
The Word Problem and Relations in Rings
John Wavrik

This is a report on current research into the word problem and relations in non-
commutative rings. My interest in computational problems in ring theory predates
my interest in computers and I have done work with computers on these problems
for a long time. A major breakthrough occurred in about 1997 when I discovered an
algorithm, similar to the Gröbner Basis algorithm, which applied to polynomials in
non-commuting variables with integer coefficients. The main ideas and examples
were given in an article presented at the ISSAC conference in 1999. This is a report
on the current state of this research.

The Word Problem
This problem can be posed in several related forms. In the case of group theory it is
formulated in terms of determining a group given generators and relations.

Consider an alphabet, G, of letters we call generators. Consider a set, R, of pairs
(l,r) of words in the generators. These are called relations. We define on the set
of words in G an equivalence relation: we take the transitive closure of SlT ≈ SrT

if (l,r)∈R,. The word problem is to find an algorithm for determining whether or

not two words in G are equivalent.

Example:

Let G = { a, b, c } and R = { (ab,c), (bc,a), (ca,b) }

 Claim: ba and aaab are equivalent
 Proof: aaab bcaab bbab bbc ba≈ ≈ ≈ ≈ 1

The word problem is known to be undecidable. There can be no general algorithm
which solves the word problem for arbitrary G and R .

A related problem is the ideal membership problem in rings. Let R be a ring (not
necessarily commutative) and I an ideal. The problem is to find an algorithm for
deciding if an element f is or is not in the ideal. The ideal membership problem is
also undecidable. If R is the free algebra over the rationals generated by G and I is
the ideal generated by { l-r | (l,r) ∈ R } then w1 ≈ w2 ⇔ w1�w2 ∈ I. Thus a solution
to the ideal membership problem would give a solution to the word problem for
groups.

Saying that the ideal membership problem is undecidable does not preclude the
possibility of an algorithm that allows one to decide membership in a particular ideal
I of a particular ring R. Nor does it preclude the possibility of an algorithm that works
for an entire class of rings; or that works for some ideals but not others.

1 I have underlined what is replaced from one stage to the next. The subword to be replaced can either
occur on the right or the left of one of the relations.

Buchberger (1965) presented an algorithm which works for any ideal in R =
k[x1,�,xn] (polynomials in commuting variables over a computable field, e.g. –).
This is regarded as a major breakthrough in computational algebraic geometry.

Mora (1986) presented an algorithm for R = k<x1,�,xn> (polynomials in non-
commuting variables over a computable field). Mora�s algorithm solves the ideal
membership problem for certain ideals.

Gröbner Basis Algorithms
Both Buchberger and Mora�s algorithms are based on a generalization of the
Euclidean division algorithm to several variables. The division algorithm allows us,
given polynomials f, g, to write f = gq + r where r=0 or has smaller degree than g.
In the case of one variable this provides an algorithm for ideal membership: f is in
the ideal generated by g if and only if r=0.

For 1 variable we have the natural ordering 1 < x < x2 < � Every polynomial can be
written with its terms in descending order. There is a leading term which determines
the degree. An analysis of the division algorithm shows that we use the leading term
of g to �kill off� the terms of f of higher degree.

For several variables there are many choices for term ordering. The results of the
algorithms depend on the choice of term ordering. Both Buchberger and Mora�s
algorithms assume that we have a finitely generated ideal.2 If I = <g1,..,gs> the
generalized division algorithm allows us to write any polynomial f in the form
f = g + r where g is in I and where no term of r is divisible by any of the leading
terms of the gi.

The division process is a genuine computational algorithm. In both the commutative
and non-commutative case there is an efficient way to compute g and r. However,
in distinction from the 1-variable case, r=0 does not usually give a test for ideal
membership. Certainly if r=0 we can conclude that f is in the ideal. But we cannot
include the converse.

Example: g1 = x2 � y; g2 = xy � x

 f = y2 � y = (1-y)*g1 + x*g2
 f is in the ideal but r = f (not zero) in the division process.

The division process is not well behaved. It cannot be used directly to test for ideal
membership.

The remarkable discovery of Buchberger is an algorithm which replaces a given basis
for an ideal by a new basis (he called a Gröbner Basis in honor of this thesis
advisor). A Gröbner basis for an ideal has the property that f ∈ I ⇔ r=0. Thus
Buchberger not only showed that every ideal has a basis for which the ideal
membership problem can be solved computationally, he also gave an algorithm
which can be used to compute such a basis.

As a consequence of Buchberger�s algorithm, the word problem can be solved for
commutative semigroups.

2 In the work I have done, ideals are two-sided.

The process of computing a Gröbner basis can be explained in several ways. The
most popular way involves certain syzygies on the current basis elements. If f and g
are polynomials we write (using multi-index notation):

 f = axα + lower terms
 g = bxβ

 + lower terms

 Spol(f,g) = (f/a)xγ-α - (g/b)xγ-β where γ = lcm(α,β)

In the non-commutative case the situation is more complicated since the monomials
are words and cannot be expressed as xα

, and the concept of least common multiple
cannot be generalized to pairs of words. For any pair of polynomials there can be
more than one S-polynomial or there can be none. We can find common multiples of
the leading terms which play the role of xγ.

Example: yxy and xyx are both common multiples of yx and xy. If
 f = xy � ax and g = yx � by we get two S-polynomials
 s1 = fx � xg = xby � axx and s2 = yf � gy = yax - byy.

Teo Mora has shown that it is only necessary to consider S-polynomials resulting
from "matches" (or non-trivial overlaps). Two monomials M1 and M2 have an
overlap if there are monomials L,R, and U so that M1=LU and M2=UR or if M1 = UR
and M2 = LU. The common multiple (taking the place of LCM(M1,M2)) is M = LUR.

Example: M1 = yxx and M2 = xxy have three overlaps. The resulting
common multiples are yxxy, yxxxy, xxyxx where the U is
underlined in each case. If f = yxx + lower terms,
g = xxy + lower terms then we obtain 3 S-polynomials for f and
g: (1) fy � yg, (2) fxy � yxg, (3) xxf � gxx

In any case, the S-polynomial �kills� the leading terms of f and g. Both Buchberger
and Mora show that a basis G is a Gröbner basis if and only if Spol(f,g)→0 ∀ f,g∈G
where f→r (f reduces to r) means that r is the remainder of f upon division by G.

The basis algorithm starts with a basis G=[g1,..,gs]. If Spol(gi,gj)→h ≠ 0 then h is
added to the basis. [There are some technical details]. The process is repeated until
we obtain a basis satisfying the condition above.

In the commutative case, Buchberger shows that the process always terminates (and
produces a Gröbner basis). In the non-commutative case, Mora notes that the
process does not always terminate � but, when it does, it produces a Gröbner basis.

Because of the word problem there must be, in the non-commutative case, ideals
which do not have a Gröbner basis.

Integer Coefficients
My paper develops an algorithm for non-commutative polynomials with integer
coefficients. Both Buchberger�s and Mora�s algorithms use, quite heavily, the fact
that coefficients are in a field. The problem is visible even from the start: in the
division algorithm. Remember that the division algorithm, the key ingredient, has the
1-variable Euclidean division algorithm as a special case.

Example: If f = 3xx + 2x + 1 and g = 2x + 1 we can divide f by g

to get a quotient
3 1
2 4

q x = +
 

 and a remainder
3
4

=r

Our ability to �kill� the x2 term requires division in the coefficient domain. What
should be the quotient and remainder if we stay within the integers?

The solution I use involves extending the term ordering to use an ordering on the
coefficients as well as the ordering on the monomials. We place a total ordering on
the integers:
 0 < -1 < 1 < -2 < 2 < �.

used by Buchberger in the commutative case [Buch3]. We choose an ordering on the
monomials (words) and we then order terms by:

 aS < bT if S < T (in the ordering of words)
 or S = T and a < b (in the ordering of integers)

We cannot hope to �kill� terms in the division process � but only to replace them by
terms of lower order.

Example: If f = 3xx + 2x + 1 and g = 2x + 1 we can divide f by g
over the integers to get a quotient q = 2x and a remainder r =
-xx + 1.

This generalizes to a multi-variable division of a polynomial f by a list G=[g1,..,gs].
Whenever a monomial in f is divisible by the monomial part of the leading term of a
gi, we subtract a suitable multiple of gi to reduce the order of the term in f. The
result is f = g + r where g is in the ideal <g1,..,gs> and where none of the terms of r
can be reduced further by the leading term of any gi.

This generalized form of the division algorithm can be used to produce a generalized
basis algorithm. In my implementation I used an alternative to S-Polynomials called
�critical pairs�. The idea is that a Gröbner basis can also be characterized by the
property that the remainder upon reduction is unique.

The reduction process (even for coefficients in a field) depends upon choices. The
reduction of f by G=[g1,..,gs] can depend on the order in which we used the gi and
the position within a term in f where the leading term of gi is matched to a substring.

Example: Let G = {g1,g2} with g1 = xxx � x and
g2 = yxx + xyx + xxy. We can reduce f = yxxx first by g1 to
obtain a remainder yx or we can reduce first by g2 and (after
several steps) obtain the remainder xy.

This observation is the key to the method for producing new basis elements (and
hence is at the heart of the basis algorithm).

If a monomial M is a common multiple of the leading terms of g1 and g2, we can
always reduce M in two ways: first we divide by g1 (and then continue the division
process to obtain a remainder P1) or we first divide by g2 (and then continue the
division process to obtain a remainder P2). We obtain a diagram

M

 g1 g2

 h1 h2

 P1 P2

Notice that P = P1 - P2 will always be in the ideal generated by the current basis G.
If G is a Gröbner basis they will always be equal. If P ≠ 0 then it is appended to G.
[There are some technical points about when it is appended and which basis is used
for reduction.]

An issue is how to chose M. In the commutative case (coefficients in a field), M is
chosen to be lcm(LT(gi),LT(gj)) where LT(f) is the leading term of f. In the non-
commutative case (coefficients in a field) M is chosen to be a common multiple of
LT(gi) and LT(gj) obtained from �matches� (see the discussion of Mora�s algorithm
above). We obtain a pair for each match.

We have found that, in the integer case, we should take M = cW (c the integer
coefficient, W a monomial). W is chosen to be a common multiple of LM(gi) and
LM(gj) where LM(f) is the leading monomial of f. The coefficient c must be chosen to
be the smallest (in the integer ordering) so that division by LC(gi) and LC(gj) give
non-trivial quotients (i.e. division gives a genuinely smaller remainder in both cases).

It is not clear, at the moment, whether or not we must allow even more possibilities
for M. In some examples I have found that it is necessary to allow trivial matchs
(where W is the product of LM(gi) and LM(gj)). This situation does not occur in the
Mora algorithm (where coefficients are in a field).

Example: Let G = {g1,g2} with g1 = 2x-a and g2 = 2y-b
 We know that f = xb � ay is in the ideal: f = g1y � xg2
 However, if we do not allow trivial overlaps, the basis

algorithm gives G � and f does not reduce to 0.

If we allow trivial overlaps we get the basis {2x-a, 2y-b,
xa+ax-aa, xb+ay-ab, ya+bx-ba, yb+by-bb} f does reduce to 0
with respect to this basis.

When viewed in terms of rewrite rules (see [Wav]) the condition that any M provides
the same P1 and P2 is equivalent to the Gröbner condition on the basis. The issue,
however, is that we are not using all possible M. Thus something remains to be
proved if we wish to claim that we get a Gröbner basis in the case of termination. As
in the case of coefficients in a field (Mora�s Algorithm) the process may fail to
terminate:

Example: Let G = {g1,g2} with g1 = xy-ax and g2 = yx-by
The algorithm produces two infinite sequences (alternating).
One is �xbky + axk+1 the other is �yakx + byk+1 .

Relations in Rings
Let R be a ring. R has an addition and multiplication satisfying the usual algebraic
laws � but we do not assume that multiplication is commutative and we do not
assume that R has a 1.

Example: A ring which often appears as a counterexample in the later
work is the ring T of all strictly upper triangular 3 x 3 matrices:

















000
00

0
c
ba

Notice that  

0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

a b d e af
c f

    
    =  
    
    







Multiplication in T is not commutative, there is no 1, and if
x,y,z are in T then xyz = 0. In particular x3 = 0 for all x.

A polynomial identity on R is a polynomial f ∈ Ÿ<x1,..,xk> so that f(a1,..ak)=0
∀ a1,..ak ∈ R

Examples:
� xy � yx is a polynomial identity in any commutative ring.
� xyz is a polynomial identity in the ring T.

We imagine R to be a given ring and we look at those polynomial identities on R
which lie in Ÿ<x1,..,xk>. These are closed under (1) addition; (2) multiplication by
arbitrary polynomials; (3) substitution of polynomials for the variables in an identity.
We call a polynomial a consequence of a given set of identities if it can be obtained
from the set by a finite sequence of these operations.

The problem is to determine (computationally) if a
polynomial identity is a consequence of a given set of
identities.

Notice that if we ignore the operation of substitution for the variables, this is
essentially the ideal membership problem. We expect this problem to be
undecidable because the ideal membership problem is undecidable.

It is essential that we work over Ÿ rather than –. To say that 2xy � 2yx is an identity
on a ring is not the same as to say xy � yx is an identity. This justifies the
development of algorithms for polynomials with integer coefficients.

Examples: Here are some consequences of x2 - x

(1) xx - x
(2) yy - y
(3) yy + yx + xy + xx - y - x
(4) 4xx - 2x
(5) yx + xy + xx - x
(6) yx + xy
(7) 4xx - 4x
(8) 2x
(9) -2xy
(10) yx � xy

Notice that yx � xy is a consequence of x2 � x so we have a
computational proof of the fact that a ring satisfying x2 � x is abelian.

A commutativity theorem asserts that, under some hypotheses on a ring R, R must
be commutative. There are a number of theorems of this type in the literature. They
provide a good testing ground for algorithms intended to deal with relations on rings.
The hypotheses are usually that R satisfies a certain polynomial identity � and
perhaps also some additional conditions (e.g. R has a 1, R has no non-zero nilpotent
elements). Here are some examples (the hypotheses are given, the conclusion is R is
commutative).

Theorem 1: a2 = a
Theorem 2: R is a ring with 1 for which (ab)2 = a2b2
Theorem 3: R is a ring with no nilpotents for which (ab)2 = a2b2
Theorem 4: R has 1, 2x = 0 implies x=0. (ab)2 = (ba)2
Theorem 5: R no nilpotents and (ab)2 = (ba)2
Theorem 6: a3 = a
Theorem 7: a4 = a
Theorem 8: Let R be a ring which (a2 - a) is in the center
Theorem 9: Let R be a ring which (a3 � a) is in the center

Some of these theorems are special cases of more general theorems. A Theorem of
Jacobson asserts that if R is a ring so that ∀ a ∈ R ∃ integer n(a)>1 with an(a)=a,
then R is commutative. The proof of this theorem given in the literature uses the
structure theory for non-commutative rings. It is not a constructive proof, to say
nothing of computational.

We have discussed how we have extended the Buchberger and Mora algorithms to
non-commuting variables and integer coefficients. As noted, we do not yet have a
proof of exactly what conditions guarantee that we obtain a Gröbner basis � so we
will provisionally call the bases produced R-bases (for reduction bases). If G is an R-
basis and f → 0 (reduction by G) then we can assert f ∈ <G>. This is how we use the
R-bases in proofs of the commutativity theorems.

Starting Relations
The process we use to prove these theorems is to generate an R-basis from an initial
set of relations and use it to test ideal membership (some modification is needed if
there are side conditions). The initial relations are obtained by making substitution
of variables in the hypothesis relations. The process of choosing suitable starting
relations has not (yet) been automated. It is a very critical step both in the success

of a proof and in performance. At the moment there seems to be no obvious way to
do this automatically.

Extended Example
We examine the proof that commutativity is a consequence of x3 �x.
This is one of the simpler theorems for machine proof. It is of
moderate difficulty for proof by hand.

The simplest starting point is to make substitutions y and (x+y) for x.
This gives consequences: xxx � x, yyy-y, - yyx - yxy - yxx - xyy -
xyx � xxy, - yxyxx + xyxyx - xxyxy - xxyxx + yxy + xyx
 xy � yx is not in the ideal.

If we add a substitution of x-y for x to those above, we get
consequences:
xxx � x, yyy-y, - yyx - yxy - yxx - xyy - xyx � xxy, - 6xy,
2yx - 2xy, - yxyxx - xyxyx - xxyxy - xxyxx - yxy - 2xyy - xyx + 2xxy
This is interesting because we obtain some simpler consequences and
one that looks close to the goal.

If we add xx + x and yy + y then we obtain 10 consequences including
those above and 3xx + x, 3yy + y which seem simple and interesting.

If we make the previous substitutions and also replace x by xy and by
yx then we get a list of 6 consequences: xxx � x, yyy � y, 3xx + 3x,
3yy + 3y, -6xy, and (at last) xy � yx. On a 450 Mhz computer the
proof took .6 seconds. There were 115 critical pairs generated, but
110 of these reduced to 0. A total of 536 reduction steps were
performed.

I should mention that an even quicker proof (.3 sec) can be produced
with a less obvious choice of starting relations. Substitute for x the
following: y, xy, yx, xxyx - yx, yyxy � xy, xyxx � xy, and yxyy � yx.
We obtain the consequences xxx-x, yyy-y, and xy-yx.

Tracing
It is possible to trace an automated proof to see how new relations
arise. In all but simple cases, however, the automated proof is too
complicated to produce a simple �hand� proof. X3 � x is simple
enough.

The starting relations we will use are a3 � a for a = x, y, xy, yx, xxyx -
yx, yyxy - xy, xyxx - xy, yxyy � yx. The first step in the automated
proof is �interreduction�: we reduce each by all the others. The last
four polynomials reduce to themselves.

 F[4] - xxy F[0] yxxxyx + y F[0] yxxxyx + xxy F[0] yxyx -
 y F[0] yxyx = - F[4]

Where F[0]=x3 � x, F[4]=(xxyx � yx)3-(xxyx � yx). (We are saying
that F[4] → -F[4] but have explicitly listed the steps in the reduction).
The next step in the automated proof involves taking pairs of existing
basis elements and forming appropriate common multiples of the

leading terms. We use the common multiple -1 xxyxx for �xyxx + xy
and �xxyx + yx. This gives a new basis element yxx-xxy. This new
relation is interesting. We have shown that in a ring with x3=x,
squares of elements are in the center.

The desired relation yx-xy comes from use of common multiple
-yxyyxx for yxx-xxy and �yxyy+yx.

There were 134 critical pairs generated in this proof and 189 reduction
steps. The above proof extracts just 2 of the critical pairs. We have
also suppressed a list of the reduction steps needed. A complete
�hand� proof would have to include these details.

Let me emphasize again that one does not normally trace an
automated proof to extract a �hand� proof. The proof for x4-x, for
example, generates 2014 critical pairs and uses 47096 reductions. It
takes only 2 minutes and would be considered of moderate difficulty
for automated proofs.

Observations
A special case of the x3-x theorem is used as a test case for the well known Otter
automated theorem proving program produced by Argonne National Laboratories.
Otter produces an automated proof that x3-x implies 3xy+3yx = 0. This result takes
about .5 sec to produce. Otter ran out of memory when an effort was made to prove
xy-yx. Otter is a general and extensive proving program designed for �first order
logic with equality�. It is really not designed for theorem proving in algebra (although
the special case of the x3-x theorem is supplied with it an example. Our algorithm is
designed for a specific area in algebra. It is interesting to note that it is competitive
with other automated theorem proving programs and, in fact, performs well on this
class of problems.

Side Conditions
Some of the classical commutativity theorems make use of side conditions in
addition to the assumed polynomial identities. Here are some examples showing how
such conditions can be handled.

1 ∈ R

Theorem 2: If R is a ring with 1 for which (ab)2 = a2b2 then R is commutative.

This is one of the very simplest of commutativity theorems. It can be
done by hand. The approach is to use 1 when making substitutions for
the starting identities. Let F(a,b) = (ab)2 � a2b2. The starting relations
are F(x,y), F(x+1,y), F(x,y+1), and F(x+1,y+1). In this case no
critical pairs need to be generated at all. The relation xy-yx is a result
of interreducing the starting basis.

R has no nilpotents

Theorem 3: If R is a ring with no nilpotents for which (ab)2 = a2b2 then
R is commutative

Notice that the identity is the same as for the previous example. The
side condition is different. We again Let F(a,b) = (ab)2 � a2b2. We use
the initial relations F(x,y), F(y+x,x), F(y+x,y), F(x,y+x), F(y,y+x).

In this case the first interreduction gives xyxy-xxyy, yyxx-yxyx,
yyxy-yxyy, xyxx-xxyx. The basis algorithm examines 16 critical pairs,
but all reduce to zero � thus these 4 polynomials are the R-basis.
Notice that xy-yx is not in the basis, nor does it reduce to zero. In fact
the ring T of strictly upper triangular 3 x 3 matrices does satisfy the
identity (ab)2 � a2b2 but is not commutative.

We can see, however, that (xy-yx)3 → 0 so that (xy-yx)3 = 0
∀ x,y ∈ R. If R has no nilpotents then xy-yx is an identity.

Strategies for Initial Bases

1. Kitchen sink
It should not be assumed that one will achieve good results by adding every initial
substitution that comes to mind. One can understand, on the basis of the summary
we have just given, that a long list of initial relations can add considerably to the
processing time. Each pair of basis elements must be examined and the results
added to the list � whether or not they provide relations that actually are useful to
the goal.

2. Adding one at a time
It is usually not helpful to add relations one at a time. In some cases the basis
generated by a subset of relations is either infinite or time consuming to compute. It
can take far more time to find a basis for a subset of relations than to find a basis for
the entire set. This occurs because, in these cases, there are relations missing which
would play an important role in simplifying the expressions that arise.

Example:
In Theorem 3, discussed above, We let F(a,b) = (ab)2 � a2b2. The
relations F(x,y) and F(y+x,y) are the first two polynomials used in a
starting basis. These two polynomials taken alone generate an infinite
basis. The critical pairs produce polynomials that would be reduced if
we had added the other relations.

The choice of starting basis (or starting substitutions) is critical both in obtaining a
result and in the performance of the algorithm. The fact that the starting basis is
obtained by making substitutions for the variables in a given relation means that any
element in the R-basis is a consequence of the given relation. Any polynomial, f,
which reduces to zero using the R-basis is in the ideal generated by the R-basis,
therefore a consequence of the given relation. If the process fails, however, it might
be that the substitutions we tried are insufficient.

Example:

I cannot locate the file used for an early successful attempt for x4-x. It
took over 24 hours of computation to produce an R-basis. Eventually
we used (see [ISSAC]) the following basis: First we took 2x, 2y, y3x-
xy3, yx3-x3y (these were shown to be consequences of x4-x as by an
independent lemma). Then we added the polynomials obtained by
substituting for a in a4-a: x, y, y+x, yx+x. xy+y, yx+y, xy+x, xy, yx,
xy-yx. This produces an R-basis in 129 seconds which contains xy-yx
(actually �yx-xy). There were 1870 critical pairs generated, 1846
reduced to zero. 44185 reduction steps were needed. When proper
subsets of this basis are used, the algorithm does not appear to
terminate. [In general it is difficult to prove that the algorithm will not
terminate. The situation which occurs in the example of infinite bases
above (an infinite sequence can be shown to occur) is rare. In most
cases the algorithm just runs for a long time and is manually aborted.]

Since x = x4 = (-x)4 = -x in this ring, we could use Mora�s algorithm
over the field Ÿ2. It as been proved that the Mora algorithm (over a
field) does produce a Gröbner basis when it terminates. Here we
obtain a Gröbner basis in 29 seconds. 792 critical pairs are tested and
759 reduce to zero. 14617 reductions steps were needed. In this test
and those with subsets of the initial basis, the R-basis obtained by our
algorithm and the basis obtained by Mora�s algorithm over the field Ÿ2
are the same � giving support to our suspicion that an R-basis is in
fact a Gröbner basis.

A yet faster method uses a collection of relations known to be true of
xn-x for any n. Among them is xn-1y � yxn-1 which can be proved
computationally. We then applied an operation which substitutes xy for
y in every element of the current basis. It reduces the result and
appends it to the basis if not zero. Finally we added (x+y)4-(x+y) A
basis containing xy-yx is obtained in 1.4 seconds.

Behavior of the Algorithm

Even the commutative algorithm (the Buchberger algorithm) is known to be badly
behaved in some cases. Algorithms of this sort, in which new elements are added to
a basis based on a complex system state, are very difficult to analyze. Cox, Little and
O�Shea [IVA] give the following example: A Gröbner basis for

 g1 = x5+y4+z3-1 , g2 = x3+y2+z2-1

Can be readily computed using either pure lexicographic order (called plex in Maple)
or graded reverse lexicographic order (called tdeg in Maple). If, however, a single
exponent is changed:

g1 = x5+y4+z3-1 , g2 = x3+y3+z2-1

The basis computed using plex has a basis element of total degree 25 with 282
terms and a largest coefficient of 167383594. I should note that I was unable to
compute the basis using the algorithm in Maple � but it can be computed using
either a larger computer or a more sophisticated implementation of the Buchberger

algorithm (I was able to compute it using Singular). The Buchberger algorithm has
proven to be useful � but it is known that it can exhibit very bad behavior.
A problem of many algorithms in computer algebra is �intermediate expression
swell�. This is the name given for a situation in which the input and output are small
or moderate in size, but data in the middle of the algorithm is very large. In the case
of integer computations, an algorithm which starts with small integers and gives a
result with small integers may require very large multi-precision computation.

Many examples of this situation have arisen in the R-basis algorithm we have
discussed. The example mentioned above for x4-x has

Starting relations Ending basis
2x
2y
y3x-xy3
yx3-x3y
F(x)
F(y)
F(y+x)

F(yx+x)
F(xy+y)
F(yx+y)
F(xy+x)
F(xy)
F(yx)
F(xy-yx)

+ 2x
+ 2y
- yyyy - y
- yx - xy
- xxxx - x

This is a relatively short computation. In the midst of the computation the basis
grows to 29 polynomials. Many of them have 20-30 terms. The largest intermediate
polynomial which occurs has 50 terms and a total degree 8. This is by no means the
worst behavior I have seen in this work. In some cases the algorithm makes use of
consequences of the hypothesis relation which have several hundred terms.

Design Considerations

When to add a new element
Here is pseudo-code for the basic algorithm as it was when [ISSAC] was written (it
has since been modified). For terminology and previous procedures see [ISSAC].

Procedure 2: R-Basis Algorithm (see [ISSAC])
Input: A finite set, G, of polynomials
Output: (If the algorithm terminates)
 an R-Basis for the ideal generated by G.
H := G
WHILE not Empty(H) DO

B := { (f1,f2,l1,r1,l2,r2) | f1∈ G, f2 ∈ H;
(l1,r1,l2,r2) a match for (LM(f1),LM(f2)) }

H := ∅
WHILE not Empty(B) DO

select m ∈B; B := B - {m}
(p1,p2) := CritPair(m)
p1 := NForm(p1,G∪H); p2 := NForm(p2, G∪H)
f := p1 - p2
IF f ≠ 0 THEN H := H∪{f}

G := G∪H
G := Interreduce(G)

We have discussed the way in which potential new basis elements are obtained using
pairs of elements of the existing basis. This algorithm is designed so that all pairs to
be processed (together with information needed to process them) are stored in a list
B. Pairs are selected from this list and processed. If a new (non-zero) element, f in
the pseudo code above, is obtained notice that it is not immediately added to the
basis G. It is stored in H, and G∪H is used in reductions. So the new element is used
for reductions, but not for forming new pairs until all pending pairs (in the B list) are
processed. Notice that after the B list is exhausted we do adjoin G to H. The new
pairs, however, combine elements of the new G only with elements of H (since
pairings between elements of the old G have already been processed).

Example:
We have mentioned that an infinite basis is obtained using g1=xy-ax
and g2=yx-by. There are two common multiples of the leading terms
which produce new basis elements - yax + byy and - xby + axx
respectively. If the first were to be added to the basis immediately
then it would pair with g1 to produce - yaax + byyy, and so on. The
result is that only the family �yakx + byk+1 is produced and not any
member of the family �xbky + axk+1 .

Interreduction
It is common to want a reduced Gröbner basis. Reduced Gröbner bases are unique,
usually shorter, and have smaller elements. Some implementers of Buchberger�s
algorithm make interreduction an option. It is often a separate command.

In the implementation used in the ISSAC99 paper, a basis was generated first and
the algorithm concludes with interreduction. Each time a potential new basis
element is produced (from critical pairs) it is reduced by all existing basis elements.
However existing basis elements are not (in the algorithm above) reduced by the
new basis element. This has the effect of tacking new basis elements on the end of
the list, but making no attempt to reduce the size of the list at this stage.

Example:
For x3-x we try the starting basis F(x), F(y), F(x+y), F(x-y), F(x+xx),
F(y+yy) with F(a)=a3-a. Using the algorithm above, without the
interreduction step, we get
GB[0] = 1 xxx -1 x
GB[1] = 1 yyy -1 y
GB[2] = 1 yyx 1 yxy -1 yxx 1 xyy -1 xyx -1 xxy
GB[3] = 1 yxx -2 xyx 1 xxy 3 yx 3 xy
GB[4] = 3 xx 3 x
GB[5] = 3 yy 3 y
GB[6] = 3 yxy -9 xyx 6 yx 6 xy
GB[7] = -18 xyx 8 yx 10 xy
GB[8] = 6 xyx -6 yx -6 xy
GB[9] = -4 yx 4 xy
GB[10] = 1 xxyx 1 xyx -1 xxy -1 xy
GB[11] = -2 yx 44 xy
GB[12] = 1 xyxyx 1 yxyx 1 xyxy 1 xxyy -1 xyy -1 xyx
 1 xxy -45 xy
GB[13] = -1 yxyx 1 xxyy -1 yxy 1 xyy -108 xy
GB[14] = 1 yxy -1 xyy 1 xyx -1 xxy 138 xy
GB[15] = -18 xy

GB[16] = 12 xy
GB[17] = 6 xy

If there is no interreduction, new basis elements are tacked on to the
end of the list. Notice that there are some elements which occur later
in the list which would simplify (or eliminate) earlier elements.

Now we apply interreduction: every polynomial is repeatedly reduced
by the others. This gives
GB[0] = 1 xxx -1 x
GB[1] = 1 yyy -1 y
GB[2] = -1 yyx 1 xyy -1 yx 1 xy
GB[3] = -1 yxx 1 xxy -1 yx 1 xy
GB[4] = 3 xx 3 x
GB[5] = 3 yy 3 y
GB[6] = 0
GB[7] = 0
GB[8] = 0
GB[9] = 0
GB[10] = -1 xxyx -1 xyx 1 xxy 1 xy
GB[11] = -2 yx 2 xy
GB[12] = 0
GB[13] = 0
GB[14] = -1 yxy 1 xyy -1 xyx 1 xxy
GB[15] = 0
GB[16] = 0
GB[17] = 6 xy

I have used here a form of interreduction which does not remove the
basis elements which have been reduced to zero. The numbering,
therefore, corresponds to the numbering of the original basis. In
practice, however, we do remove polynomials which become zero and
renumber the rest:
GB[0] = 1 xxx -1 x
GB[1] = 1 yyy -1 y
GB[2] = -1 yyx 1 xyy -1 yx 1 xy
GB[3] = -1 yxx 1 xxy -1 yx 1 xy
GB[4] = 3 xx 3 x
GB[5] = 3 yy 3 y
GB[6] = 6 xy
GB[7] = -1 yxy 1 xyy -1 xyx 1 xxy
GB[8] = -2 yx 2 xy
GB[9] = -1 xxyx -1 xyx 1 xxy 1 xy

Discerning good starting relations
The R-basis in this case does not prove x3-x. The xy-yx is not in the
ideal generated by the starting relations. However, this is instructive.
It suggests what needs to be (or could be) added to prove the
theorem. If we know that squares are in the center, either GB[2] or
GB[3] would reduce to xy-yx. We do have a computational proof that
squares are in the center, so we can enlarge the original starting basis
to obtain one which proves the x3-x theorem.

Interreduction clearly has the effect of simplifying a basis. Rather than wait until the
end, it is possible to revise the algorithm so that interreduction occurs after each
new basis element is added. Notice that interreduction potentially changes all the
existing basis elements (and possibly the numbering). Thus this has three
disadvantages: (1) the algorithm becomes much harder to trace (say for the purpose
of extracting a �hand� proof); (2) the optimization used with the B-list (where one
only examines pairs consisting of an existing element with a new element) will not
work; (3) we miss seeing some interesting consequences of the starting relations.

The idea of trying interreduction after each new basis element arose when some
examples produced unreduced bases which suffer from severe intermediate
expression swell: polynomials with hundreds of terms having enormous integer
coefficients. A modified form of the algorithm, with the following pseudo code, was
developed.

Procedure 2: R-Basis Algorithm (modified version)
Input: A finite set, G, of polynomials
Output: (If the algorithm terminates)
 an R-Basis for the ideal generated by G.
Newpoly := true
WHILE Newpoly DO
 Newpoly := false
 G := Interreduce(G)

WHILE not Newpoly DO
B := { (f1,f2,M) | f1, f2 ∈ G; M a distinguished
 common multiple for (LM(f1),LM(f2)) }
WHILE not Empty(B) and not Newpoly DO

select m ∈ B; B := B - {m}
(p1,p2) := CritPair(m)
p1 := NForm(p1,G); p2 := NForm(p2, G)
f := p1 - p2
IF f ≠ 0 THEN G := G∪{f};

 Newpoly := true

In this version a Boolean variable Newpoly is set if a new basis element is added.
The inner loops are skipped when this happens and the procedure is restarted. Since
the procedure is restarted when a new basis element is added, the mechanism
involving H is no longer needed. As it is now written, the inner loops exit before
processing pending matches in B. When the basis is infinite, as in the work I did
with linear systems [HWS], it is necessary for correct results to process all pending
matches before adding new elements to the basis. If the basis is finite, short-
circuiting the processing of pending matchs should not affect the outcome (it has a
dramatic effect on time).

 The inner loops exit when a new basis element is found. The procedure as a whole
exits when a sweep through the inner loops does not produce any new polynomials.

Optimization
Interreduction seems, on the face of it, an expensive operation. Every element of the
current basis has to be reduced by the others. The reduction process is an
expensive operation. Some implementations of the Buchberger algorithm in the
commutative case (like Singular [Sing]) return an unreduced basis. The authors
presumably regard interreduction as a step which would slow down the algorithm.

However, the cost of interreduction is often balanced by the fact that the basis is
smaller both in the number of elements and the size of individual basis elements.
For our work, interreduction after each basis element has been a major optimization.

Example:
For the theorem that if x3-x is central then R is commutative we start
with a large set of relations. Let F(a,b) = (a3-a)b � b(a3-a). The
starting basis has 21 elements starting with F(x,y), F(y,x), �
The older version of the algorithm yields an (unreduced) basis of 85
elements. It is estimated that the proof, if allowed to complete, would
take about 100 hours. The newer version (with interreduction)
produces a basis with 9 elements in 11 seconds. [Actually the proof is
not complete at this point. We further reduce F(x2-y2,x) - F(x2-y2,y)
which, in 123 reduction steps, reduces to xy-yx.]

An important part of the project is developing ways to study
algorithms. The drastic difference in execution speed has been traced
to the final step in which we check all pairs of basis elements to find if
there are any new critical pairs which fail to reduce to zero (hence
produce new basis elements). If the basis has 9 fairly simple elements
this process is quick. If the basis has 85 fairly large polynomials, the
process is quite time consuming. In fact the 85 basis elements are
produced reasonably quickly (about 2 mins). They reduce to the same
basis of 9 elements obtained by the new version.

A very effective optimization in the commutative case is due to Buchberger [Buch2].
Since reduction to an irreducible form is a very expensive process, Buchberger
provides a criterion on two polynomials f,g which predicts (in some cases) that
Spol(f,g) will reduce to zero without actually reducing it. Experiments show that the
criterion eliminates a high percentage of unnecessary reductions and produces a
significant gain in execution speed.

 Example:
In a simple test of the Buchberger (commutative) algorithm there
were 22 S-polynomials generated. Of these 6 failed the Buchberger
criterion (the criterion predicted that they would reduce to zero). Of
the 16 that did pass the Buchberger criterion, 6 did yield new basis
elements and 10 did not (the S-poly reduced to zero). The criterion
successfully screened out 6 but did not catch 10. With the Buchberger
criterion the algorithm took 5.9 seconds. Without the Buchberger
criterion it took 9.5 seconds.

In the non-commutative case the Buchberger criterion does not apply. An analogous
criterion was proposed in a paper I refereed, but it was found not to apply very
often. At the moment there is no efficient way to detect unnecessary reduction even
in the case of a field (Mora algorithm).

There are some �rules of thumb� for a modest increase in speed given by Buchberger
in the commutative case. These have to do with the order in which basis elements
are used to test for divisibility and the order in which elements should be extracted
from the B-list. I have experimented with some traditional ways to speed up the
Grobner algorithm. In the literature for the commutative case it is said that the
polynomials in the basis should be ordered so that the division algorithm tests for

divisors starting with polynomials with the smallest leading terms. In my algorithm I
use the reverse � trying division first by basis elements which have the highest
leading term. I have tested both ways. They seem close in execution speed. My
choice seems marginally faster on the average.

The other optimization is that one should order the S-polynomials in the list of those
waiting to be tested (in Buchberger�s B-list) so that (in the commutative case) the
pair with the smallest LCM is used first. I too use a B-list so that we do not introduce
pairs with a newly generated polynomial before waiting pairs are processed. In this
case my results confirm that you should start by processing pairs with the smallest
common multiple of leading terms.

In the example given above (the case in which x3-x is central) the 85 elements in the
unreduced basis were generated fairly quickly. This is true in this case because new
basis elements were produced fairly quickly (not too many pairs had to be tried).
One way to optimize would be to provide some heuristics for pairs most likely to
yield a new basis element and to order the basis so that these pairs are selected
first. I have done some analyses of the details of the algorithm to see if certain
basis elements are used more often than others in yielding new elements.

Other Applications
We have discussed the usefulness of the algorithm to study relations in rings. There
are other potential applications.

Finitely Presented Groups
The algorithm provides a viable alternative to coset enumeration for presentations of
finite groups.

Example:
For the dihedral group of order 10 we take generators x, y. The
relations are basis elements: x5-1, y2-1, 1 yx-x4y. The algorithm
produces a Gröbner basis with 6 elements: yxy-x4, y2-1, yx2-x3y,
xyx-y, yx3-x2y, yx2y-x3. Remainders on division give a complete set of
representatives for the congruence classes of this ideal:
 1 x y xx yx xy xxx yxx xxy yxy
The multiplication table can be obtained by concatenating two words
and then reducing using the Gröbner basis.

1 x y xx yx xy xxx yxx xxy yxy
x xx xy xxx y xxy yxy yx yxx 1
y yx 1 yxx x yxy xxy xx xxx xy
xx xxx xxy yxy xy yxx 1 y yx x
yx yxx yxy xxy 1 xxx xy x xx y
xy y x yx xx 1 yxx xxx yxy xxy
xxx yxy yxx 1 xxy yx x xy y xx
yxx xxy xxx xy yxy xx y 1 x yx
xxy xy xx y xxx x yx yxy 1 yxx
yxy 1 yx x yxx y xx xxy xy xxx

Quotients of Free Algebra
Let R = Ÿ<x1,..,xn>/I where I is a finitely generated ideal. If the algorithm produces
a finite Gröbner basis for I, we can do computation in R using the division theorem.
The flavor is like that of finitely presented groups discussed above.

Progress since ISSAC99
The work on optimization is new. The proof of one of the commutativity theorems
took two days in the earlier version. It now takes 10 seconds. Improvements have
been made in methods to study the progress of the algorithm (this led to the new
optimization results). A study has been pursued of strategies of choosing and
ordering the initial bases. The algorithm has proved to be very sensitive to the choice
of initial basis. It is hoped that this study will lead to some heuristics to guide the
selection of the initial basis. A module was created for applications to finitely
presented groups.

Research Goals
The method we have applied in the study of relations on rings is in two stages:
choice of an initial basis (substitutions) and then application of the basis algorithm.
The choice of initial substitutions has been found to have great bearing on the
performance and even the success of the basis algorithm. One goal is to study the
selection of the initial basis. The algorithm discussed here has been applied to
problems which are equivalent to the word problem. The word problem is known to
be undecidable, so it is impossible to find an algorithm which works universally. We
have given a number of instances where our algorithm is successful. A second
research goal is to identify the situations in which the algorithm yields a Gröbner
basis. (For example, Mora�s algorithm works whenever it terminates. Is this true in
the integer case as well?). A third goal is to continue improving the basis algorithm.

References

[Buch] B. Buchberger. Groebner bases: an algorithmic method in polynomial ideal theory

in Multidimensional Systems Theory ed. N.K. Bose
D. Reidel Publishing Company, Dordrecht (1985) 184-232.

[Buch2] B. Buchberger. A criterion for detecting unnecessary reductions in the construction of Gröbner-

bases. Symbolic and algebraic computation (EUROSAM '79, Internat. Sympos., Marseille, 1979),
pp. 3--21, Lecture Notes in Comput. Sci., 72, Springer, Berlin-New York, 1979

[Buch3] B. Buchberger. A critical-pair/completion algorithm for finitely generated ideals in rings. Logic

and machines: decision problems and complexity (Münster, 1983), 137--161, Lecture Notes in
Computer Science 171, Springer, Berlin (1984).

[IVA] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. 2nd Ed.

Springer-Verlag, New York, 1996.

[HWS] J. W. Helton, M. Stankus and J.J. Wavrik: "Computer
 Simplification of Formulas in Linear Systems Theory"
 IEEE Transactions on Automatic Control , 43, no. 3 (1998) ,
 302-314.

[Mora] F. Mora, “Groebner Bases for Non-commutative Polynomial

Rings” Lecture Notes in Computer Science, number 229 (1986)
353–362.

[Sing] Singular: A Computer Algebra System for Polynomial Computations
http://www.singular.uni-kl.de/

[Wav] J. J. Wavrik: "Rewrite Rules and Simplification of Matrix Expressions"
 Computer Science Journal of Moldova,
 4:3 (1996), 360-398.

[ISSAC] J. J. Wavrik: "Commutativity Theorems: Examples In Search of
 Algorithms", In Proceedings of 1999 International Symposium on
 Symbolic and Algebraic Computation,(1999), 31-36.

	The Word Problem
	Gröbner Basis Algorithms
	Integer Coefficients
	Relations in Rings
	Starting Relations
	The process we use to prove these theorems is to generate an R-basis from an initial set of relations and use it to test ideal membership (some modification is needed if there are side conditions). The initial relations are obtained by making substitu
	Extended Example
	Observations
	Side Conditions
	This is one of the very simplest of commutativity
	Strategies for Initial Bases
	Interreduction
	
	Discerning good starting relations

	Optimization

	Other Applications
	Finitely Presented Groups
	Quotients of Free Algebra
	Let R = \(<x1,..,xn>/I where I is a finitely ge
	Progress since ISSAC99
	Research Goals
	References

