introduced the word $P!$. The stack diagram is $(x_1 \ldots x_n n$ perm $)$, where x_k is the image of k under the permutation. An initial version of a multiplication word, here called $\circP* (perm1 \ perm2 – result)$, multiplies two permutations and puts the product in a named permutation called `Result`.
Here is how this looks in use:

\begin{verbatim}
MakePerm P1 \ Declare P1 and P2
MakePerm P2 \ as permutations

1 2 4 3 4 P1 P! \ Store data
2 3 4 1 4 P2 P!

P1 P. \{ 1 2 4 3 \} \ print permutations
P2 P. \{ 2 3 4 1 \}

P1 P2 oP* P. \{ 2 3 1 4 \}
\ use default left->right
\end{verbatim}

Reminder:

Code in **RED** is found in the Groups16; Code in **GREEN** is found in the current Groups32; **BLUE** represents code that was not in the early version and did not survive to Groups32.
We eventually add input and output in cycle notation, but the most serious problem at the moment is that the definition of multiplication puts all products in the same place: a permutation named Result. The problem can be seen in this example

\[
\begin{align*}
1 & \ 2 & \ 4 & \ 3 & \ 4 & \ P1 & \ P! \\
2 & \ 3 & \ 4 & \ 1 & \ 4 & \ P2 & \ P!
\end{align*}
\]

\[P1 \ P2 \ \text{OP}^* \ \text{DUP} \ \text{OP}^* \ P. \ \{ \ 3 \ 1 \ 3 \ 4 \ \}
\]

The correct answer is

\[P1 \ P2 \ \text{P}^* \ \text{DUP} \ \text{P}^* \ P. \ \{ \ 3 \ 1 \ 2 \ 4 \ \}
\]

What is happening is that the first product P1 P2 OP* is stored as the permutation Result. The sequence DUP OP* makes Result both the input and output. Since OP* alters the permutation Result, it is altering its input argument in this case. The conclusion is that for chain calculations there must be more than one place for results.
It is important to understand that this is not a problem peculiar to permutations – it arises even for integer arithmetic. The stack provides the kind of flexible storage needed. If we perform $a*b + c*d$ (using algebraic notation) we would do $a\ b\ *\ c\ d\ *\ +$ (using reverse Polish notation). The result of the first multiplication must be temporarily stored until we perform the second multiplication. The stack diagrams for this sequence of operations show $a*b$ remaining on the stack until the final addition.
There are several possibilities for dealing with the problem of intermediate storage. The first, and worst, is to try to put the data for a permutation on the Forth parameter stack. This approach would make a permutation occupy several stack cells. It has the effect of burying useful data and inhibiting the use of the standard stack operations.

A second, more promising, approach is to create a special permutation stack. Since the same problem of intermediate storage arises with other types of algebraic objects, and since a system might have several types of objects, this would require the user to introduce a new set of stack operations for each stack, and to be aware of the contents of several stacks while programming. This approach is psychologically burdensome.

In Groups32 and other algebra systems I have produced, I have represented objects on the regular Forth stack by an address. The address occupies a single cell – so it is manipulated by the usual stack operations. The user can think of a permutation being on the stack. SWAP can be used to exchange two objects: two permutations, a permutation and an integer, etc. Thus, representing an object by its address allows a consistent way to integrate new types of data into the system. However, we still need to have a pool of locations for intermediate results.
An improved multiplication word, P*, will remove two (addresses of) permutations from the stack and multiply them. It will then put the result in the next available temporary storage location and return the address of this location to the stack.

In some languages, a very large pool of temporary locations is available – and computation proceeds, using these locations, until the pool is exhausted. The system then attempts to identify storage locations that are no longer in active use. Un-referenced locations are called "garbage" and the process of reclaiming them is called "garbage collection". There can be a noticeable pause in execution while the system collects garbage.

We use a mechanism with storage for just 16 temporary objects. It does a very small, quick garbage collection when these are exhausted. Each type of object has its own pool of 16 storage locations. A mechanism is provided for marking an address as available. When a computation is performed on a certain type of object, the result is placed in the next available storage location, and the address is returned to the stack. If no location is available, the system tries to find which locations are no longer in active use.
Cycle Notation

The output word `c.` uses the same naïve algorithm that one uses for computing products by hand. We keep track of which numbers have already been output. Start with all numbers unmarked, and mark any element that is sent to itself. Then start with the first unmarked element. Print an opening parenthesis, print (and mark) the elements in its orbit, and print a closing parenthesis.

The input word (which I have called `Perm:`) reads from the rest of the command line. It is based on a word that reads a cycle (numbers between two parentheses) and it multiplies the cycles it obtains. The cycles are not required to be disjoint. `Perm:` does check the syntax – so it reports errors such as improperly matched parentheses.

```
Perm:  (1 2) (1 3)
C. (1 2 3 )
```

```
Perm: (( 1 2) (1 3
  Syntax Error -- Try Again

? (1 2)(1 3)
C. (1 2 3 )
```

[Return to Top]
 Details

33 CONSTANT PMaxSize
\ largest n for permutations +1 for count

: MakePERM CREATE PmaxSize ALLOT ;

: 'Element (i perm -- addr) + ;
: Send! (k i perm --) 'Element C! ;
: Sends (i perm -- perm[i]) 'Element C@ ;
: Degree (perm -- n) 0 SWAP Sends;
: Degree! (n perm --) 0 SWAP Send! ;

: PInit (n perm --) 2DUP 0 SWAP Send! SWAP 1+ 1 ?DO I DUP 2 PICK Send! LOOP DROP ;

: P. (perm --) \ print showing images of 1..n ." { " DUP Degree 1+ 1 DO I OVER Sends . LOOP DROP ." }" CR ;

: P! (x1 .. xn n perm --) 2DUP Degree! 1 ROT DO I OVER >R SWAP Send! R> -1 +LOOP DROP ;
DEFER Direction
MakePERM Result

: oP* (perm1 perm2 -- result)
 Direction
 DUP Degree
 DUP Result Degree! 1+ 1
 DO (perm2 perm1)
 I 2 PICK Sends (perm2 perm1 perm2[I])
 OVER Sends (perm2 perm1 perm1[perm2[I]])
 I Result Send!
 LOOP 2DROP Result ;

: Left->Right '['] NOOP IS Direction ;
: Right->Left '['] SWAP IS Direction ;
Left->Right \ default

Recall that the multiplication operation defined here puts the product in a fixed permutation called Result and returns the address of that location to the stack. This code allows for the fact that some books use left to right multiplication while others use right to left. Forth allows for "vectored execution" using the word DEFER. The line "DEFER Direction" makes a dictionary entry for Direction, which can then be used in subsequent code. An action for Direction must be filled in before it is used. The code is written so that multiplication would be left to right without Direction (so we fill in the action NOOP when this is the desired direction). If multiplication from right to left is desired, the action for Direction is SWAP. The words Left->Right and Right->Left allow the direction to be switched without recompiling.
The user must understand that these temporary locations are a scratchpad area for operations on the objects – any result of lasting use must be moved to a permanent location. The garbage collector assumes that an address is being actively used if and only if it is on the stack. The internal workings of the temporary storage module are transparent to the user. Here is how the mechanism is introduced into the permutations package:

<table>
<thead>
<tr>
<th>Temporary Storage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp-Storage Perm-Temps</td>
<td>Establish a new Temp-Storage structure called Perm-Temps.</td>
</tr>
<tr>
<td>CREATE Perm-Storage</td>
<td>Make a block of memory to store 16 permutations.</td>
</tr>
<tr>
<td>PMaxSize CELLS 16 * ALLOT</td>
<td></td>
</tr>
<tr>
<td>: Perm-Setup</td>
<td>Initialize Perm-Temps to contain the 16 addresses in the storage pool.</td>
</tr>
<tr>
<td>Perm-Storage Perm-Temps 16 0 DO DUP I Address ! PMaxSize CELLS + LOOP DROP ;</td>
<td></td>
</tr>
<tr>
<td>Perm-Setup</td>
<td>Execute the setup.</td>
</tr>
<tr>
<td>: PTemp (-- perm) Perm-Temps Temp ;</td>
<td>This is the main word that the user employs – it returns the address for the next available slot in the storage pool.</td>
</tr>
</tbody>
</table>
With this storage mechanism, it is very easy to fix P* without drastically changing the code. We need only to supply RESULT with the address of the next available location in the storage pool. Notice that RESULT may be used in several places in the code for an operation, and we do not want to use a different storage location at each reference. We therefore make RESULT a VALUE (rather than a permutation). It will return the address of the storage area for a permutation. We define a word GetRes to store the address of the next temporary storage slot in RESULT.

0 VALUE Result
: GetRes PTemp TO Result ;
: P* (perm1 perm2 -- result)
 Direction
 GetRes DUP Degree
 DUP Result Degree! 1+ 1
 DO (perm2 perm1)
 I 2 PICK Sends (perm2 perm1 perm2[I])
 OVER Sends
 (perm2 perm1 perm1[perm2[I]])
 I Result Send!
 LOOP 2DROP Result ;
Permutation Groups

The main remaining interesting feature of the permutations package is the ability to find the group generated by a given set of permutations. The algorithm for doing this is to maintain an array of the generating permutations (Gtable) and an array of permutations generated (Ptable). We use the ordered list module, discussed previously, to make the latter array an ordered list. Start with just the identity permutation in the Ptable. Repeatedly multiply all elements in the Ptable by the generators – adding any permutation to the Ptable that is not already there. Continue doing this until a pass (multiplying by generators) does not produce anything new.

The following example shows how this feature is used from the command line. I should mention that I eventually equip Groups32 with a user interface that makes it easier and quicker to use.
\ Klein's 4-group

4 Size! \ This initializes the tables
Gen: (1 2) \ add the generators
Gen: (3 4)
Make-Group \ apply the algorithm
Show-Table \ a multiplication table
\ can be obtained

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>D</td>
</tr>
</tbody>
</table>

Show-Elements

Group is of order 4

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>()</td>
<td>(3 4)</td>
<td>(1 2)</td>
<td>(1 2)(3 4)</td>
</tr>
<tr>
<td>B</td>
<td>(3 4)</td>
<td>()</td>
<td>(1 2)</td>
<td>(1 2)(3 4)</td>
</tr>
<tr>
<td>C</td>
<td>(1 2)</td>
<td>(1 2)</td>
<td>()</td>
<td>(3 4)</td>
</tr>
<tr>
<td>D</td>
<td>(1 2)(3 4)</td>
<td>(1 2)(3 4)</td>
<td>(1 2)</td>
<td>()</td>
</tr>
</tbody>
</table>
At the moment, the permutations package seems disjoint from the rest of Groups32. We cannot immediately apply any of the procedures for orders, subgroups, etc. We can, however, generate a table. We now provide a mechanism for installing this table into the Groups32 system – replacing any of the tables 1-5 (which are for very small groups and will hardly be missed).

```
: Install0 \ Install as table 0
  GSize @ Gord!
  GSize @ 0
  DO  GSize @ 0
      DO  J I PG* J I G*! LOOP
  LOOP ;
```

If the order of the generated permutation group is between 1 and 32, we automatically have the table stored as table 0. (The slot for group #0 is used for temporary storage.) Groups32 provides `Install (n --)`, which will move the table from slot 0 to replace table n, where n is 1, 2, 3, 4, or 5. Once a table is installed, all the commands can be applied to it.
Assume the Klein 4 group is generated as above.

```
Install0 \ move the current
    \ permgroup to slot 0
1 Install \ install as group 1
1 Table \ show the table

<table>
<thead>
<tr>
<th><em>A_B_C_D</em></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>
```

```
1 Subgroups \ show the subgroups
  * = Normal subgroup

<table>
<thead>
<tr>
<th>Generators</th>
<th>Subgroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>0  { }</td>
<td>*{ A }</td>
</tr>
<tr>
<td>1  { B }</td>
<td>*{ A B }</td>
</tr>
<tr>
<td>2  { C }</td>
<td>*{ A C }</td>
</tr>
<tr>
<td>3  { D }</td>
<td>*{ A D }</td>
</tr>
<tr>
<td>4  { B C }</td>
<td>*{ A B C D }</td>
</tr>
</tbody>
</table>
```

Since Show-Elements provides a concordance of letters A, B, C, ... with permutations, it is easy to interpret any results in terms of permutations.
Bugs, Error Traps, Etc.

This is an appropriate place to discuss these issues, since I eventually equipped the permutations package with error handling at the point when I first made it available for use by others. I added the error trapping even before I equipped the system with the user interface that I discuss in the next section. The permutation package was not part of the original Groups16 – it was developed separately and eventually merged into the group theory package.

When a system of this type is used by the person who wrote and implemented it, it is usually possible to minimize "bugs" that arise from coding errors (or from disagreements between the programmer and computer about how the world works). Let us call these "bugs of the first kind". Forth style emphasizes writing short, uncomplicated definitions. Words can be tested interactively as soon as they are written. It can be quickly determined if a word does not function as intended, and the mistake is usually quickly pinpointed.

When a piece of software is used by others, however, another type of bug can appear: improper behavior resulting from incorrect use of the system. We will call these "bugs of the second kind". (Some call these "features".)
A perfect example of a "bug of the second kind" occurs in the earliest version of Groups16. Recall the definition of G^*:

```
: 'ELE   ( ele1 ele2 – addr )    \ compute address of product
    ID - SWAP ID - GORD * +    \ offset from base address
    GBLK BLOCK GOFFS +        \ address of start of table
    + ;                      \ address of element

: G*   ( ele1 ele2 – ele1*ele2 )
    'ELE C@ ;
```

(ID is a constant, 65, the ASCII code of upper case A.) Group elements are represented in this version by upper case letters. The code assumes that the elements are entered as ASCII codes of upper case letters – within the range of the particular group.
When we put in B and C as uppercase, we get the correct answer. This word, however, is case sensitive. When we put in b and c as lowercase, we do not get the correct answer. We also get an answer when we put in E and F, even though they do not represent letters in the range of this group.

There is no "bug of the first kind" in the definition of G^*. When G^* is supplied with valid input it does provide the correct output. However, the code for G^* contains some assumptions about how it is to be used – and it contains no error traps to ensure it is used correctly. The errors seen here arise because G^* was used incorrectly. This is a "bug of the second kind".

<table>
<thead>
<tr>
<th>A</th>
<th>A B C D</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B A D C</td>
</tr>
<tr>
<td>C</td>
<td>C D A B</td>
</tr>
<tr>
<td>D</td>
<td>D C B A</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G^*</td>
<td>b c</td>
</tr>
</tbody>
</table>

: Try GETE GETE G^* ." = " EMIT ;

Try B C = D
Try b c = A
Try E F = C
When the author is the user, he or she knows the intended form of input. It can be difficult for the author to anticipate some of the things other users might do – or how the software will respond. In the user interface (next section), I have tried to restrict "free form" input so that Groups32 can be used correctly by those unfamiliar with the system. The input for most commands is prompted, and it is easy to test if the input is of the proper type. For example, if the user must enter the number of a group, it is easy to check that the input is a number between 1 and 144. If the user is to put in group elements, it is easy to check whether they are valid. (We automatically convert to upper case – making the input case insensitive – but we do check for range.) These are cases where it is rather simple and quick to insure valid input. Many bugs of the second kind can be eliminated by prompting for input in a restricted form and rejecting invalid input.

In some cases, however, we want users to provide input as a line of text – an example is the word Perm: in the permutations package. This word is supposed to be supplied with a string that represents a collection of cycles in the numbers 1...n, where n has been specified in advance.

```
Left->Right
3 TO PSize
Perm: (1 2)(1 3)
C. (1 2 3)
```
Here is an early version of code for Perm: (the names of support words have been changed to correspond to the current ones).

: 'Element (i perm -- addr) + ;
: Send! (k i perm --) 'Element C! ;
: Sends (i perm -- perm[i])
 'Element C@ ;
: Degree (perm -- n) 0 SWAP Sends ;
: Degree! (n perm --) 0 SWAP Send! ;
: PInit (n perm --) 2DUP 0 SWAP Send! SWAP 1+ 1 DO I DUP 2 PICK Send! LOOP DROP ;

5 VALUE PSize
: << GetRes PSize Result PInit
 DEPTH SvDepth ! ;
: >> DUP >R DEPTH SvDepth @ - 1
 DO OVER Result Send! LOOP
 R> Result Send! Result ;

: Perm:
 \ use single parentheses in following string
 PTemp PSize OVER PInit
 BEGIN <<
 ASCII (PARSE 2DROP
 ASCII) PARSE EVALUATE
 DEPTH SvDepth @ - WHILE
 >> P* REPEAT ;
The size of a permutation (the n in Sn) is assumed to be in the VALUE PSize. The words « « and >> are used for input of a single cycle. Here is what happens when we type « 1 2 3 » »:

The word « « saves the current depth of the stack and initializes a new temporary permutation (called Result). The numbers 1 2 3 are just put on the stack. The word >> compares the stored stack depth to the new stack depth, thus determining how many numbers are on the stack. A copy of the top number on the stack is saved on the return stack and a loop is entered that makes each number the image (under the permutation) of the number below it: 2 → 3, 1 → 2. The loop is completed by making 3 → 1. This is how a cycle is handled.

The word Perm: reads the input that follows it (presumably containing one or more cycles). It uses the « « .. » » pair to interpret each cycle, and it multiplies the cycles it receives. Perm: ends its work when the input line is exhausted.
This code functions correctly as described – as long as the user understands the assumptions built into `Perm:`

(1) There must be a space between `Perm:` and the rest of the input line.
(2) `Perm:` must be followed on the input line by a collection of cycles.
(3) There must not be anything else on the input line.
(4) Each cycle must begin with an opening parenthesis "(" and terminated with a closing parenthesis ")".

(5) Within each cycle there must be numbers in the range 1...n.
(6) PSize must be set to n before `Perm:` is used.
(7) The numbers within a cycle must be separated by spaces.
(8) The numbers within a cycle must be distinct.
(9) No characters, other than digits and spaces, can occur between the parentheses.
Now, what happens if a user supplies `Perm:` with illegal input? Suppose the user does not close parentheses, does not match parentheses, or puts illegal characters within parentheses? The system could react in several ways, ranging from aborting the command to producing something that is not a permutation, and that is handled improperly by `P*`, `C.*`, and other words in the package.

In the first example above, with `G*`, invalid input produced incorrect answers because numbers are fetched from the wrong part of memory. No damage is caused, just incorrect results. Some words, however, store things in memory, and it is possible that incorrect input could actually alter the code in memory. When `Perm:` is executed, the word `Send!` is ultimately called. This word has the stack diagram `(k i perm --)`. It will store `k` in the memory position of index `i` in the given permutation. If `i` is not in the proper range, a number will be stored in memory other than within the allocated space for the permutation. If `k` is not within range, the result will not be a valid permutation, and subsequent operations may lead to numbers being stored in improper places. Since Forth implementations usually allocate data storage within the dictionary, it could turn out that numbers can be erroneously stored in places being used by code – and the code will, therefore, stop operating correctly.
This should not be taken as an indication of fragility. In most cases, words that store things receive their arguments from other words that produce only valid input for them.

The final versions of `Perm:` and its auxiliary words enforce the requirements for a correctly formed input string. The input string is checked for balanced parentheses and for only digits within the parentheses. A range-checked version of `Send!` is used to make sure the numbers in a cycle are within range and that they are distinct. Within the command completion interface (see the next section), `Perm:` is used in a prompted input sequence, so the user must specify `n` first. (The word that stores `n` also checks that it is within range.) All of this is necessary just to try to eliminate bugs of the second kind.
Range Checking

Any operation that stores data in memory could, if given erroneous input, store data in unintended places. To guard against this, one can add range checking to words that store data. Here is an example from code we have already examined.

In the word Orders there is a word +Ocnt that increments the number in a certain slot in an array. Here is the original version:

```plaintext
CREATE OCNT 33 CELLS ALLOT
  : 'OCNT ( k - addr ) CELLS OCNT + ;
  : +OCNT ( k -- ) 'OCNT 1 SWAP +! ;
```

Notice that k must be in the range 0-32 for this to work correctly. Now here is a version that checks that k is in range:

```plaintext
CREATE OCNT 33 CELLS ALLOT
  : 'OCNT ( k - addr ) CELLS OCNT + ;
  : +OCNT ( k -- )
    DUP 0 32 BETWEEN NOT
    IF      CR ."Out of Range" ABORT
    ELSE    'OCNT 1 SWAP +! THEN ;
```

There is, of course, a speed penalty for this extra checking. The original +OCNT executes 100,000 times in 26 milliseconds, while the range-checked version takes 50 milliseconds. The ranged checked version is twice as slow.
Should range-checking be included?

Range checking is obviously not necessary if a word is supplied its parameters only by other words that are guaranteed to supply valid parameters. +OCNT is a perfect example. This is a word that should NOT include range checking.

To see this, we need to look at how +OCNT is used. +OCNT occurs in the code for Orders, which calculates the orders of elements for one of the existing groups (of order 1-32). Thus, in use, the word +OCNT cannot receive an out-of-range index. If we were to use the range-checked version, the number k would be checked each time to see if it is between 0 and 32, but the test will always be true because +OCNT will never receive a k that does not satisfy this condition.
One of the virtues of producing software for your own use is that it is not so necessary to deal with bugs of the second kind (and with error trapping). It can be very time-consuming to prepare a piece of software for use by others. Those who have lived with toddlers will appreciate that it is very much like "child proofing" a house. How much you have to do depends both on the complexity of your house and the sophistication of your toddler. Rather than put all your possessions in locked cabinets, however, you must give thought to what precautions are really most effective.

The critical words to consider for range checking (or other error trapping) are words such as Perm: that get input from the user and store things in memory. These are the words that have the potential to alter the code itself. In the final version of the permutations package, I not only use a range-checked version of Send! but I also include other tests to make sure that the input string has the correct form.
At the beginning of this section, we used the example of G*. It would not be efficient to put range checking into a word like this, which is used very frequently. It would be better to examine the code that passes information to such words, making sure that G* will not receive invalid input. Once the internal code of the system is correct, the only source of invalid data will be input routines. This is usually the best place to put error traps. Since data entry is slow anyhow, error traps here will not significantly slow the system. Once we are sure that the input routines will not send incorrect data to the rest of the system, it should not be necessary to have error traps on lower level words.
Groups32 has a mechanism to search the groups of orders 1-32 to find those with given generators satisfying given relations, or to find groups that contain subgroups with the given finite presentation. The algorithm used is quite literal: All group elements are substituted for the generators, and then the orders and relations are checked. A "shortcut" evaluation is used: Once a condition is found to be FALSE, no subsequent conditions are checked. This is the slowest procedure in Groups32. Direct assembly language coding of G* (and 8 other words) does result in a dramatic speedup of SEARCH.

Here is how SEARCH can be used to identify the dihedral groups, which are groups with two generators, x and y, with x of order 2, the order of y is not specified. The defining relation is $xy = y'x$, where ' indicates inverse. The prompted input in the following example is from the command completion user interface that I describe in the next section.
Enter distinct generators as a string

e.g. RS means two generators R and S

Generators: xy

Do you want these to generate the entire group? (y or n) Y

Enter the exact order for each generator.

Press Enter for no order specified

X is of order 2

Y is of order

A relation is of the form LHS = RHS

Put in LHS RHS or LHS (if RHS is e)

LHS RHS >> xy y'x

<Press ENTER to quit>

Generators:

XY

Orders:

X= 2

RELATIONS:

XY = Y'X
The group of quaternionic units (order 8) can be presented as a group with three generators, \(a, b, c\), and relations \(ab = c, bc = a, ca = b\). The following chart shows the timing for the SEARCH command using different Forth implementations and computers.

<table>
<thead>
<tr>
<th>Timing for Search</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups32 ver 7.0 // Win32Forth high level</td>
<td>1308270 ms</td>
</tr>
<tr>
<td>Groups32 ver 7.0 // Win32Forth assembly language</td>
<td>51300 ms</td>
</tr>
<tr>
<td>Groups32 ver 7.0 // SwiftForth</td>
<td>307656 ms</td>
</tr>
<tr>
<td>Groups32 ver 6.4g // Gforth LINUX</td>
<td>1794000 ms</td>
</tr>
<tr>
<td>Groups32 ver 6.4g // Gforth on Internet</td>
<td>2700000 ms</td>
</tr>
</tbody>
</table>

The entry marked Win32Forth assembly language replaces just nine words by assembly language equivalents – the increase in speed is remarkable.

The entries for Gforth compare a LINUX version of Forth on a personal computer with the timing for the same version (running on a SUN server) accessed via Telnet on the Internet.
Notice that the fastest timing (about 1 min) is for a personal computer using assembly language coding of a few time-critical commands, and the slowest, using the Internet, is about 45 min. With the exception of the entry marked "Internet", the computer used has a Pentium III processor running at 450 Mhz.

The process of searching through a collection of groups to find those with a given set of generators and relations is inherently time-consuming. This does not preclude the possibility that a better algorithm will make a major improvement.
When I first circulated Groups16 for review as an illustration of programming methodology, several reviewers suggested that it might make a good instructional program – provided it could be made easier for students to use.

Groups32, as presented so far, requires the user to learn a collection of command names, together with the parameters (and order) required for their use. As with similar research systems, there are actually only a handful of top-level commands in the system. (The others are useful mainly for those who wish to write programs to extend the system.) It is not unrealistic to use the system with a "command line" interface, but there is a learning curve involved, making casual use more difficult. Typing commands and their arguments is slow. Also, a more constrained type of input would decrease the need for error trapping.

I explored several methods to make these top-level commands more accessible and to ensure valid input. In one attempt, evoking a top level command provided prompts for parameters. In another, I presented the top-level commands in a menu – clicking on a command initiated a prompt for input.
The approach I finally used, a "command completion" interface, appears to be the quickest and easiest to use. In this interface, the user is presented with a list of available commands:

<table>
<thead>
<tr>
<th>CENTER</th>
<th>CENTRALIZER</th>
<th>CHART</th>
<th>CONJ-CLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSETS</td>
<td>EVALUATE</td>
<td>GENERATE</td>
<td>GROUP</td>
</tr>
<tr>
<td>HELP</td>
<td>ISOMORPHISM</td>
<td>LEFT</td>
<td>MENU</td>
</tr>
<tr>
<td>NORMALIZER</td>
<td>ORDERS</td>
<td>PERMGRPS</td>
<td>POWERS</td>
</tr>
<tr>
<td>QUIT</td>
<td>RESULT</td>
<td>RIGHT</td>
<td>SEARCH</td>
</tr>
<tr>
<td>STOP</td>
<td>SUBGROUPS</td>
<td>TABLE</td>
<td></td>
</tr>
</tbody>
</table>

The user types enough letters of a command to distinguish it from the others. To generate a table, for example, the user needs only to type "T", since this is the only command that starts with T. To obtain a list of conjugacy classes, the user types "CON". The interface discards all letters typed beyond the bare minimum (so the user need not worry about mistyping subsequent characters). Once the interface identifies a command, it prints the rest of the command and prompts for any arguments needed to carry out its operation.

```
G1>> CONJ-CLS  Group Number 8
{ A } { B C } { D E F }
```

Typing "CON" distinguishes the CONJ-CLS command and asks for a group number.
Here is a sketch of how I implemented the interface:

The commands and information about them are put into a binary tree. Each node in the tree has a name field (for a string of a maximum size), the address of the node to the left, the address of the node to the right, and the execution address of the word used to carry out the command.

```
CREATE 'Tree1  #Nodes NodeSZ * ALLOT ALIGN
: Left ( n_addr -- l_addr )   SZ + @ ;
: Right ( n_addr -- r_addr )   
   SZ + 1 CELLS + @ ;
: Exec  ( n_addr -- )   
   SZ + 2 CELLS + @ EXECUTE ;
: Left! ( x n_addr -- )   
   SZ + ! ;
: Right! ( x n_addr -- )   
   SZ + 1 CELLS + ! ;
: Exec! ( e_addr n_addr -- )   
   SZ + 2 CELLS + ! ;
: Name! ( $ n_addr -- )   
   DUP SZ BLANK $!! ;
: Leaf? ( n_addr -- flag )   
   DUP Right 0= SWAP Left 0= AND ;
```

32 CONSTANT Max#Cmds
24 CONSTANT CmdSize
0 VALUE #Cmds
CmdSize CELL + CONSTANT EntrySize
Max#Cmds CONSTANT #Nodes
Each new command is added to the tree to the left of an existing node if the name comes before in lexicographic order, and to the right if the command comes after. The commands are introduced by the word >CMD, which is used in the form

>CMD <menu_name> <word_to_execute>

The word_to_execute contains prompts and input routines to get any parameters needed from the keyboard. There is also a provision for including descriptive "help" information that will be printed if the user types HELP before typing the name on the menu.

Here is an example of how the Table command is made into a word %Table that prompts for input:

```
: %Table
Help:
This prints a table for the group requested (and makes that the current group). Elements are represented by letters A to Z and the symbols \ [ ] ^ _ and `.  
Help; 
  ." for " [' Get-Grp CATCH 0= 
  IF CR Table THEN ;

>CMD TABLE %Table
```
I have written a collection of input commands. For example, Get-Grp is the command to get a group number. In all cases, the system waits for the user to type a string, which is put into the terminal input buffer (TIB) as if it had been typed at the keyboard in an interactive session. The input is then processed by Forth words that read the input stream. Also, the cursor position is saved at the start of input, and the cursor is returned to this position if there is an error in the input.

Here are other input commands that can be used for writing the prompted input sections.

```
2VARIABLE Save-Pos
: Get-TIB ( -- ) AT? QUERY AT
  >IN @ 0 WORD
  COUNT TYPE >IN ! ;

: Get-Num ( -- n ) ." Number " AT?
  Save-Pos 2!
  BEGIN
  Save-Pos 2@ AT
  Get-TIB BL WORD
  COUNT ?DUP 0= THROW
  NUMBER? IF DROP TRUE
  ELSE 2DROP BEEP FALSE THEN
  UNTIL ;

: Get-Grp ( -- n ) ." Group "
  BEGIN
  '[' Get-Num CATCH
  IF TRUE THROW
  ELSE G-OK
  DUP 0= IF CR 10 SPACES THEN
  THEN
  UNTIL ;
```
Here is how the interface works. The characters typed by the user are added to an incomplete command string. Each time a character is added, the tree is searched to see if the string matches the leading part of a name in the tree. If there is no match, the user is informed (by a beep), and the latest character is not accepted. If there are multiple matches, the system waits for further characters. If there is only one match, the remainder of the name is typed and the stored command is executed.

Since the user must type additional information from the keyboard, this interface has proved to be faster than one in which the user selects commands with a mouse. An additional feature of the interface is that it is very easy to add additional commands – so the interface is extensible.
It is easy to learn to use the interface, and no programming is required. As a result, Groups32 can be easily integrated into courses in abstract algebra.

The original version of the interface used a single ordered list of commands. In later revisions I used a single binary tree. When I added permutations, I revised the code for the interface to enable using more than one tree. In Groups32 the permutation commands are in a second tree and there is a separate menu:

The PERMGRPS command in the main menu switches to this package, and the command MAIN here switches back to the main system.
Maintaining and extending the system

Since a Forth application is extensible and Forth compiles incrementally, it is neither necessary nor desirable to make modifications or extensions by revising and recompiling the entire system.

I emphasize this point because it is different from the situation that arises with conventional compiled languages.

It has been found best, once a basic system is in place, to treat it as the implementation of a language: The language should be documented and not frequently subjected to total revision. Additions and modifications can be made as extensions to the existing system.

Most Forth implementations, including Win32Forth, have a provision to "save the system". The result is an executable that combines the underlying Forth system with the extensions added by the user. The combined system is then used as if Forth came with the user's words.

When I have used Groups32 for instruction, I have installed the executable on a file server, and the basic system is unchanged once installed. It is nevertheless possible to make changes and additions as the course progresses: Win32Forth reads a configuration file after the system is loaded. (Groups32 is saved as an executable with the configuration file designated Groups32.cfg.)
The line `INCLUDE <pathname> updates.f` is placed in the configuration file. The file "updates.f" is placed in a public directory, and the instructor has read/write privileges. All extensions, modifications, bug fixes, etc. are made in the file updates.f.

Extensions

Additions to the system can be made easily in updates.f. For some classes I have added, for example, an additional package with number theory commands. Additional commands can be added easily to the menu in the commands completion interface. First create a version of the new command that prompts for its arguments and contains help information, then install it on the menu by `CMD <menu_name><command_name>`. If this is done in updates.f, the new command will appear on the menu whenever the system is loaded.

Redefining Words

It is sometimes desirable to change the action of an existing word. If a word is redefined (i.e., a new definition is made using the same name as a previously defined word), the new word is added to the end of the dictionary, and a dictionary search will find it first. Subsequent use of the name will find the new definition, but any word compiled with the older definition will continue to use the older action.
If >CMD is used with the new action, the command completion interface will use the new action.

Most Forth systems provide a warning if a word is re-defined.

```forth
: myword ;
: myword ." this one prints" ;
MYWORD isn't unique
```

The message "isn't unique" is not an error message – it’s just a reminder to the user that a name is being used again. If this was done unintentionally, it can be undone in many Forth systems with FORGET (usage: FORGET <wordname>), a word that will remove <wordname> and all subsequent words from the dictionary.

A new word can reference an older version in its definition.

```forth
: print-one 1 . ;
: print-one ." Here is one: " print-one ;
PRINT-ONE isn't unique
print-one Here is one: 1
```

Forth does have a mechanism for recursion, but self-reference is not it. The current word is deliberately excluded from the dictionary search. In the example above, the new print-one uses the earlier version in its definition.
Patching
As noted already, redefining a word does not change the existing action for words already compiled. It is sometimes necessary to change the behavior of a word in such a way that any words already compiled use the new action. This can be done in at least two ways.

1. Vectored Execution
If it is known that a word may need to have its action changed, there is a mechanism for "deferred execution". The method defines a word that executes a stored address (vector). Changing the stored address changes the behavior of the word.

I used this feature in the permutation package to permit a switch, after the fact, between left-to-right and right-to-left multiplication:

DEFER Direction
: Left->Right [''] NOOP IS Direction ;
: Right->Left [''] SWAP IS Direction ;

The behavior of the word Direction is switched between a NOOP (no operation) and SWAP. This switchable word is used at the start of the code for P*.
Vectored execution is also used in the "print to file" code. Win32Forth, like many other Forth systems, uses deferred execution for basic output words EMIT, TYPE, and CR. We can switch the behavior of these words. During printing to a file we install versions that not only print to the console but also send output to a file.

Vectored execution can also be used effectively in development to test several versions of a word: The code is written with a vectored word, and alternatives can be installed "on the fly".

For clarity of code, it is important to document, at the point where a vectored word is created, the type of behavior that will be filled in.

2. **Patching a definition**

The dictionary entries themselves occupy accessible memory. One can often change the behavior of an existing word (e.g., to fix a bug) by altering an existing dictionary entry directly. Details of this process depend on the implementation of Forth and are beyond the scope of this article.
The methodology I have described in this article involves creating a special-purpose, problem-oriented language. I use a base language (Forth) that permits users to get involved in the creation of the programming language. Forth provides access to memory, the input stream(s), and the process of compilation.12 With this access one can implement almost any type of data structure or language syntax.13

12 Some Forth implementations also provide direct access to hardware – a feature used in instrumentation and control applications, but not in this article.

13 Most of the language development in the case of Groups32 has been in the representation of data, the introduction of new data types, and the introduction of appropriate operations.
I have used a "middle out" approach to the design and implementation of a software system: A rudimentary, functional, system is created first. This core system is the major tool in the development of more extensive and refined systems.

I have used this methodology to produce systems for research as well as for instruction. These systems provide an interactive computing environment. They are extensible: In research, a system can be extended and modified to meet the needs that arise as a project progresses; in instruction, a system can be tailored to the needs of a particular class.

Return to Table of Contents
1. The Forth implementation used in this work is Win32Forth, written by Tom Zimmer and Andrew McKewan. It is in the public domain. A complete version of Win32Forth and supplementary materials can be found on the Forth Interest Group Web site, http://www.forth.org.

2. A variety of non-commercial Forth implementations and other Forth resources can be found on the Forth Interest Group Web site. There are also links at this site to the web pages of vendors of commercial Forth systems.

3. More Forth resources are listed on my Web site.

The following papers give background information on the approach to system development used in this paper, and source code for some of the features.

Supplementary Information

This section contains the targets of hyperlinks.
The Forth Language

Forth was invented (or perhaps discovered) during the 1970s by Charles Moore. Its original use was for applications involving hardware control and instrumentation. It was used as a high-level, portable replacement for assembly language programming. The language was designed for simplicity, flexibility, and speed. It is currently used to assist in the design and testing of experimental hardware control applications.

A major use of Forth is to program "embedded systems", i.e., computers that are included in other products.

In many respects the advantages of Forth for developing experimental hardware control systems are similar to the advantages we exploit for work in mathematics. It provides a simple comprehensible foundation to which a variety of features can be added. It is a language suited for building language features.

Here are some of the attributes that make Forth a good choice for this work:
1. Forth is conceptually simple. It is fairly easy for a non-specialist to learn.
2. Forth is suited for creating special-purpose languages.
3. Forth provides an interactive computing environment.\(^{14}\)
 a. This speeds the development and testing of code.
 b. Programs can be easily written for interactive use.
4. Forth programming creates a dictionary of useful words. This fine-grained modularity improves clarity and contributes to producing reusable code.
5. It is easy to introduce new types of algebraic objects and operations seamlessly.
6. Forth is small and efficient.
7. Programs written in Forth execute at a speed comparable to conventional compiled languages.
8. Forth is extensible—extensibility includes introducing new data types and new language features.
9. Details of the language implementation are accessible to the user.
10. Forth supports many programming styles and paradigms

\(^{14}\) By this we mean that a user's work with a system is a "session": commands can be issued from the keyboard to act on persistent data. The user can issue a command, see the result, and continue operations on the data. The systems produced by the methodology in this article also include the ability to create new commands during a session.
IF and THEN

This level of detail is beyond the scope of my intended simple introduction. However, you may be curious about exactly how one can define words that do what we have asserted that IF and THEN do.

Here are the simplest forms of the definitions of IF and THEN used in traditional Forth implementations:

: IF COMPILE ?BRANCH HERE 0 , ; IMMEDIATE
: THEN HERE SWAP ! ; IMMEDIATE

<table>
<thead>
<tr>
<th>: IF</th>
<th>Start definition of IF</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPILE ?BRANCH</td>
<td>Compile conditional branch instruction</td>
</tr>
<tr>
<td>HERE</td>
<td>Put current address of dictionary pointer on stack</td>
</tr>
<tr>
<td>0 ,</td>
<td>Compile a zero as a placeholder to be filled in by proper address.</td>
</tr>
<tr>
<td>;</td>
<td>End the definition</td>
</tr>
<tr>
<td>IMMEDIATE</td>
<td>Tag this as an immediate word</td>
</tr>
</tbody>
</table>
: THEN Start definition of THEN. Remember that IF left an address on the stack.

HERE We put where we are now on the stack

SWAP Put location of missing address on top of current address

! Store current address.

; End the definition

IMMEDIATE Tag this as an immediate word

In most Forth implementations additional information is put on the stack to check that conditionals are properly paired (an IF with a THEN, etc.)
Transporting Information

Here, at the very lowest level, are examples of the usefulness of the system and of the ability to program it.

I have used a modified version of the TABLE word to export the group tables (together with additional information) in a form suited for use by a Java Applet (see Groups15).

I have mentioned the use of Groups32 to print information for input into spreadsheets for sorting an analysis. This was used by Evelyn Manalo (see Honors Theses) to develop a Maple procedure for printing the cycle decomposition of an abelian group and for work on the isomorphism problem for groups of order 1-32 (i.e., to find an efficient way to classify groups of order 1-32).

Recently Groups32 was used to generate data suitable for use in Maple for a student research project on Cayley graphs (see Honors Theses). The student, Sonja Willis, wanted to use the Maple networks package to print Cayley graphs with colored arrows rather than the green lines that the package normally produces. To do this, one needs group data with the edges produced by the various generators kept separate. Some programming in Maple was needed to produce the colored arrows. The data were produced by Groups32.
Here is an example for group #8 (S_3). The information transported was produced by a word PrintMaple (see below).

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>Generators</th>
<th>Subgroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{}</td>
<td>*{ A }</td>
</tr>
<tr>
<td>1</td>
<td>{ D }</td>
<td>{ A D }</td>
</tr>
<tr>
<td>2</td>
<td>{ E }</td>
<td>{ A E }</td>
</tr>
<tr>
<td>3</td>
<td>{ F }</td>
<td>{ A F }</td>
</tr>
<tr>
<td>4</td>
<td>{ B }</td>
<td>*{ A B C }</td>
</tr>
<tr>
<td>5</td>
<td>{ B D }</td>
<td>*{ A B C D E F }</td>
</tr>
</tbody>
</table>

In this version, the generators were taken from the Subgroups command. B(1) and D(3) are generators. The Maple command generated by PrintMaple is a list consisting of the set of vertices, the number of generators, and a list of sets of edges.
8 PrintMaple
This produces the following output:
\[
\text{Cay}[8] := \left\{ \left\{ 0,1 \right\}, \left\{ 1,2 \right\}, \left\{ 2,0 \right\}, \left\{ 3,4 \right\}, \left\{ 4,5 \right\}, \left\{ 5,3 \right\} \right\} \\
, \left\{ \left\{ 0,3 \right\}, \left\{ 1,5 \right\}, \left\{ 2,4 \right\}, \left\{ 3,0 \right\}, \left\{ 4,2 \right\}, \left\{ 5,1 \right\} \right\} \\
\]

The key to understanding this is to realize that we have created a Forth word called PrintMaple that takes a group number as input and whose action is to print a Maple command. The details follow on the next three pages.
Making output strings with inserted numbers.

Here is a version taking the address and count of a string as input. When a # occurs in the string, it prints the number on top of the stack.

```
: Out$ ( addr cnt -- )
  0 ?DO
    DUP C@ DUP
    ASCII # =
    IF    DROP SWAP 0 .R
    ELSE  EMIT THEN
    1+
  LOOP  DROP ;
```

This prints a Maple continuation character and line break if the line gets too long.

```
: {?
  GETXY DROP 40 >
  IF " " CR 8 SPACES THEN ;
```

These variables are used to determine whether an item is the first one being printed.

```
VARIABLE PMFirst
VARIABLE GenFirst
```
This prints the function header and set of vertices. The first # is the number of the group and the second is Gord-1.

Generators are obtained from the Subgroups command. The last subgroup generated is G itself. Groups32 does not compute subgroups for group number 144 – so this is treated as a special case.

Print number of generators
GenFirst ON
32 0 DO I OVER MEMBER?
IF \ Output for a generator
 GenFirst @
 IF ." {" GenFirst OFF
 ELSE ." ,{" THEN

 PMFirst ON
 For-All-Elements
 DO
 PMFirst @
 IF ." [" PMFirst OFF
 ELSE ." ,[" THEN
 I J G* I S" #,#\]" Out$?
 LOOP ." }\ CR 8 SPACES
 THEN
 LOOP DROP ."]} :"
CR ;

Test if loop index is a generator.

We will print a set bracket { only before the first set of edges, otherwise we print ,{ .

For each generator we print the corresponding edges [a,ag]. We print a comma between edges.

We print the pair for an edge and a continuation character if necessary. Then close the set of edges with } .

Finally, end the structure.
Tables for Abelian Groups

The permutation package can be used to produce a group table for any abelian group. The Fundamental Theorem of Abelian Groups says that any finite abelian group is a product of cyclic groups. The permutation package allows us to create products of cyclic groups by entering disjoint cyclic permutations for generators. Thus $\mathbb{Z}_2 \times \mathbb{Z}_4$ can be realized as the subgroup of S_6 generated by $(1\ 2\ 3\ 4)$ and $(5\ 6)$. This group is produced in the permutation package by:

```
6 Size!
Gen: ( 1 2 3 4 )
Gen: ( 5 6 )
Make-Group
Show-Table
```

To generate the tables for abelian groups of orders 17-31, I automated this idea. I actually generated the tables with an earlier version of the permutation package, which used a slightly different representation for the permutations and which directly stored the groups in the internal representation. Here is a more modern adaptation that introduces an interesting useful possibility: Generate a script file, and then run the script file to produce the desired results.
Script Files

A script file is a file of commands. It could be a file of Forth/Groups32 commands (as in this case). It could also be a file of commands for some other system—we often produce script files for Maple. The easiest way to make a script file is to capture output to the screen in a file. I wrote for Groups32 a "print to file" utility for this purpose. A script file is loaded into Forth by INCLUDE <filename>. The Forth system then reads and executes commands from this file as if they were being typed at the keyboard.

First we need a Groups32 command called CycDecomp. The stack diagram is (s1 s2 ... sk n --), where s1, s2, ..., are the sizes of the component cycles, and n is the sum of the sizes. (It will determine the Sn in which they are considered to be permutations.) The output of CycDecomp will be the commands needed by the permutation package to produce the table of the associated group.

\begin{verbatim}
2 3 5 CycDecomp
5 Size!
Gen: (1 2 3)
Gen: (4 5)
Make-Group
Show-Table
\end{verbatim}

Notice that the word CycDecomp does not execute these commands—it just prints them on the screen. If the print-to-file feature is active, these commands are also captured to a file.
Win32Forth can also print the console window to a file – so, for a limited amount of output, it may be sufficient to use this feature.

The abelian groups of order n correspond to partitions of n. Thus, for example, we can partition $6 = 3 + 2 + 1$. If we use 1 2 3 6 CycDecomp, we obtain commands

```
6 Size!
Gen: ( 1 2 3 )
Gen: ( 4 5 )
Gen: ( 6 )
Make-Group
Show-Table
```

Executing these commands produces the table

```
1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
5 6 1 2 3 4
6 5 2 1 4 3
```

By inspection, this table represents an abelian group of order 6. "1" is the identity. Element "4" has order 6 – so this is the table of \mathbb{Z}_6. We must, therefore, select from all partitions of n those that produce non-isomorphic groups. Here are the commands for groups of orders 17-22:
The definition of Show-Table was changed, for the purpose, to print the tables in the format used to load tables from text files. Here is the format:

<table>
<thead>
<tr>
<th>17 17 CycDecomp</th>
<th>2 4 3 9 CycDecomp</th>
<th>29 29 CycDecomp</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 3 8 CycDecomp</td>
<td>8 3 11 CycDecomp</td>
<td>2 3 5 10 CycDecomp</td>
</tr>
<tr>
<td>2 9 11 CycDecomp</td>
<td>5 5 10 CycDecomp</td>
<td>31 31 CycDecomp</td>
</tr>
<tr>
<td>19 19 CycDecomp</td>
<td>25 25 CycDecomp</td>
<td>2 2 2 2 2 10 CycDecomp</td>
</tr>
<tr>
<td>2 2 5 9 CycDecomp</td>
<td>2 13 15 CycDecomp</td>
<td>2 2 4 10 CycDecomp</td>
</tr>
<tr>
<td>4 5 9 CycDecomp</td>
<td>3 3 3 9 CycDecomp</td>
<td>2 4 4 10 CycDecomp</td>
</tr>
<tr>
<td>3 7 10 CycDecomp</td>
<td>3 9 12 CycDecomp</td>
<td>2 2 8 12 CycDecomp</td>
</tr>
<tr>
<td>2 11 13 CycDecomp</td>
<td>27 27 CycDecomp</td>
<td>4 8 12 CycDecomp</td>
</tr>
<tr>
<td>23 23 CycDecomp</td>
<td>2 2 7 11 CycDecomp</td>
<td>2 16 18 CycDecomp</td>
</tr>
<tr>
<td>2 2 2 3 9 CycDecomp</td>
<td>4 7 11 CycDecomp</td>
<td>32 32 CycDecomp</td>
</tr>
</tbody>
</table>

| 2 2 2 3 9 CycDecomp | 4 7 11 CycDecomp | 32 32 CycDecomp |

Here is the procedure:

1. Produce a word CycDecomp to make entries in a script file containing commands for the permutation package.

2. INCLUDE the script file and produce tables for the groups in a desired format. This is saved as a second script file of Groups32 commands for loading groups.

3. INCLUDE the second script file to load the groups.
G* and Assembly Language

Here are the three definitions for G* that were used in the timing chart:

1. Groups16 (1990) where elements are represented by A, B, C,... (but BLOCK has been redefined to use memory)

 : 'ELE (ele1 ele2 -- addr)
 \ compute address of product
 ID - SWAP ID - GORD * +
 \ offset from base address
 GBLK BLOCK GOFFS +
 \ address of start of table
 + ; \ address of element

 : G* (ele1 ele2 -- ele1*ele2)
 'ELE C@ ;

2. Groups32 - elements are represented by 0, 1, 2,...

 : G* (ele1 ele2 -- product)
 MaxOrd * + \ compute offset of product
 Grp @ + \ add the base of the table
 C@ ;

3. Groups32 with all tables 32 x 32, elements represented by 0, 1, 2,..., and code written in assembly language for the Intel 80x86.

CODE G* (i j -- i*j) \ ASSUME MaxOrd=32
 SHL EBX, 5 \ Multiply j by 32
 POP EAX ADD EBX, EAX \ Add i
 MOV EAX, Grp [EDI] \ Add group offset
 ADD EBX, EAX
 SUB EAX, EAX \ byte at this address
 MOV AL, [EBX] [EDI]
 MOV EBX, EAX
 NEXT END-CODE

There are 9 words in Groups32 that are coded in assembly language.
WORD

Most Forth words take parameters from the stack and return results to the stack. The Forth word WORD reads the input stream. The object is to convert the text following it into an internal form (a counted string).

A counted string is stored in memory as a count (one byte) followed by the ASCII codes of its characters. The string ABC would be stored as

```
3 65 66 67
```

Once it is stored, the address of the count byte is passed to other words on the stack. We imagine that a string is on the stack. We say to ourselves "a string is on the stack". We tell our friends "a string is on the stack". In reality, the stack contains just the address of the count byte, but we can conceptualize as if the stack contained the string itself. This is typical of the way that we make our system appear to handle sophisticated types of data on the stack.
WORD (delim – c-addr) is an input word. It reads the text that follows it when it acts. It stores the text as a counted string _in a temporary location_ (in most Forth implementations, this is at the end of the dictionary), and it returns the address of the counted string. WORD is usually used in definitions that immediately do something with the string (process it or move it elsewhere).

WORD is the word the system uses when it interprets the input stream word by word. It could, but usually doesn't, use a temporary storage mechanism. Thus each incoming word is placed in the same temporary location. Forth gets away with this because the string is immediately processed.

If you try to see what WORD does (as a referee of this paper did) by typing a command line, you will find it is a shy little animal: Just trying to look at it chases it away. You might try

```
BL WORD ABC COUNT TYPE
```

and you will get TYPE as the response. What happens is that BL WORD does read the ABC and make it a counted string (stored at the end of the dictionary). But then the Forth interpreter uses WORD again to read the string COUNT (and stores it at the end of the dictionary). It looks this up in the dictionary and executes it. It then reads TYPE (and stores it at the end of the dictionary) and looks it up and executes it.
The ABC string was overwritten by COUNT and then by TYPE – all of which were put at the same address. The very act of trying to observe the result of BL WORD ABC destroys what you are trying to observe!

This is really not as horrible as it seems. The counted string produced by WORD is put in a temporary place known to be available – so everybody uses that place. If you really want to read the input stream yourself, you can – but you must do something with the counted string the system uses WORD to read the next command.

My suggestion, if you want to make a string package, is that you make some sort of temporary storage mechanism. I personally use the method discussed in this article. Others have used a string stack or a circular buffer. Then make an input word that uses WORD but immediately moves the string to a temporary storage location.

It is also legal to use WORD and immediately do something with it.
Virtual Memory and >GROUP

Early versions of Forth ran on machines using 16 bits for integers and addresses. This meant that one could address only $2^{16} = 65536$ memory locations. This 64k of address space included the code for the operating system and the language implementation, leaving very little space for the application code and data. Virtual memory is a scheme for treating the disk (it was floppy at the time) as if it were real memory: Data could be stored on disk and read to "real" memory when needed – and unneeded data would be paged out from "real" memory to disk. The trick was to make this process of swapping between disk and real memory as transparent as possible.

Forth was developed at a time when computers were (by present standards) very small. An entire University was served by a computer with 4 Meg of RAM. A personal computer (such as my first one) was considered rather powerful with 16k of RAM. When I expanded to 64k I was asked, seriously, what I would do with all that memory.

The operating systems of the time were too small and unsophisticated to include a virtual memory system. Forth was regarded as rather advanced because it had such a scheme.
The virtual memory scheme works like this: Imagine the disk to be organized as "blocks" of 1024 bytes. We number the blocks:

<table>
<thead>
<tr>
<th>DISK:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMORY:</td>
<td>A(n)u?</td>
<td>B(n)u?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Real memory has room for only two boxes that can store data read from disk. There are two vital pieces of information stored about these two "buffers": the number of the disk block currently in memory, and a flag (true or false) to indicate whether this information has been "updated" or changed.

If you want to use an item stored in a disk block, it must be read into one of the buffers. It can then be read and changed just as if it is in memory. If it has been changed, it should be saved to disk before the buffer is reused. All this is done by the word BLOCK.


```
BLOCK ( n – addr )

IF
  block n is already in a buffer, return its address
ELSE
  get the least recently used buffer
  if it is marked "update", write its contents to disk
  read the data from disk block n to this buffer
  mark the buffer as not updated
  return the address of the start of the buffer
```

As you can see from this, if a certain disk block contains the data for one or more groups, these data are read into a buffer – but then all computations on that group can be performed using the data in memory. It is almost as if the group data were in memory all the time. We just make all computations refer to the address (returned to us) of the start of the buffer that holds the data.

So we have stored each group table in a certain disk block (the number is GBLK). The start of the table is a certain distance or offset from the start of the block (GOFFS). The rows of the table are stored one after another, so we need to know the group order (GORD) to find a particular product. We will also need to know the number of the current group (GNUM). This vital information about all of the groups was stored in block 0.
So the scenario is this: You want to study group n. You go to block 0 (IDXBLK) where the triples GORD, GBLK, GOFFS are stored. Each of these (in the original 16-bit version) occupies 2 bytes. To find the triple for group n, you must add 6n to the address of the start of the block. So, if Base denotes the address of the start of block 0, then

GORD is at address Base + 6n,
GBLK is at address Base + 6n + 2,
GOFFS is at address Base + 6n + 4.

To get the address of the base of the group table we do GBLK BLOCK GOFFS +. GBLK BLOCK will load the disk block containing the table into memory and return the base address of the block. Adding GOFFS will give the address of the start of the table.

Once the triple GORD, GBLK, GOFFS is read from block 0, we no longer need to have block 0 in memory. When we do group computations in the current group, the data for that group are written from disk to memory and stay in position. No further disk access is necessary to compute in this group.
: >GROUP (n --) \ set GORD GBLK and GOFFS
 (n) DUP TO GNUM \ save group number
 (n) 6 *
 (6n) IDXBLK BLOCK + \ address of triple
 (addr) DUP @ TO GORD
 (addr) 2+ DUP @ TO GBLK
 (addr+2) 2+ @ TO GOFFS ;

The original data files used 16-bit integers, so the three elements of the triplet occupied 2 bytes each. When an original data file is used with a 32-bit version of Forth, the fetch operation @ must be replaced by W@ so that it gets a 16-bit rather than a 32-bit value.
Location in Table

In Groups16 the table for a group of order m was stored as m x m consecutive bytes to save memory. In Group32 all tables are stored as 32 x 32, regardless of the group order, to increase speed.

The group table for Z4, of order 4, looks like this in two dimensions:

A B C D
B C D A
C D A B
D A B C

In memory this is stored by rows:

ABCDBCDACDABDABC

If we number the rows and columns 0, 1, 2, 3, then the entry in row r and column c occurs 4r + c slots from the start of the table. Thus the first row (r=0) is at offsets 0, 1, 2, 3 from the start of the table. The next row is at 4, 5, 6, 7.

The word 'ELE (ele1 ele2 – addr) calculates the address of the product of ele1 and ele2. Remember that in Groups16 the elements are represented as ASCII characters – so we must subtract ID (the code for "A") to get r and c.
':ELE (ele1 ele2 - addr)
 ID - (ele1 c)
 SWAP ID - (c r)
 GORD * + (r*ord+c)
 GBLK BLOCK \ address of block for table
 GOFFS + \ add the offset to get
 \ base address of table
 + ; \ get address of element

: 'ELE (ele1 ele2 - addr)
 Compute row and column numbers
 compute displacement of element
 (r*ord+c)
 get base address of stored table
 get address of element ;
Definition of Eorder

Here is a more detailed discussion of the code.

:EORDER (x order)

We plan to take the original element and create its powers \(x^n \) in a loop. We will quit when we get a power that is the identity element.

ID

We put the identity on the stack as \(x^0 \). So the stack has \((x x^0) \)

GLIMITS DO (x x^n)

The loop is taken over all elements of the group. I should actually have made this GORD 0 DO – it would then have been clearer that we are looping over powers. I just didn’t think of it at the time. The \((x x^n) \) above is a comment. It is helpful to know that each time we are at the start of the loop this is what is in the stack.

OVER

If we had \((x x^n) \) in the stack, we now have \((x x^n x) \).

G*

Now we have \((x x^{[n+1]} \).

DUP ID =

Test if it is the identity, but DUP it first so that it is not removed from the stack.

IF

2DROP

This removes the \(x \) and \(x^{[n+1]} \).

I ID - 1+

Due to the way the loop limits were set up, this gives the exponent.

LEAVE

This causes an exit from the loop.

THEN

Notice that if we did not exit from the loop we now have \((x x^{[n+1]} \) in the stack, and the loop repeats with the stack as indicated by the stack diagram after DO.

LOOP ;
Number of Squares

CREATE SQ 20 ALLOT

: #SQUARES (grp# -- n) >GROUP
 SQ 20 ERASE
 GLIMITS DO
 I I G* ID - SQ + 1 SWAP C!
 LOOP
 0
 20 0 DO SQ I + C@ + LOOP ;

This code is short, but might benefit by some analysis. The point here is to run through the group computing the squares of the elements. Each time a square is computed, a record is made that this element is a square. The structure is this:

: #Squares (grp# -- n)
 >Group
 Initialize-SQ
 Mark-Squares
 Count-Marks ;

An array-like structure, SQ, is used to record the marks. There is no standard ARRAY word in Forth, but one can easily be defined (and a few are in the current Groups32). Rather than use general purpose machinery, we have used a more direct approach:
SQ will be the name for a block of 20 bytes. When the name SQ is used it will return the address of the start of this block. So this word sets all these locations to 0:

```
: Initialize-SQ   SQ 20 ERASE  ;
```

Now these memory locations are intended to be associated with group elements. Since (in the 1990 version) we represented group elements by the ASCII codes for A, B, C, ..., we must subtract ID to find the offset of a given element. x ID – SQ + will give the address in the SQ list corresponding to x. 1 <addr> C! stores the byte 1 at the given address. So now we can understand the code for marking the squares:

```
: Mark-Squares
   GLIMITS DO
      I I G* \ compute the square
      ID - SQ + \ find address of the entry
      1 SWAP C! \ store 1 in this location
   LOOP  ;
```

After running this code, the SQ array will have a 1 in any place that corresponds to a square and a 0 otherwise. We therefore need only to run through the array and tally the number of 1's.

```
: Count-Marks ( -- cnt )
   0
   20 0 DO ( total )
      SQ I + C@ \ gets the 1 or 0
      + \ add it to the total
   LOOP  ;
```
ZIP Files

You can download a ZIP file containing executables (binaries) for the two versions of the groups system discussed. In most cases the ZIP file can be downloaded just by clicking here.

In some cases it might be necessary to obtain the ZIP file using anonymous FTP. The procedure for doing this is:

1. Connect to ftp math.ucsd.edu
2. Use "anonymous" as the username
3. Use your email address as password
4. cd pub/jwavrik
5. type "binary" to ensure a binary transfer
6. type "get wavrik_executables.zip"