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Abstract. We introduce a level set method for the computation of multi-valued solu-
tions of a general class of nonlinear first-order equations in arbitrary space dimensions.
The idea is to realize the solution as well as its gradient as the common zero level set of
several level set functions in the jet space. A very generic level set equation for the under-
lying PDEs is thus derived. Specific forms of the level set equation for both first-order
transport equations and first-order Hamilton-Jacobi equations are presented. Using a
local level set approach, the multi-valued solutions can be realized numerically as the
projection of single-valued solutions of a linear equation in the augmented phase space.
The level set approach we use automatically handles these solutions as they appear.
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1. Introduction

Numerical simulations of high frequency wave propagation are important in many ap-
plications. When the wave field is highly oscillatory in the high frequency regime, direct
numerical simulation of the wave field can be prohibitively costly. Examples include the
semiclassical limit for the Schrödinger equation and geometric optics for the wave equa-
tion. A natural way to remedy this problem is to use some approximate model which
can resolve the small-scale in the wave field. The classical approach is the WKB method
or geometric optics, which are asymptotic approximations obtained when the small scale
becomes finer. Instead of the oscillating wave field, the unknowns in the WKB system are
the phase and the amplitude, neither of which depends on the small scale, and typically
vary on a much coarser scale than the wave field. Hence they are usually easier to compute
numerically.

An obvious drawback of this method is that linear equations are replaced by nonlinear
ones, and thereby the superposition principle is lost. In the WKB system the phase is
often described by Hamilton-Jacobi equations; unfortunately, the classical viscosity solu-
tions [10] are not adequate in describing the superposition nature of waves in phase space.
A natural way to avoid such difficulties is to seek multi-valued solutions corresponding
to crossing waves. In the last decade, various techniques have been introduced for multi-
phase computations found in several applications. Consult [14] for a recent survey on
computational high frequency wave propagation. In [9] we introduced a level set frame-
work to compute the multi-valued solutions to Hamilton-Jacobi (HJ, for short) equations,
with application to the semiclassical limit of the linear Schrödinger equation.

The goal of our work here is to extend the ideas developed in [9] and [22] for the com-
putation of multi-valued solutions of a very general class of nonlinear first-order equations
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including ∂tS + H(x, S,∇xS) = 0, to which the previous studies conducted in [9, 22] do
not apply.

We begin by sketching the ideas explored in [9], where we focused on the computation
of multi-valued solutions of the Hamilton-Jacobi equation

(1.1) ∂tS +H(x,∇xS) = 0, x ∈ IR
n,

which appears as the phase equation in the semiclassical limit of the linear Schrödinger
equation. The level set functions φ(t, x, p), defined in the phase space (x, p) ∈ IR

2n, with
p = ∇xS, each satisfies a linear Liouville equation,

(1.2) ∂tφ+ ∇pH · ∇xφ−∇xH · ∇pφ = 0,

and the multi-valued phase gradient is captured as the intersection of the zero level sets
of n + 1 level set functions; see also [22]. However in the semiclassical regime of the
Schrödinger equation, there is also a need to resolve the multi-valued phase value S(t, x)
in the whole domain. In the context of geometric optics, the phase remains constant
along the ray [26] (as it does for any Hamiltonian which is homogeneous of degree one
in ∇S); the wavefront is therefore defined as the level curve of the phase and the phase
solution is completely determined by computing the wavefront location. However in the
Schrödinger setting the phase S does change its shape along the ray in (x, p) space. In
[9] we defined the wavefront to be the n − 1 dimensional surface in (x, p) space, driven
by the Hamiltonian dynamics (1.2), and starting with a level surface of the initial phase
S0. For the computation of such a defined wavefront, we solve n + 1 decoupled level set
equations (1.2), n of these functions can be initialized as the components of p−∇xS0, and
the remaining one can be initialized as the level set of the initial phase, e.g., S0(x) − C.

As pointed out in [9], solving the Liouville (1.2) alone is not enough to compute the
multi-valued phase S(t, x), even on the wavefront described above. Note that in the

phase space (x, p), the corresponding phase function S̃(t, x, p) satisfies a forced hyperbolic
transport equation

(1.3) ∂tS̃ + ∇pH · ∇xS̃ −∇xH · ∇pS̃ = p · ∇pH −H.

The strategy in [9] was to look at the graph of the phase function z = S̃(t, x, p) in the
whole domain, or equivalently to evolve a level set function φ = φ(t, x, p, z) in the extended
phase space (x, p, z) ∈ IR

2n+1

(1.4) ∂tφ+ ∇pH · ∇xφ−∇xH · ∇pφ+ (p · ∇pH −H)∂zφ = 0.

In this way, wavefronts with possible multi-phases are tracked and the phase value is
numerically resolved via the intersection of n + 1 zero level sets in the extended space
(x, z, p) ∈ IR

2n+1, see e.g. [6, 9]. In particular, the augmented phase space enables us
to track the phase S in the entire domain and then project onto the wavefront surface
when desired. Note that the Hamiltonian H in (1.1) does not explicitly depend on S,
and therefore the equation (1.3) is linear in S. Thus, the singularities of S are already
‘unfolded’ in the phase space (x, p) ∈ IR

2n. For this reason, in [9] we chose to either solve
the forced Liouville PDE (1.3) in the whole domain or evolve the whole phase as a zero
level set in (x, z, p) ∈ IR

2n+1, whichever was more convenient. We note that the ’phase
space’ idea used in [9] is not new and has already been extensively explored in various
contexts, see, e.g., [7, 15, 25, 32]. However, the level set equation in the jet space (x, p, z)



A Level Set Framework for Capturing Multi-Valued Solutions 3

was formulated for the first time in [9] for Hamilton-Jacobi equations (1.1). Our aim in
this work is to generalize the method in [9] to any first-order PDEs and present some new
numerical examples beyond those given in [9].

To put our study in the proper perspective, we recall that there has been a considerable
amount of literature available on the computation of multi-valued solutions, ranging from
geometric optics [1, 11, 12, 13, 26] to the semiclassical regime of Schrödinger equations
[9, 17, 21]. In the literature, Lagrangian methods (called ray tracing) and Eulerian meth-
ods are the two main approaches used to compute multi-valued solutions. An obvious
drawback of the former lies in numerically obtaining adequate spatial resolution of the
wavefront in regions with diverging rays. This problem is avoided in Eulerian methods
through the use of uniform fixed grids in their computations, see, e.g., [2, 3]. With Euler-
ian methods, however, difficulties arise in handling the multi-valued solutions that appear
beyond singularity formation.

A widely acceptable approach for physical space-based Eulerian methods is the use
of a kinetic formulation in the phase space, in terms of a density function that satisfies
Liouville’s equation, where the technique used to capture multi-valued solutions is based
on a closure assumption of a system of equations for the moments of the density, see
[4, 5, 12, 16, 17, 21]. In geometric optics and the topic of wavefront construction, geometry-
based methods in phase space such as the segment projection method [13], and the level
set method [8, 26, 29] have been recently introduced. For the computation of multi-
valued solutions to the semiclassical limit of Schrödinger equation, a new level set method
for Hamilton-Jacobi equations was introduced in [9], to realize the phase S on the whole
domain with the level set evolution in an extended space (x, z, p). Furthermore, wavefronts
are constructed via the linear Liouville equation in the (x, p) space. As remarked earlier
our key idea is to build both the ‘graph’ and the ‘gradient’ into the zero level set, allowing
for computation of multi-valued solutions in the whole domain of physical interest.

Related to our work in [9], on the computation of multi-valued solutions of Hamilton-
Jacobi equation (1.1), is the recent work of [22]. In this paper, the authors used the
level set formulation given in [7] to obtain the same result as in this paper for the case
of a scalar quasilinear hyperbolic equation. For Hamilton-Jacobi equations of the type
(1.1), where the Hamiltonian does not depend on the solution but only on its gradient,
the authors in [22] derived the same level set Liouville equations for the gradient of the
phase through an independent approach involving techniques found in [7] and [32]. They
presented numerical results in one and two dimensions that realized the phase gradient
for the Hamilton-Jacobi equation, plotted using the visualization package devised in [23].

In computing the level set equation in phase space, since the area of interest is close to
the zero level set, it is possible to use fast local level set techniques in the same manner as
in, e.g., [9, 8, 26, 29], which will reduce the computational cost and (recently) also reduce
the storage requirements [24].

This paper is organized as follows. In §2 we list some nonlinear HJ equations which
arise in the high frequency asymptotic approximation. §3 is devoted to a derivation
of the generic level set equation for fully nonlinear first-order equations of the form
G(ξ, u,∇ξu) = 0. Specific forms of the level set equations for hyperbolic transport equa-
tions and HJ equations are presented. Also in this section the computation of multi-valued
solutions for several equations are discussed and the required number of level set functions
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for realizing the solution as well as the choice of corresponding initial data are specified.
Finally in §4 we describe the numerical strategy used and present some numerical results.

2. The WKB method and Hamilton-Jacobi equations

Before introducing our general level set framework for the computation of multi-valued
solutions of first-order PDEs, we pause to consider some applications in high frequency
wave propagations for which we have special HJ equations for the phase function of the
wave field. In these cases, the multi-valuedness will reflect the interference of waves. We
illustrate as well how nonlinear HJ equations are obtained via the WKB method. Typical
applications include the semiclassical limit for Schrödinger equations and geometric optics
for the wave equation. The common feature among these problems is the involvement of
a small dimensionless parameter ε serving as the microscopic-macroscopic ratio. We look
at the O(ε)-wave length solutions, which can be tracked in one wave packet with a spatial
spreading of the order of 1/ε if the initial wave field is highly oscillating and takes the
form

(2.1) ψ(x, 0) = A0(x) exp(iS0(x)/ε).

The usual way to tackle this problem is to use the WKB (Wentzel-Kramers-Brillouin)
Ansatz, which consists of representing the wave field function ψε in the form

(2.2) ψ(t, x) = Aε(t, x) exp(iS(t, x)/ε).

With this decomposition, the most singular part of the wave field is characterized by
two quantities: the phase function S, which satisfies the nonlinear HJ equation, and the
amplitude function A, which satisfies a transport equation.

The derivation of the WKB system in the linear case is classical, see, e.g., Whitham’s
book [33]. For linear wave equations subject to highly oscillatory initial data, insertion of
(2.2) into the underlying equations leads to corresponding relations between the wave’s
phase S and its amplitude. Splitting the relation into real and imaginary parts and taking
the lowest-order (in terms of ε) terms, one often obtains weakly coupled WKB systems of
the form

∂tS +H(x,∇xS) = 0,

∂tρ+ ∇x · (ρ∇pH(x,∇xS)) = 0,

where ρ is related to the amplitude A. We list here two examples, see [31] for more
WKB-systems derived from generalized dispersive equations.

(1) Linear Schrödinger equation:

(2.3) iε∂tψ
ε = −

ε2

2
∆ψε + V (x)ψε, x ∈ IR

d,

where V is the corresponding potential, and ε the scaled Planck constant. In this case

H(x, p) = |p|2

2
+ V (x) and ρ = A2.

(2) The wave equation in an inhomogeneous medium with a variable local speed c(x)
of wave propagation in the medium:

(2.4) ∂2
t ψ

ε = c2(x)∆ψε, x ∈ IR
d,

for which we have H(x, p) = c(x)|p| and ρ = A2/c(x).
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We note that for the wave equation (2.4), if we look for a planar wave solution ψ =
u(x) exp(it/ε), we are led to a steady state function solving the scalar Helmholtz equation

(2.5) −(∆ + k2)u = 0, k := (εc(x))−1.

Searching for solutions oscillating with frequency 1/ε, we could use the ansatz u(x) =
A(x) exp(iS(x)/ε), leading to a weakly coupled system,

(2.6) c(x)|∇xS| = 1, ∇x · (A
2∇xS) = 0.

In the paraxial application, one spatial variable is regarded as the evolution direction
and the above steady eikonal equation may be written as

∂x2
S −

√

c−2 − (∂x1
S)2 = 0,

or a variant of this; see e.g. [18]. This is again a ‘time-dependent’ HJ equation. From
the above weakly coupled systems we see that the multi-valued phase S can be computed
from the nonlinear HJ equations, independent of amplitude, and the amplitude is forced
to become multi-valued at points where the phase is multi-valued.

3. Level Set Evolution

Consider a general first-order nonlinear equation

(3.1) G(ξ, u,∇ξu) = 0,

where u ∈ IR
1 is a scalar unknown and ξ ∈ IR

m is the independent variable. Further-
more, G = G(ξ, z, q), (ξ, z, q) ∈ IR

2m+1 is a given function satisfying the nondegeneracy
assumption

|∇qG(ξ, z, q)|2 6= 0,

which ensures that (3.1) is, in fact, a first-order equation.
In order to visualize the solution profile (single-valued or multi-valued), following [9],

we introduce a generic level set function φ(ξ, z, q) in an extended space (ξ, z, q) ∈ IR
2m+1

so that the solution z = u(ξ), and also its gradient ∇ξu, stay on the zero level set

φ(ξ, z, q) = 0, z = u(ξ), q = ∇ξu(ξ).

Since the equation (3.1) is a first order equation, its characteristics exist at least locally.
Let such characteristics be parameterized as (ξ, z, q) = (ξ, z, q)(τ). The level set function
should be independent of the parameter τ . Therefore,

d

dτ
φ(ξ(τ), z(τ), q(τ)) ≡ 0,

which gives the level set equation

~A · ∇{ξ,z,q}φ = 0,

where ~A := ( dξ

dτ
, dz

dτ
, dq

dτ
) denotes the direction field of the characteristics. According to the

classical theory of characteristics for general differential equations of the first order, see
[7, pages 142-144], the vector field is obtained as

A1 = ∇qG, A2 = q · ∇qG, A3 = −∇ξG− q · ∂zG.

Thus our level set equation is

(3.2) ∇qG · ∇ξφ+ q · ∇qG∂zφ− (∇ξG+ q∂zG) · ∇qφ = 0,
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which as a linear equation serves to ‘unfold’ multi-valued quantities wherever they occur
in the physical space. The level set equation in such generality can be used to capture
wavefronts, and to recover the solution value u and the gradient of the solution when
desired.

Based on the general level set equation (3.2), we can write down the corresponding
form of the level set equation once the target PDE is given. To implement the level set
method for a given problem we still need to further check (i) whether reducing to a lower
dimension is possible (to reduce computational cost); (ii) how many level set functions
are needed; and (iii) how the initial data is chosen. Here are some guiding principles:

• When implementing the level set method, reducing to a lower dimension is pre-
ferred for lowering the computational cost. In general such reduction is indeed
possible if the variables in the lower dimension give us the quantities we want to
compute and these variables evolve along the characteristic field independent of
other variables in the full space (ξ, z, q).

• If the reduced space dimension is m and the object of interest is k dimensional,
then use m− k level set functions;

• The initial data should be chosen in such a way that the interaction of zero level
sets of these chosen initial data uniquely embeds the given initial data in the
original PDE problem.

The level set method has proven to be a powerful tool for capturing the dynamic evolution
of surfaces, see [27, 28]. We now demonstrate the level set method by looking at hyperbolic
transport equations and Hamilton-Jacobi equations, which are two prototypical examples
of first-order PDEs. We will study how many level set functions are needed to determine
the desired quantities, and how to choose initial data to generate these level set functions.

3.1. Hyperbolic transport equations. Consider the first-order time-dependent trans-
port equation:

∂tu+ F (u, x, t) · ∇xu = B(u, x, t), x ∈ IR
n, u ∈ IR

1,(3.3)

subject to smooth initial data u(0, x) = u0(x).
Take ξ = (t, x) and q = (p0, p) with p0 = ∂tu, p := ∇xu, and the equation (3.3) can

be rewritten as G = 0 where

G := p0 + F (z, x, t) · p−B(z, x, t), z = u.

A simple calculation gives

∇qG · ∇ξφ = ∂tφ+ F (z, x, t) · ∇xφ

and
q · ∇qGφz = (1, F ) · (p0, p) = p0 + F · p = B(z, x, t)φz,

where we have used the fact G = p0 + F · p− B = 0. The level set equation (3.2) in this
setting reduces to

∂tφ+ F · ∇xφ+B∂zφ+ A3 · ∇qφ = 0.

Note that the transport speeds in the x and z-directions do not explicitly depend on
(p0, p). Therefore, the level set function will not depend on q = (p0, p) if it does not do
so initially. Thus, the effective level set equation in the phase space (t, x, z) reads as

(3.4) ∂tφ+ F · ∇xφ+B∂zφ = 0.
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The solution u to (3.3) with initial data u(0, x) = u0(x) can be determined as the zero
level set,

φ(t, x, z) = 0, z = u(x, t).

In this case, we only need one level set function φ. The initial data can simply be chosen
as

φ(0, x, z) = z − u0(x),

or alternatively the signed distance to the surface z = u0(x) in the case of non-smooth
data. Here the zero level set φ(t, x, u) = 0 can be regarded as a complete integral to (3.4),
which implicitly determines u, see [7, page 140].

3.2. Generalized Hamilton-Jacobi equations. Consider a generalized Hamilton-Jacobi
equation

(3.5) ∂tS +H(x, S,∇xS) = 0,

subject to the initial data

(3.6) S(x, 0) = S0(x), x ∈ IR
n.

Note, in previous literature, e.g. [10], this equation was simply referred to as Hamilton-
Jacobi equation. Here, we call it generalized Hamilton-Jacobi equation to distinguish it
from the case where the Hamiltonian does not depend on S explicitly. The inclusion of S
fundamentally changes the behavior of the solution. Thus, the previous studies conducted
in [9] do not apply in this situation.

Taking ξ = (t, x) and q = (p0, p) with p0 = ∂tS, p = ∇xS, the equation (3.5) can be
rewritten as G = 0, where

G := p0 +H(x, z, p), z = S.

A straightforward calculation gives

∂qG · ∇ξφ = ∂tφ+ ∇pH · ∇xφ,

q · ∇qG∂zφ = (p · ∇pH −H)∂zφ

and

∇ξG+ q · ∂zG = (0,∇xH) + (p0, p)Hz = (−HHz,∇xH + pHz),

where we have used p0 = −H(x, z, p). The level set equation in the full phase space
(x, z, p, p0) thus becomes

∂tφ+ ∇pH · ∇xφ+ (p · ∇pH −H)∂zφ− (∇xH + pHz)∇pφ+HHz∂p0
φ = 0.

The effective level set equation for (3.5), when capturing p0 = ∂tS is not a goal, yields

(3.7) ∂tφ+ ∇pH · ∇xφ+ (p · ∇pH −H)∂zφ− (∇xH + pHz)∇pφ = 0,

where φ := φ(t, x, z, p) is well defined in the space (x, z, p) ∈ IR
2n+1 for fixed t. The

solution S is evolved as the zero level set of φ = φ(t, x, z, p) with z = S, p = ∇xS,
Since (p, z) ∈ IR

n+1, we need (n + 1) level set functions φi(t, x, z, p)(i = 1 · · ·n + 1)
in this case. Their common zero level set captures the desired solution z = S in the jet
space (x, p, z). As a by-product, the multi-valued p = ∇xS will also be determined in this
procedure.
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For these level set functions, the corresponding initial data can be simply chosen as

φ1(0, x, z, p) = z − S0(x),(3.8)

φi(0, x, z, p) = pi − ∂xi
S0(x), i = 2 · · ·n+ 1.(3.9)

Again for non-smooth data, we need to use instead the signed distance function to the
surfaces z = S0(x) or p = ∇xS0(x).

If the Hamiltonian H does not depend explicitly on S, i.e., Hz = 0, (3.7) will lead to
the level set equation

(3.10) ∂tφ+ ∇pH · ∇xφ+ (p · ∇pH −H)∂zφ−∇xH∇pφ = 0.

Note that when H does not depend on z explicitly, the level set function φ will be in-
dependent of z, if it is chosen so initially. Therefore, if one just wants to capture the
wavefront or resolve the gradient of S, the effective level set equation reduces to

∂tφ+ ∇pH · ∇xφ−∇xH · ∇pφ = 0.

This is the well-known Liouville equation (1.2). In this case, only n independent level set
functions are needed for capturing the phase gradient ∇xS, see [9, 22].

4. Numerical Tests

The level set equation for first order time-dependent PDEs takes the form

(4.1) ∂tφ+ ~A(X) · ∇Xφ = 0,

with X = (x, z, p) being the variable in the extended phase space and the coefficient
~A(X) depending on the phase variable X. We apply variants of the numerical algorithm
developed in [9] to (4.1) to capture possible multi-valued solutions of the original nonlinear
PDEs.

We conclude the paper with a number of numerical examples. We present mainly 1D
examples focusing on the computation of phase in the whole domain; consult [9] for phase
computations restricted on wavefronts and [22] for the computation of phase gradient
(velocity). The details of the level set algorithms, including boundary conditions, grid
sizes, and time steps used, and the intricacies of reinitialization, following the numerical
studies of [9].

4.1. One dimensional transport equations. Consider the scalar transport equation

∂tu+ ∂xf(u) = −v′(x), x ∈ IR

subject to the initial data u(x, 0) = u0(x). Usually of interest is the viscosity solution
of this PDE satisyfing the entropy condition. However, we are interested here in the
calculation of multi-valued solutions. Our level set approach, in this case, realizes this
type of solution as the zero level set

φ(t, x, z) = 0, z = u(x, t)

evolving with the level set function φ under the transport equation

∂tφ+ f ′(z)∂xφ− v′(x)∂zφ = 0.
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Initial data for this equation is chosen to satisfy z = u0(x), and thus one common choice
is

φ0(x) = z − u0(x).

Example 1 - Inviscid Burgers’ equation

Consider the inviscid Burgers’ equation

∂tu+ ∂x

[

u2

2

]

= 0

with smooth periodic initial data

u0(x) = 0.5 + sin(x).

The solution of this PDE is well-analyzed, and we know that it develops a singularity at
the critical time Tc = 1 and spatial location x = (2k + 1)π + 0.5, for each k ∈ ZZ.

The PDE for evolution of φ takes the form

∂tφ+ z∂xφ = 0,

with initial data

φ0(x) = z − (0.5 + sin(x)).

Figure 1 shows the behavior of the multi-valued solution computed using our algorithm.
The zero level sets of φ at different times are plotted in the same graph. Notice we are
able to capture the overturning of the function at the correct location x = −π+0.5. This
overturning is a shock in the standard viscosity solution.
Example 2 - Nonconvex flux:

Consider the Riemann problem

∂tu+ ∂x

[

(u2 − 1)(u2 − 4)

4

]

= 0

with discontinuous initial data

u0(x) =

{

2, x ≤ 0
−2, x > 0.

Thus the initial data has a shock at x = 0 which overturns at later time.
In this case, the level set evolution equation takes the form

∂tφ+ z

(

z2 −
5

2

)

∂xφ = 0,

and we choose φ0(x) to be the signed distance function associated to the graph of u0(x),
due to the discontinuity. Figure 2 shows the multi-valued solution associated to this
problem. We plot in the same graph the time evolution, in equal time intervals, of the
initial function using our algorithm. Overturning is clearly seen and there are up to 5
values of the function at a given x. Our approach is able to capture all of the multi-valued
phenomena.
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4.2. One dimensional Hamilton-Jacobi equations. Consider the Hamilton-Jacobi
equation

∂tS +
1

2
|∂xS|

2 + V (x) = 0,

where V (x) is a function called the potential. Furthermore, let S0(x) be the initial data for
S. This specific set of equations arises as the semiclassical limit of the linear Schrödinger
equation, where S denotes the phase (see, e.g., [9, 21, 31]).

Example 3 - Free motion V ≡ 0
In the case of free motion, where V ≡ 0, the Hamilton-Jacobi equation reduces to

∂tS +
1

2
|∂xS|

2 = 0.

In our level set approach, we introduce the two component vector valued level set function
φ = φ(t, x, z, p), which satisfies the equation for motion,

∂tφ+ p∂xφ+
p2

2
∂zφ = 0.

Furthermore, we can in many cases take as initial data for φ,

φ1(0) = z − S0(x), φ2(0) = p− ∂xS0(x),

where φ1 and φ2 denote the first and second components of φ, respectively.
The specific cases we consider are:

(1) Case - No caustic

S0(x) = x2

2
, x ∈ IR.

In this case, the solution S remains smooth for all time, taking the form

S(x, t) =
x2

2(t+ 1)
.

Figure 3 shows the results of our algorithm in xz-space, projecting away p, on
this problem. The initial parabola flattens out as time increases but no multi-
valuedness occurs.

(2) Case - Focusing at a point

S0(x) = −x2

2
, x ∈ IR.

In this case, all rays intersect at the focus point (x, Tc) = (0, 1), and then spread
out afterwards. Thus almost everywhere in space, there is a single-valued phase,
taking the form

S(x, t) =
x2

2(t− 1)
.

Figure 4 shows our projected results in xz-space for this example. The initially
inverted parabola becomes thinner and thinner, eventually flipping over to parabo-
las lying above the x-axis and expanding. Some of the parabolas are “cut off” in
the graph due to the finite z-direction of the domain used in our computations.



A Level Set Framework for Capturing Multi-Valued Solutions 11

(3) Case - Caustic

S0(x) = − ln(cosh(x)), x ∈ IR.

In this case, a singularity appears at time 1 and located at x = 0. After this
time and from this location, a multi-valued phase appears. Figure 5 shows the
behavior of the solution obtained from our algorithm plotted at equal time intervals
up to time 1.5. The shrinking solutions develop a swallow-tail singularity after the
critical time Tc = 1 at x = 0. A zoom of specifically this multi-valuedness between
time 1 and 1.5 are also shown in the figure. These results fit with the analysis of
the PDE.

Example 4 - Harmonic oscillator V (x) = x2/2
For general V (x), the level set evolution equation takes the form

∂tφ+ p∂xφ+

(

p2

2
− V (x)

)

∂zφ− ∂xV (x)∂pφ = 0,

and the initial data can in many cases be taken as

φ1(0) = z − S0(x), φ2(0) = p− ∂xS0(x).

For V (x) = x2/2 and S0(x) = x (see [31]), rays will intersect at the focal points

(x, Tc) =
(

(−1)m+1, (2m+1)π
2

)

, m ∈ ZZ.

The solution in fact is explicitly given as

S(x, t) = −1
2
(x2 + 1) tan(t) + x

cos(t)
, t 6= (2m+1)π

2
.

Figure 6 shows our results, plotted in xz-space, for this problem. The initial line z =
x first focuses at x = 1 and then subsequently at x = −1, at each time developing
multi-valuedness after the focusing. This oscillation continues since the singularties form
periodic in time. Though there are once again “cut offs” due to the computational domain
used, we are still able to capture the multi-valued solution throughout the focusing effects.
Example 6 - Other multi-valued phenomena

In the semi-classical limit for plasma, there appears the equation

St +
|Sx|

2

2
= −αS,

with S0(x) = −|x| and some physical parameter α > 0. With x ∈ IR
1 and α = 1, we plot

the results in figure 7 along with branches of the exact solution at the final time. These
branches satisfy −(|x| + t)e−t + 0.5(1 − e−t) for |x| > t, and (±|x| − t)e−t + 0.5(1 − e−t)
or 0.5x2(1− e−t)/t2 for |x| ≤ t. The multi-valued characteristics match and the positions
are in good agreement except for the small, thin loops at the ends of the swallow-tails,
whose lengths are cut by half in the computed solution. This may be due to numerical
diffusion and resolution.
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Figure 1. Our approach capturing an initial sine function overturning to
become multi-valued. The plots are at 0.3921268 time intervals, with the
final curve at time 1.96063.
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Figure 2. Our approach applied to a Riemann problem, with initial step
function, that produces multi-valued solutions. The plots are at 0.1160138
time intervals with the final curve at time 0.928111
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