
The Word Problem and Relations in Rings 
John Wavrik 

 
This is a report on current research into the word problem and relations in non-
commutative rings. My interest in computational problems in ring theory predates 
my interest in computers and I have done work with computers on these problems 
for a long time. A major breakthrough occurred in about 1997 when I discovered an 
algorithm, similar to the Gröbner Basis algorithm, which applied to polynomials in 
non-commuting variables with integer coefficients.  The main ideas and examples 
were given in an article presented at the ISSAC conference in 1999. This is a report 
on the current state of this research. 
 
The Word Problem 
This problem can be posed in several related forms.  In the case of group theory it is 
formulated in terms of determining a group given generators and relations. 
 

Consider an alphabet, G, of letters we call generators. Consider a set, R, of pairs 
(l,r) of words in the generators.  These are called relations.  We define on the set 
of words in G an equivalence relation: we take the transitive closure of SlT ≈ SrT 

if (l,r)∈R,. The word problem is to find an algorithm for determining whether or 

not two words in G are equivalent. 

Example: 

Let G = { a, b, c } and  R = { (ab,c), (bc,a), (ca,b) } 

                  Claim:  ba and aaab are equivalent 
                  Proof: aaab bcaab bbab bbc ba≈ ≈ ≈ ≈ 1 
 
The word problem is known to be undecidable. There can be no general algorithm 
which solves the word problem for arbitrary G and R . 
 
A related problem is the ideal membership problem in rings.  Let R be a ring (not 
necessarily commutative) and I an ideal.  The problem is to find an algorithm for 
deciding if an element f is or is not in the ideal. The ideal membership problem is 
also undecidable.  If R is the free algebra over the rationals generated by G and I is 
the ideal generated by { l-r | (l,r) ∈ R } then w1 ≈ w2  ⇔  w1�w2 ∈ I. Thus a solution 
to the ideal membership problem would give a solution to the word problem for 
groups. 
 
Saying that the ideal membership problem is undecidable does not preclude the 
possibility of an algorithm that allows one to decide membership in a particular ideal 
I of a particular ring R. Nor does it preclude the possibility of an algorithm that works 
for an entire class of rings; or that works for some ideals but not others. 

                                                 
1   I have underlined what is replaced from one stage to the next. The subword to be replaced can either 
occur on the right or the left of one of the relations. 

 

 



Buchberger (1965) presented an algorithm which works for any ideal in R = 
k[x1,�,xn] (polynomials in commuting variables over a computable field, e.g. –). 
This is regarded as a major breakthrough in computational algebraic geometry. 
 
Mora (1986) presented an algorithm for R = k<x1,�,xn> (polynomials in non-
commuting variables over a computable field). Mora�s algorithm solves the ideal 
membership problem for certain ideals. 
 
Gröbner Basis Algorithms 
Both Buchberger and Mora�s algorithms are based on a generalization of the 
Euclidean division algorithm to several variables. The division algorithm allows us, 
given polynomials f, g, to write  f = gq + r where r=0 or has smaller degree than g.  
In the case of one variable this provides an algorithm for ideal membership: f is in 
the ideal generated by g if and only if r=0. 
 
For 1 variable we have the natural ordering 1 < x < x2 < �  Every polynomial can be 
written with its terms in descending order. There is a leading term which determines 
the degree. An analysis of the division algorithm shows that we use the leading term 
of g to �kill off� the terms of f of higher degree. 
 
For several variables there are many choices for term ordering. The results of the 
algorithms depend on the choice of term ordering.  Both Buchberger and Mora�s 
algorithms assume that we have a finitely generated ideal.2  If I = <g1,..,gs> the 
generalized division algorithm allows us to write any polynomial f in the form 
f = g + r  where g is in I and where no term of r is divisible by any of the leading 
terms of the gi. 
 
The division process is a genuine computational algorithm.  In both the commutative 
and non-commutative case there is an efficient way to compute g and r.  However, 
in distinction from the 1-variable case, r=0 does not usually give a test for ideal 
membership.  Certainly if r=0 we can conclude that f is in the ideal. But we cannot 
include the converse. 
 

Example:   g1 = x2 � y;  g2 = xy � x 

                f = y2 � y = (1-y)*g1 + x*g2  
      f is in the ideal but r = f (not zero) in the division process. 
 

The division process is not well behaved.  It cannot be used directly to test for ideal 
membership. 
 
The remarkable discovery of Buchberger is an algorithm which replaces a given basis 
for an ideal by a new basis (he called a Gröbner Basis in honor of this thesis 
advisor). A Gröbner basis for an ideal has the property that f ∈ I ⇔ r=0. Thus 
Buchberger not only showed that every ideal has a basis for which the ideal 
membership problem can be solved computationally, he also gave an algorithm 
which can be used to compute such a basis. 

   
As a consequence of Buchberger�s algorithm, the word problem can be solved for 
commutative semigroups. 

                                                 
2   In the work I have done, ideals are two-sided. 



The process of computing a Gröbner basis can be explained in several ways. The 
most popular way involves certain syzygies on the current basis elements. If f and g 
are polynomials we write (using multi-index notation): 
 
             f =  axα  + lower terms 
             g = bxβ

 + lower terms 
 
             Spol(f,g) = (f/a)xγ-α  - (g/b)xγ-β    where γ = lcm(α,β) 
 
In the non-commutative case the situation is more complicated since the monomials 
are words and cannot be expressed as xα

, and the concept of least common multiple 
cannot be generalized to pairs of words. For any pair of polynomials there can be 
more than one S-polynomial or there can be none. We can find common multiples of 
the leading terms which play the role of xγ.   
 

Example:  yxy and xyx are both common multiples of yx and xy. If  
           f = xy � ax  and  g = yx � by we get two S-polynomials 
           s1 = fx � xg = xby � axx  and s2 = yf � gy = yax - byy.   
 

 
Teo Mora has shown that it is only necessary to consider S-polynomials resulting 
from "matches" (or non-trivial overlaps).  Two monomials M1 and M2 have an 
overlap if there are monomials L,R, and U so that M1=LU and M2=UR or if  M1 = UR 
and M2 = LU. The common multiple (taking the place of LCM(M1,M2)) is M = LUR.  
 

Example:  M1 = yxx and M2 = xxy have three overlaps.  The resulting 
common multiples are yxxy, yxxxy, xxyxx where the U is 
underlined in each case.  If  f = yxx + lower terms,  
g = xxy + lower terms then we obtain 3 S-polynomials for f and 
g:  (1)  fy � yg,  (2) fxy � yxg,  (3) xxf � gxx 

 
In any case, the S-polynomial �kills� the leading terms of f and g. Both Buchberger 
and Mora show that a basis G is a Gröbner basis if and only if Spol(f,g)→0 ∀ f,g∈G 
where f→r (f reduces to r) means that r is the remainder of f upon division by G. 
 
The basis algorithm starts with a basis G=[g1,..,gs]. If Spol(gi,gj)→h ≠ 0 then h is 
added to the basis. [There are some technical details].  The process is repeated until 
we obtain a basis satisfying the condition above.   
 
In the commutative case, Buchberger shows that the process always terminates (and 
produces a Gröbner basis).  In the non-commutative case, Mora notes that the 
process does not always terminate � but, when it does, it produces a Gröbner basis. 
 
Because of the word problem there must be, in the non-commutative case, ideals 
which do not have a Gröbner basis. 
 
Integer Coefficients 
My paper develops an algorithm for non-commutative polynomials with integer 
coefficients.  Both Buchberger�s and Mora�s algorithms use, quite heavily, the fact 
that coefficients are in a field.  The problem is visible even from the start: in the 
division algorithm. Remember that the division algorithm, the key ingredient, has the 
1-variable Euclidean division algorithm as a special case. 
 



Example:  If f = 3xx + 2x + 1  and  g = 2x + 1  we can divide f by g 

to get a quotient 
3 1
2 4

q x = +
 

  and a remainder 
3
4

=r  

    
Our ability to �kill� the x2 term requires division in the coefficient domain. What 
should be the quotient and remainder if we stay within the integers? 
 
The solution I use involves extending the term ordering to use an ordering on the 
coefficients as well as the ordering on the monomials. We place a total ordering on 
the integers: 
                          0 < -1 < 1 < -2 < 2 < �. 
 
used by Buchberger in the commutative case [Buch3]. We choose an ordering on the 
monomials (words) and we then order terms by: 
 
                           aS < bT  if  S < T (in the ordering of words) 
                                        or S = T and a < b (in the ordering of integers) 
 
We cannot hope to �kill� terms in the division process � but only to replace them by 
terms of lower order. 
  

Example:  If f = 3xx + 2x + 1  and  g = 2x + 1  we can divide f by g 
over the integers to get a quotient q = 2x and a remainder r = 
-xx + 1. 

 
This generalizes to a multi-variable division of a polynomial f by a list G=[g1,..,gs]. 
Whenever a monomial in f is divisible by the monomial part of the leading term of a 
gi, we subtract a suitable multiple of gi to reduce the order of the term in f. The 
result is f = g + r where g is in the ideal <g1,..,gs> and where none of the terms of r 
can be reduced further by the leading term of any gi. 
 
This generalized form of the division algorithm can be used to produce a generalized 
basis algorithm. In my implementation I used an alternative to S-Polynomials called 
�critical pairs�.  The idea is that a Gröbner basis can also be characterized by the 
property that the remainder upon reduction is unique.  
 
The reduction process (even for coefficients in a field) depends upon choices. The 
reduction of f by G=[g1,..,gs] can depend on the order in which we used the gi and 
the position within a term in f where the leading term of gi is matched to a substring. 
 

Example:  Let G = {g1,g2} with g1 = xxx � x  and 
g2 = yxx + xyx + xxy. We can reduce f = yxxx first by g1 to 
obtain a remainder yx or we can reduce first by g2 and (after 
several steps) obtain the remainder xy. 

 
This observation is the key to the method for producing new basis elements (and 
hence is at the heart of the basis algorithm). 
 
If a monomial M is a common multiple of the leading terms of g1 and g2, we can 
always reduce M in two ways:  first we divide by g1 (and then continue the division 
process to obtain a remainder P1) or we first divide by g2 (and then continue the 
division process to obtain a remainder P2).  We obtain a diagram  



 
M 

                                                   g1                        g2 
 
                                       h1                      h2 
 
 
 
                                       P1                       P2 
 
Notice that P = P1 - P2 will always be in the ideal generated by the current basis G. 
If G is a Gröbner basis they will always be equal. If P ≠ 0 then it is appended to G. 
[There are some technical points about when it is appended and which basis is used 
for reduction.] 
 
An issue is how to chose M.  In the commutative case (coefficients in a field), M is 
chosen to be lcm(LT(gi),LT(gj)) where LT(f) is the leading term of f.  In the non-
commutative case (coefficients in a field) M is chosen to be a common multiple of 
LT(gi) and LT(gj) obtained from �matches� (see the discussion of Mora�s algorithm 
above). We obtain a pair for each match. 
 
We have found that, in the integer case, we should take M = cW  (c the integer 
coefficient, W a monomial).  W is chosen to be a common multiple of LM(gi) and 
LM(gj)  where LM(f) is the leading monomial of f. The coefficient c must be chosen to 
be the smallest (in the integer ordering) so that division by LC(gi) and LC(gj) give 
non-trivial quotients (i.e. division gives a genuinely smaller remainder in both cases). 
 
It is not clear, at the moment, whether or not we must allow even more possibilities 
for M.  In some examples I have found that it is necessary to allow trivial matchs 
(where W is the product of LM(gi) and LM(gj)). This situation does not occur in the 
Mora algorithm (where coefficients are in a field). 
 

Example:  Let G = {g1,g2} with g1 = 2x-a  and g2 = 2y-b 
          We know that f = xb � ay is in the ideal: f = g1y � xg2 
           However, if we do not allow trivial overlaps, the basis 

algorithm gives G � and f does not reduce to 0. 
 
If we allow trivial overlaps we get the basis {2x-a, 2y-b, 
xa+ax-aa, xb+ay-ab, ya+bx-ba, yb+by-bb} f does reduce to 0 
with respect to this basis. 

 
 
When viewed in terms of rewrite rules (see [Wav]) the condition that any M provides 
the same P1 and P2 is equivalent to the Gröbner condition on the basis. The issue, 
however, is that we are not using all possible M. Thus something remains to be 
proved if we wish to claim that we get a Gröbner basis in the case of termination. As 
in the case of coefficients in a field (Mora�s Algorithm) the process may fail to 
terminate: 
 

Example:  Let G = {g1,g2} with g1 = xy-ax  and g2 = yx-by 
The algorithm produces two infinite sequences (alternating). 
One is �xbky + axk+1 the other is �yakx + byk+1 .  

 



Relations in Rings 
Let R be a ring. R has an addition and multiplication satisfying the usual algebraic 
laws � but we do not assume that multiplication is commutative and we do not 
assume that R has a 1.          
 

Example:  A ring which often appears as a counterexample in the later 
work is the ring T of all strictly upper triangular 3 x 3 matrices: 

















000
00

0
c
ba

 

Notice that      

0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

a b d e af
c f

    
    =  
    
    







Multiplication in T is not commutative, there is no 1, and if  
x,y,z are in T then xyz = 0.  In particular x3 = 0 for all x. 
 

A polynomial identity on R is a polynomial f ∈ Ÿ<x1,..,xk> so that f(a1,..ak)=0   
∀ a1,..ak ∈ R 
 

Examples:   
�    xy � yx is a polynomial identity in any  commutative ring. 
�    xyz is a polynomial identity in the ring T. 

 
We imagine R to be a given ring and we look at those polynomial identities on R 
which lie in Ÿ<x1,..,xk>. These are closed under (1) addition; (2) multiplication by 
arbitrary polynomials; (3) substitution of polynomials for the variables in an identity. 
We call a polynomial a consequence of a given set of identities if it can be obtained 
from the set by a finite sequence of these operations. 
 

The problem is to determine (computationally) if a 
polynomial identity is a consequence of a given set of 
identities.  

 
Notice that if we ignore the operation of substitution for the variables, this is 
essentially the ideal membership problem.  We expect this problem to be 
undecidable because the ideal membership problem is undecidable. 
 
It is essential that we work over Ÿ  rather than –. To say that 2xy � 2yx is an identity 
on a ring is not the same as to say xy � yx is an identity. This justifies the 
development of algorithms for polynomials with integer coefficients. 



 
Examples:   Here are some consequences of x2 - x   

(1)  xx - x 
(2)  yy - y 
(3)  yy + yx + xy + xx - y - x 
(4)  4xx - 2x 
(5)  yx + xy + xx - x 
(6)  yx + xy 
(7)  4xx - 4x 
(8)  2x 
(9)  -2xy 
(10) yx � xy 
 
Notice that yx � xy is a consequence of x2 � x so we have a 
computational proof of the fact that a ring satisfying x2 � x is abelian. 

 
A commutativity theorem asserts that, under some hypotheses on a ring R, R must 
be commutative. There are a number of theorems of this type in the literature.  They 
provide a good testing ground for algorithms intended to deal with relations on rings. 
The hypotheses are usually that R satisfies a certain polynomial identity � and 
perhaps also some additional conditions (e.g. R has a 1, R has no non-zero nilpotent 
elements). Here are some examples (the hypotheses are given, the conclusion is R is 
commutative). 
 

Theorem 1: a2 = a 
Theorem 2: R is a ring with 1 for which  (ab)2 = a2b2 
Theorem 3: R is a ring with no nilpotents for which  (ab)2 = a2b2 
Theorem 4: R has 1, 2x = 0 implies x=0.  (ab)2 = (ba)2 
Theorem 5: R no nilpotents and  (ab)2 = (ba)2 
Theorem 6: a3 = a 
Theorem 7: a4 = a 
Theorem 8: Let R be a ring which  (a2 - a) is in the center 
Theorem 9: Let R be a ring which  (a3 � a) is in the center 

 
Some of these theorems are special cases of more general theorems. A Theorem of 
Jacobson asserts that if R is a ring so that ∀ a ∈ R ∃ integer n(a)>1 with an(a)=a, 
then R is commutative. The proof of this theorem given in the literature uses the 
structure theory for non-commutative rings. It is not a constructive proof, to say 
nothing of computational.  
 
We have discussed how we have extended the Buchberger and Mora algorithms to 
non-commuting variables and integer coefficients. As noted, we do not yet have a 
proof of exactly what conditions guarantee that we obtain a Gröbner basis � so we 
will provisionally call the bases produced R-bases (for reduction bases). If G is an R-
basis and f → 0 (reduction by G) then we can assert f ∈ <G>. This is how we use the 
R-bases in proofs of the commutativity theorems. 
 
Starting Relations 
The process we use to prove these theorems is to generate an R-basis from an initial 
set of relations and use it to test ideal membership (some modification is needed if 
there are side conditions).  The initial relations are obtained by making substitution 
of variables in the hypothesis relations. The process of choosing suitable starting 
relations has not (yet) been automated. It is a very critical step both in the success 



of a proof and in performance. At the moment there seems to be no obvious way to 
do this automatically. 
 

Extended Example 
We examine the proof that commutativity is a consequence of x3 �x. 
This is one of the simpler theorems for machine proof. It is of 
moderate difficulty for proof by hand. 
 
The simplest starting point is to make substitutions y and (x+y) for x.  
This gives consequences: xxx � x,  yyy-y,  - yyx - yxy - yxx - xyy - 
xyx � xxy,  - yxyxx + xyxyx - xxyxy - xxyxx + yxy + xyx 
 xy � yx is not in the ideal. 
 
If we add a substitution of x-y for x to those above, we get 
consequences: 
xxx � x, yyy-y, - yyx - yxy - yxx - xyy - xyx � xxy,  - 6xy, 
2yx - 2xy,  - yxyxx - xyxyx - xxyxy - xxyxx - yxy - 2xyy - xyx + 2xxy 
This is interesting because we obtain some simpler consequences and 
one that looks close to the goal. 
 
If we add xx + x and yy + y then we obtain 10 consequences including 
those above and 3xx + x, 3yy + y which seem simple and interesting. 
 
If we make the previous substitutions and also replace x by xy and by 
yx then we get a list of 6 consequences: xxx � x, yyy � y, 3xx + 3x, 
3yy + 3y, -6xy, and (at last) xy � yx.  On a 450 Mhz computer the 
proof took .6 seconds. There were 115 critical pairs generated, but 
110 of these reduced to 0. A total of 536 reduction steps were 
performed. 
 
I should mention that an even quicker proof (.3 sec) can be produced 
with a less obvious choice of starting relations.  Substitute for x the 
following:  y, xy, yx, xxyx - yx, yyxy � xy, xyxx � xy, and yxyy � yx.  
We obtain the consequences xxx-x, yyy-y, and xy-yx. 
 
Tracing 
It is possible to trace an automated proof to see how new relations 
arise. In all but simple cases, however, the automated proof is too 
complicated to produce a simple �hand� proof.  X3 � x is simple 
enough. 
 
The starting relations we will use are a3 � a for a = x, y, xy, yx, xxyx - 
yx, yyxy - xy, xyxx - xy, yxyy � yx.  The first step in the automated 
proof is �interreduction�: we reduce each by all the others. The last 
four polynomials reduce to themselves. 
 
   F[4] - xxy F[0] yxxxyx  + y F[0] yxxxyx  + xxy F[0] yxyx  - 
   y F[0] yxyx = - F[4] 
 
Where F[0]=x3 � x, F[4]=(xxyx � yx)3-(xxyx � yx).  (We are saying 
that F[4] → -F[4] but have explicitly listed the steps in the reduction). 
The next step in the automated proof involves taking pairs of existing 
basis elements and forming appropriate common multiples of the 



leading terms. We use the common multiple  -1 xxyxx for �xyxx + xy 
and �xxyx + yx.  This gives a new basis element yxx-xxy. This new 
relation is interesting. We have shown that in a ring with x3=x, 
squares of elements are in the center. 
 
The desired relation yx-xy comes from use of common multiple 
-yxyyxx for yxx-xxy and �yxyy+yx. 
 
There were 134 critical pairs generated in this proof and 189 reduction 
steps. The above proof extracts just 2 of the critical pairs. We have 
also suppressed a list of the reduction steps needed. A complete 
�hand� proof would have to include these details. 
 
Let me emphasize again that one does not normally trace an 
automated proof to extract a �hand� proof. The proof for x4-x, for 
example, generates 2014 critical pairs and uses 47096 reductions. It 
takes only 2 minutes and would be considered of moderate difficulty 
for automated proofs. 
 

Observations 
A special case of the x3-x theorem is used as a test case for the well known Otter 
automated theorem proving program produced by Argonne National Laboratories. 
Otter produces an automated proof that x3-x implies 3xy+3yx = 0. This result takes 
about .5 sec to produce. Otter ran out of memory when an effort was made to prove 
xy-yx.  Otter is a general and extensive proving program designed for �first order 
logic with equality�. It is really not designed for theorem proving in algebra (although 
the special case of the x3-x theorem is supplied with it an example. Our algorithm is 
designed for a specific area in algebra. It is interesting to note that it is competitive 
with other automated theorem proving programs and, in fact, performs well on this 
class of problems. 
 
Side Conditions 
Some of the classical commutativity theorems make use of side conditions in 
addition to the assumed polynomial identities. Here are some examples showing how 
such conditions can be handled. 
 
1 ∈ R 

Theorem 2: If R is a ring with 1 for which (ab)2 = a2b2 then R is commutative. 
 
This is one of the very simplest of commutativity theorems. It can be 
done by hand.  The approach is to use 1 when making substitutions for 
the starting identities. Let F(a,b) = (ab)2 � a2b2. The starting relations 
are F(x,y), F(x+1,y), F(x,y+1), and F(x+1,y+1).  In this case no 
critical pairs need to be generated at all. The relation xy-yx is a result 
of interreducing the starting basis. 

 
R has no nilpotents 
 

Theorem 3: If R is a ring with no nilpotents for which (ab)2 = a2b2 then 
R is commutative 

 



Notice that the identity is the same as for the previous example. The 
side condition is different.  We again Let F(a,b) = (ab)2 � a2b2. We use 
the initial relations  F(x,y), F(y+x,x), F(y+x,y), F(x,y+x), F(y,y+x). 
 
In this case the first interreduction gives xyxy-xxyy, yyxx-yxyx, 
yyxy-yxyy, xyxx-xxyx. The basis algorithm examines 16 critical pairs, 
but all reduce to zero � thus these 4 polynomials are the R-basis. 
Notice that xy-yx is not in the basis, nor does it reduce to zero. In fact 
the ring T of strictly upper triangular 3 x 3 matrices does satisfy the 
identity (ab)2 � a2b2 but is not commutative. 
 
We can see, however, that (xy-yx)3 → 0 so that (xy-yx)3 = 0 
∀ x,y ∈ R.  If R has no nilpotents then xy-yx is an identity. 
 

Strategies for Initial Bases 
 
1. Kitchen sink 
It should not be assumed that one will achieve good results by adding every initial 
substitution that comes to mind. One can understand, on the basis of the summary 
we have just given, that a long list of initial relations can add considerably to the 
processing time. Each pair of basis elements must be examined and the results 
added to the list � whether or not they provide relations that actually are useful to 
the goal. 
 
2. Adding one at a time 
It is usually not helpful to add relations one at a time. In some cases the basis 
generated by a subset of relations is either infinite or time consuming to compute. It 
can take far more time to find a basis for a subset of relations than to find a basis for 
the entire set. This occurs because, in these cases, there are relations missing which 
would play an important role in simplifying the expressions that arise. 
 

Example:   
In Theorem 3, discussed above, We let F(a,b) = (ab)2 � a2b2. The 
relations F(x,y) and F(y+x,y) are the first two polynomials used in a 
starting basis. These two polynomials taken alone generate an infinite 
basis. The critical pairs produce polynomials that would be reduced if 
we had added the other relations. 
 

The choice of starting basis (or starting substitutions) is critical both in obtaining a 
result and in the performance of the algorithm.  The fact that the starting basis is 
obtained by making substitutions for the variables in a given relation means that any 
element in the R-basis is a consequence of the given relation. Any polynomial, f, 
which reduces to zero using the R-basis is in the ideal generated by the R-basis, 
therefore a consequence of the given relation. If the process fails, however, it might 
be that the substitutions we tried are insufficient. 



 
Example:   

I cannot locate the file used for an early successful attempt for x4-x. It 
took over 24 hours of computation to produce an R-basis. Eventually 
we used (see [ISSAC]) the following basis: First we took 2x, 2y, y3x-
xy3, yx3-x3y (these were shown to be consequences of x4-x as by an 
independent lemma). Then we added the polynomials obtained by 
substituting for a in a4-a: x, y, y+x, yx+x. xy+y, yx+y, xy+x, xy, yx, 
xy-yx. This produces an R-basis in 129 seconds which contains xy-yx 
(actually �yx-xy). There were 1870 critical pairs generated, 1846 
reduced to zero. 44185 reduction steps were needed. When proper 
subsets of this basis are used, the algorithm does not appear to 
terminate. [In general it is difficult to prove that the algorithm will not 
terminate. The situation which occurs in the example of infinite bases 
above (an infinite sequence can be shown to occur) is rare. In most 
cases the algorithm just runs for a long time and is manually aborted.]  
 
Since x = x4 = (-x)4 = -x in this ring, we could use Mora�s algorithm 
over the field Ÿ2. It as been proved that the Mora algorithm (over a 
field) does produce a Gröbner basis when it terminates. Here we 
obtain a Gröbner basis in 29 seconds. 792 critical pairs are tested and 
759 reduce to zero.  14617 reductions steps were needed.  In this test 
and those with subsets of the initial basis, the R-basis obtained by our 
algorithm and the basis obtained by Mora�s algorithm over the field Ÿ2 
are the same � giving support to our suspicion that an R-basis is in 
fact a Gröbner basis. 
 
A yet faster method uses a collection of relations known to be true of 
xn-x for any n.  Among them is xn-1y � yxn-1 which can be proved 
computationally. We then applied an operation which substitutes xy for 
y in every element of the current basis. It reduces the result and 
appends it to the basis if not zero. Finally we added (x+y)4-(x+y) A 
basis containing xy-yx is obtained in 1.4 seconds. 
 
 

Behavior of the Algorithm 

Even the commutative algorithm (the Buchberger algorithm) is known to be badly 
behaved in some cases. Algorithms of this sort, in which new elements are added to 
a basis based on a complex system state, are very difficult to analyze. Cox, Little and 
O�Shea [IVA] give the following example: A Gröbner basis for 
 
  g1 = x5+y4+z3-1 ,  g2 = x3+y2+z2-1  

Can be readily computed using either pure lexicographic order (called plex in Maple) 
or graded reverse lexicographic order (called tdeg in Maple). If, however, a single 
exponent is changed: 
  

g1 = x5+y4+z3-1 ,  g2 = x3+y3+z2-1 
 
The basis computed using plex has a basis element of total degree 25 with 282 
terms and a largest coefficient of 167383594.  I should note that I was unable to 
compute the basis using the algorithm in Maple � but it can be computed using 
either a larger computer or a more sophisticated implementation of the Buchberger 



algorithm (I was able to compute it using Singular).  The Buchberger algorithm has 
proven to be useful � but it is known that it can exhibit very bad behavior. 
A problem of many algorithms in computer algebra is �intermediate expression 
swell�. This is the name given for a situation in which the input and output are small 
or moderate in size, but data in the middle of the algorithm is very large. In the case 
of integer computations, an algorithm which starts with small integers and gives a 
result with small integers may require very large multi-precision computation. 
 
Many examples of this situation have arisen in the R-basis algorithm we have 
discussed. The example mentioned above for x4-x has 
 

Starting relations Ending basis 
2x 
2y 
y3x-xy3 
yx3-x3y  
F(x) 
F(y) 
F(y+x) 
 

F(yx+x) 
F(xy+y) 
F(yx+y) 
F(xy+x) 
F(xy) 
F(yx) 
F(xy-yx) 
 

+ 2x 
+ 2y 
- yyyy - y 
- yx - xy 
- xxxx - x 

 
This is a relatively short computation. In the midst of the computation the basis 
grows to 29 polynomials. Many of them have 20-30 terms. The largest intermediate 
polynomial which occurs has 50 terms and a total degree 8. This is by no means the 
worst behavior I have seen in this work. In some cases the algorithm makes use of 
consequences of the hypothesis relation which have several hundred terms. 
 
Design Considerations 
 
When to add a new element 
Here is pseudo-code for the basic algorithm as it was when [ISSAC] was written (it 
has since been modified). For terminology and previous procedures see [ISSAC]. 
 

Procedure 2:  R-Basis Algorithm  (see [ISSAC]) 
Input: A finite set, G, of polynomials 
Output: (If the algorithm terminates)  
           an R-Basis for the ideal generated by G. 
H := G 
WHILE not Empty(H) DO 

B := { (f1,f2,l1,r1,l2,r2) | f1∈ G, f2 ∈ H; 
(l1,r1,l2,r2) a match for (LM(f1),LM(f2)) } 

H := ∅ 
WHILE not Empty(B) DO 

select m ∈B; B := B - {m} 
(p1,p2) := CritPair(m) 
p1 := NForm(p1,G∪H); p2 := NForm(p2, G∪H) 
f := p1 - p2 
IF f ≠ 0 THEN H := H∪{f} 

G := G∪H 
G := Interreduce(G) 

 



We have discussed the way in which potential new basis elements are obtained using 
pairs of elements of the existing basis. This algorithm is designed so that all pairs to 
be processed (together with information needed to process them) are stored in a list 
B.  Pairs are selected from this list and processed. If a new (non-zero) element, f in 
the pseudo code above, is obtained notice that it is not immediately added to the 
basis G. It is stored in H, and G∪H is used in reductions. So the new element is used 
for reductions, but not for forming new pairs until all pending pairs (in the B list) are 
processed.  Notice that after the B list is exhausted we do adjoin G to H. The new 
pairs, however, combine elements of the new G only with elements of H (since 
pairings between elements of the old G have already been processed). 
 

Example:   
We have mentioned that an infinite basis is obtained using g1=xy-ax 
and g2=yx-by. There are two common multiples of the leading terms 
which produce new basis elements - yax + byy and - xby + axx 
respectively. If the first were to be added to the basis immediately 
then it would pair with g1 to produce - yaax + byyy, and so on. The 
result is that only the family �yakx + byk+1 is produced and not any 
member of the family �xbky + axk+1 . 

 
Interreduction 
It is common to want a reduced Gröbner basis. Reduced Gröbner bases are unique, 
usually shorter, and have smaller elements. Some implementers of Buchberger�s 
algorithm make interreduction an option. It is often a separate command. 
 
In the implementation used in the ISSAC99 paper, a basis was generated first and 
the algorithm concludes with interreduction.  Each time a potential new basis 
element is produced (from critical pairs) it is reduced by all existing basis elements. 
However existing basis elements are not (in the algorithm above) reduced by the 
new basis element. This has the effect of tacking new basis elements on the end of 
the list, but making no attempt to reduce the size of the list at this stage. 
 

Example:   
For x3-x we try the starting basis F(x), F(y), F(x+y), F(x-y), F(x+xx), 
F(y+yy) with F(a)=a3-a. Using the algorithm above, without the 
interreduction step, we get 
GB[0] = 1 xxx    -1 x 
GB[1] = 1 yyy    -1 y 
GB[2] = 1 yyx    1 yxy    -1 yxx    1 xyy    -1 xyx    -1 xxy 
GB[3] = 1 yxx    -2 xyx    1 xxy    3 yx    3 xy 
GB[4] = 3 xx    3 x 
GB[5] = 3 yy    3 y 
GB[6] = 3 yxy    -9 xyx    6 yx    6 xy 
GB[7] = -18 xyx    8 yx    10 xy 
GB[8] = 6 xyx    -6 yx    -6 xy 
GB[9] = -4 yx    4 xy 
GB[10] = 1 xxyx    1 xyx    -1 xxy    -1 xy 
GB[11] = -2 yx    44 xy 
GB[12] = 1 xyxyx    1 yxyx    1 xyxy    1 xxyy    -1 xyy    -1 xyx 
                1 xxy    -45 xy 
GB[13] = -1 yxyx    1 xxyy    -1 yxy    1 xyy    -108 xy 
GB[14] = 1 yxy    -1 xyy    1 xyx    -1 xxy    138 xy 
GB[15] = -18 xy 



GB[16] = 12 xy 
GB[17] = 6 xy 
 
If there is no interreduction, new basis elements are tacked on to the 
end of the list.  Notice that there are some elements which occur later 
in the list which would simplify (or eliminate) earlier elements. 
 
Now we apply interreduction: every polynomial is repeatedly reduced 
by the others. This gives 
GB[0] = 1 xxx    -1 x 
GB[1] = 1 yyy    -1 y 
GB[2] = -1 yyx    1 xyy    -1 yx    1 xy 
GB[3] = -1 yxx    1 xxy    -1 yx    1 xy 
GB[4] = 3 xx    3 x 
GB[5] = 3 yy    3 y 
GB[6] = 0 
GB[7] = 0 
GB[8] = 0 
GB[9] = 0 
GB[10] = -1 xxyx    -1 xyx    1 xxy    1 xy 
GB[11] = -2 yx    2 xy 
GB[12] = 0 
GB[13] = 0 
GB[14] = -1 yxy    1 xyy    -1 xyx    1 xxy 
GB[15] = 0 
GB[16] = 0 
GB[17] = 6 xy 
 
I have used here a form of interreduction which does not remove the 
basis elements which have been reduced to zero. The numbering, 
therefore, corresponds to the numbering of the original basis.  In 
practice, however, we do remove polynomials which become zero and 
renumber the rest: 
GB[0] = 1 xxx    -1 x 
GB[1] = 1 yyy    -1 y 
GB[2] = -1 yyx    1 xyy    -1 yx    1 xy 
GB[3] = -1 yxx    1 xxy    -1 yx    1 xy 
GB[4] = 3 xx    3 x 
GB[5] = 3 yy    3 y 
GB[6] = 6 xy 
GB[7] = -1 yxy    1 xyy    -1 xyx    1 xxy 
GB[8] = -2 yx    2 xy 
GB[9] = -1 xxyx    -1 xyx    1 xxy    1 xy 
 
Discerning good starting relations 
The R-basis in this case does not prove x3-x. The xy-yx is not in the 
ideal generated by the starting relations. However, this is instructive. 
It suggests what needs to be (or could be) added to prove the 
theorem. If we know that squares are in the center, either GB[2] or 
GB[3] would reduce to xy-yx. We do have a computational proof that 
squares are in the center, so we can enlarge the original starting basis 
to obtain one which proves the x3-x theorem. 
 



Interreduction clearly has the effect of simplifying a basis. Rather than wait until the 
end, it is possible to revise the algorithm so that interreduction occurs after each 
new basis element is added. Notice that interreduction potentially changes all the 
existing basis elements (and possibly the numbering). Thus this has three 
disadvantages: (1) the algorithm becomes much harder to trace (say for the purpose 
of extracting a �hand� proof); (2) the optimization used with the B-list (where one 
only examines pairs consisting of an existing element with a new element) will not 
work; (3) we miss seeing some interesting consequences of the starting relations. 
  
The idea of trying interreduction after each new basis element arose when some 
examples produced unreduced bases which suffer from severe intermediate 
expression swell: polynomials with hundreds of terms having enormous integer 
coefficients. A modified form of the algorithm, with the following pseudo code, was 
developed. 
 

Procedure 2:  R-Basis Algorithm  (modified version) 
Input: A finite set, G, of polynomials 
Output: (If the algorithm terminates)  
           an R-Basis for the ideal generated by G. 
Newpoly := true 
WHILE Newpoly DO 
          Newpoly := false 
          G := Interreduce(G) 

WHILE not Newpoly DO 
B := { (f1,f2,M) | f1, f2 ∈ G;  M a distinguished  
                 common multiple for (LM(f1),LM(f2)) } 
WHILE not Empty(B) and not Newpoly DO 

select m ∈ B; B := B - {m} 
(p1,p2) := CritPair(m) 
p1 := NForm(p1,G); p2 := NForm(p2, G) 
f := p1 - p2 
IF f ≠ 0 THEN G := G∪{f};  

                                         Newpoly := true 
 
In this version a Boolean variable Newpoly is set if a new basis element is added. 
The inner loops are skipped when this happens and the procedure is restarted. Since 
the procedure is restarted when a new basis element is added, the mechanism 
involving H is no longer needed. As it is now written, the inner loops exit before 
processing pending matches in B.  When the basis is infinite, as in the work I did 
with linear systems [HWS], it is necessary for correct results to process all pending 
matches before adding new elements to the basis.  If the basis is finite, short-
circuiting the processing of pending matchs should not affect the outcome (it has a 
dramatic effect on time). 
 
 The inner loops exit when a new basis element is found. The procedure as a whole 
exits when a sweep through the inner loops does not produce any new polynomials. 
 
Optimization 
Interreduction seems, on the face of it, an expensive operation. Every element of the 
current basis has to be reduced by the others.  The reduction process is an 
expensive operation.  Some implementations of the Buchberger algorithm in the 
commutative case (like Singular [Sing]) return an unreduced basis. The authors 
presumably regard interreduction as a step which would slow down the algorithm. 



However, the cost of interreduction is often balanced by the fact that the basis is 
smaller both in the number of elements and the size of individual basis elements.  
For our work, interreduction after each basis element has been a major optimization. 
 

Example:   
For the theorem that if x3-x is central then R is commutative we start 
with a large set of relations. Let F(a,b) = (a3-a)b � b(a3-a).  The 
starting basis has 21 elements starting with F(x,y), F(y,x), � 
The older version of the algorithm yields an (unreduced) basis of 85 
elements. It is estimated that the proof, if allowed to complete, would 
take about 100 hours. The newer version (with interreduction) 
produces a basis with 9 elements in 11 seconds. [Actually the proof is 
not complete at this point. We further reduce F(x2-y2,x) - F(x2-y2,y) 
which, in 123 reduction steps, reduces to xy-yx.] 
 
An important part of the project is developing ways to study 
algorithms. The drastic difference in execution speed has been traced 
to the final step in which we check all pairs of basis elements to find if 
there are any new critical pairs which fail to reduce to zero (hence 
produce new basis elements).  If the basis has 9 fairly simple elements 
this process is quick. If the basis has 85 fairly large polynomials, the 
process is quite time consuming.  In fact the 85 basis elements are 
produced reasonably quickly (about 2 mins).  They reduce to the same 
basis of 9 elements obtained by the new version. 

 
A very effective optimization in the commutative case is due to Buchberger [Buch2]. 
Since reduction to an irreducible form is a very expensive process, Buchberger 
provides a criterion on two polynomials f,g which predicts (in some cases) that 
Spol(f,g) will reduce to zero without actually reducing it.  Experiments show that the 
criterion eliminates a high percentage of unnecessary reductions and produces a 
significant gain in execution speed.  
 

 Example:   
In a simple test of the Buchberger (commutative) algorithm there 
were 22 S-polynomials generated. Of these 6 failed the Buchberger 
criterion (the criterion predicted that they would reduce to zero). Of 
the 16 that did pass the Buchberger criterion, 6 did yield new basis 
elements and 10 did not (the S-poly reduced to zero). The criterion 
successfully screened out 6 but did not catch 10.  With the Buchberger 
criterion the algorithm took 5.9 seconds. Without the Buchberger 
criterion it took 9.5 seconds.  

 
In the non-commutative case the Buchberger criterion does not apply. An analogous 
criterion was proposed in a paper I refereed, but it was found not to apply very 
often. At the moment there is no efficient way to detect unnecessary reduction even 
in the case of a field (Mora algorithm). 
 
There are some �rules of thumb� for a modest increase in speed given by Buchberger 
in the commutative case.  These have to do with the order in which basis elements 
are used to test for divisibility and the order in which elements should be extracted 
from the B-list. I have experimented with some traditional ways to speed up the 
Grobner algorithm. In the literature for the commutative case it is said that the 
polynomials in the basis should be ordered so that the division algorithm tests for 



divisors starting with polynomials with the smallest leading terms.  In my algorithm I 
use the reverse � trying division first by basis elements which have the highest 
leading term. I have tested both ways. They seem close in execution speed. My 
choice seems marginally faster on the average. 
 
The other optimization is that one should order the S-polynomials in the list of those 
waiting to be tested (in Buchberger�s B-list) so that (in the commutative case) the 
pair with the smallest LCM is used first. I too use a B-list so that we do not introduce 
pairs with a newly generated polynomial before waiting pairs are processed. In this 
case my results confirm that you should start by processing pairs with the smallest 
common multiple of leading terms. 
 
In the example given above (the case in which x3-x is central) the 85 elements in the 
unreduced basis were generated fairly quickly. This is true in this case because new 
basis elements were produced fairly quickly (not too many pairs had to be tried). 
One way to optimize would be to provide some heuristics for pairs most likely to 
yield a new basis element and to order the basis so that these pairs are selected 
first.  I have done some analyses of the details of the algorithm to see if certain 
basis elements are used more often than others in yielding new elements. 
 
Other Applications 
We have discussed the usefulness of the algorithm to study relations in rings. There 
are other potential applications. 
 
Finitely Presented Groups 
The algorithm provides a viable alternative to coset enumeration for presentations of 
finite groups. 

Example:   
For the dihedral group of order 10 we take generators x, y. The 
relations are basis elements:  x5-1, y2-1, 1 yx-x4y. The algorithm 
produces a Gröbner basis with 6 elements: yxy-x4, y2-1, yx2-x3y, 
xyx-y, yx3-x2y, yx2y-x3. Remainders on division give a complete set of 
representatives for the congruence classes of this ideal: 
   1   x   y  xx  yx  xy xxx yxx xxy yxy 
The multiplication table can be obtained by concatenating two words 
and then reducing using the Gröbner basis. 
 
1 x y xx yx xy xxx yxx xxy yxy 
x xx xy xxx y xxy yxy yx yxx 1 
y yx 1 yxx x yxy xxy xx xxx xy 
xx xxx xxy yxy xy yxx 1 y yx x 
yx yxx yxy xxy 1 xxx xy x xx y 
xy y x yx xx 1 yxx xxx yxy xxy 
xxx yxy yxx 1 xxy yx x xy y xx 
yxx xxy xxx xy yxy xx y 1 x yx 
xxy xy xx y xxx x yx yxy 1 yxx 
yxy 1 yx x yxx y xx xxy xy xxx 
 



Quotients of Free Algebra 
Let R = Ÿ<x1,..,xn>/I  where I is a finitely generated ideal. If the algorithm produces 
a finite Gröbner basis for I, we can do computation in R using the division theorem.  
The flavor is like that of finitely presented groups discussed above. 
 
Progress since ISSAC99 
The work on optimization is new.  The proof of one of the commutativity theorems 
took two days in the earlier version. It now takes 10 seconds. Improvements have 
been made in methods to study the progress of the algorithm (this led to the new 
optimization results).  A study has been pursued of strategies of choosing and 
ordering the initial bases. The algorithm has proved to be very sensitive to the choice 
of initial basis. It is hoped that this study will lead to some heuristics to guide the 
selection of the initial basis. A module was created for applications to finitely 
presented groups. 
 
Research Goals 
The method we have applied in the study of relations on rings is in two stages: 
choice of an initial basis (substitutions) and then application of the basis algorithm. 
The choice of initial substitutions has been found to have great bearing on the 
performance and even the success of the basis algorithm. One goal is to study the 
selection of the initial basis. The algorithm discussed here has been applied to 
problems which are equivalent to the word problem. The word problem is known to 
be undecidable, so it is impossible to find an algorithm which works universally. We 
have given a number of instances where our algorithm is successful. A second 
research goal is to identify the situations in which the algorithm yields a Gröbner 
basis. (For example, Mora�s algorithm works whenever it terminates. Is this true in 
the integer case as well?).  A third goal is to continue improving the basis algorithm.  
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