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Abstract

We report on a combined atomistic molecular dynamics simulation and implicit solvent analysis of

a generic hydrophobic pocket-ligand (host-guest) system. The approaching ligand induces complex

wetting/dewetting transitions in the weakly solvated pocket. The transitions lead to bimodal

solvent fluctuations which govern magnitude and range of the pocket-ligand attraction. A recently

developed implicit water model, based on the minimization of a geometric functional, explains

the sensitive aqueous interface response to the concave-convex pocket-ligand configuration semi-

quantitatively.
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The water-mediated interaction between a ligand and a hydrophobic binding pocket plays

a key role in biomolecular assembly processes, such as protein-ligand recognition [1–6], the

binding of the human immunodeficiency virus (HIV) [7] or the dengue virus [8] to human

cells, the inhibition of influenza virus infectivity [9], or in synthetic host-guest systems [10].

Experiments and explicit-water molecular dynamics (MD) simulations suggest that the con-

cave nature of the host geometry imposes a strong hydrophobic constraint and can lead to

very weakly hydrated pockets [1–6, 11, 12], prone to nanoscale capillary evaporation trig-

gered by the approaching ligand [4, 5, 13]. This so called ’dewetting’ transition has been also

observed in other (protein) geometries [11, 12]. It has been speculated that dewetting may

lead to a fast host-guest recognition accelerating the hydrophobic collapse and binding rates

of the ligand into its pocket [1, 4, 5]. A deeper physical understanding of these sensitive

hydration effects in hydrophobic recognition is still elusive.

On the coarse-grained modeling side, the thermodynamics of molecular recognition is

typically approached by surface area (SA) models [14]. A major flaw of these implicit sol-

vent models is that the aqueous interface around the macromolecules is predefined (typically

by rolling a probe sphere over the van der Waals surface) and is therefore a rigid object that

cannot adjust to local energetic potentials and changes in spatial molecular arrangements.

In particular, the dewetting transition, which is highly sensitive to local dispersion, elec-

trostatics, and geometry [11, 12, 15], can, per definitionem, not be captured by SA type of

models. Their qualitative deficiency to describe the hydrophobic pocket-ligand interaction

in proteins [16], pocket models [13], or dewetting in protein folding [17] is therefore not

surprising.

In this letter, we combine explicit-water MD simulations and the variational implicit

solvent model (VISM) [15] applied to a generic pocket-ligand model, to explore the physics

behind hydrophobic recognition in more detail. The MD simulations show that the approach-

ing ligand first slightly stabilizes the wet state in the weakly hydrated pocket, whereas, upon

further approach, bimodal fluctuations in the water occupancy of the pocket are induced,

followed by a complete pocket dewetting. The onset of fluctuations defines the critical range

of pocket-ligand attraction. The VISM calculation, based on the minimization of a geomet-

ric functional, reproduces the bimodal hydration and explains it by the existence of distinct

metastable states which correspond to topologically different water interfaces. As opposed

to SA type of models, VISM captures the range and nature of the pocket-ligand interaction

2



semi-quantitatively. Strikingly, the observed nanoscale phenomena can be thus explained

by geometric capillary effects, well-known on macroscales [18]. Explicit inclusion of disper-

sion interactions and curvature corrections, however, seem to be essential for an accurate

description on nanoscales.

Our generic pocket-ligand model consists of a hemispherical pocket embedded in a rect-

angular wall composed of neutral Lennard-Jones (LJ) spheres interacting with ULJ(r) =

4ǫ[(σ/r)12 − (σ/r)6]. The atoms are aligned in a hexagonal closed packed arrangement with

a lattice constant of 1.25 Å. The LJ parameters are chosen to model a paraffin-like mate-

rial [13] and are ǫp = 0.03933 kJ/mol and σp = 4.1 Å (see supplementary Information) .

We consider two different pocket radii: R = 5 and 8 Å, which we refer to in the following as

’R5’ and ’R8’ systems. The ligand is taken as a methane (Me) represented by a neutral LJ

sphere with parameters ǫ = 0.294 kJ/mol and σ = 3.730 Å. It is placed at a fixed distance d

from the flat part of the wall surface (z = 0), along the pocket symmetry axis in z-direction,

see Fig. 1 (a) for an illustration. The explicit-water MD simulations are carried out with the

CHARMM package [19] employing the TIP4P water model, periodic boundary conditions,

and particle mesh Ewald summation. The temperature and pressure correspond to T = 298

K and P =1 bar. More technical details of the system and simulation setup can be found

in previous work [13]. A MD simulation snapshot is shown in Fig. 1 (b).

The VISM was introduced in detail previously [15] and applied to the solvation of nonpolar

solutes [20]. Briefly, let us define a subregion V void of solvent in total space W, for which we

assign a volume exclusion function v(~r) = 0 for ~r ∈ V and v(~r) = 1 else. The volume V and

interface area S of V can then be expressed as functionals of v(~r) via V [v] =
∫
W

d3r [1−v(~r)]

and S[v] =
∫
W

d3r |∇v(~r)| =
∫

∂W
dS, and the solvent density is ρ(~r) = ρ0v(~r), where ρ0 is

the bulk value. The solvation free energy G is defined as a functional of the geometry v(~r)

of the form [15]

G[v] = PV [v] +

∫
∂W

dS γlv[1 − 2δH(~r)]

+ ρ0

∫
W

d3r v(~r)U(~r), (1)

where γlv is the liquid-vapor interface tension, δ the coefficient for the curvature correction

of γlv in mean curvature H(~r), and U(~r) =
∑N

i U i
LJ(~r −~ri) sums over the LJ interactions of

all N solute atoms at ri (ligand+wall atoms) with the water. The δ-term in (1) has been

used in scaled-particle-theory [21] for convex solutes only, generalized capillary theory [23],
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and in the morphometric approach applied to the solvation of model proteins [22]. The

minimization δG[v]/δv = 0 leads to the partial differential equation (PDE) [15]

P − 2γlv [H(~r) + δK(~r)] − ρ0U(~r) = 0 (2)

which is a generalized Laplace equation of classical capillarity [18, 23] extrapolated to mi-

croscales by the local curvature and dispersion. The quantity K(~r) in (2) is the local

Gaussian curvature. The PDE (2) is solved using the level-set method which relaxes the

functional (1) by evolving a 2D interface in 3D space and robustly describes topological

changes, such as volume fusion or break-ups [20, 24]. The free parameters chosen to match

the MD simulation are P = 1 bar, γlv = 59 mJ/m2 for TIP4P water [25], and ρ0 = 0.033 Å−3.

The coefficient δ is typically estimated to be between 0.8 and 1 Å for various water models

around convex geometries [26, 27], while VISM was able to predict well the solvation free

energies of simple solutes for δ = 1 Å [20] which we use in the following.

We consider ligand positions from d = 11 Å to the distance of nearest approach to the

pocket bottom. The latter is defined as corresponding to a wall-ligand interaction energy

of 1 kBT and is d ≃ −1.8 and -3.8 Å for the R5 and R8 system, respectively. We define

the water occupancy Nw of the pocket by the number of oxygens whose LJ centers are

located at z < 0. Considering the probability distribution P (Nw), we obtain the free energy

as a function of pocket occupancy by G(Nw) = −kBT ln P (Nw) + G′. Without the ligand

(effectively for d & 9 Å), the MD simulation reveals that the small R5 pocket is in a stable

dry state with occupancy Nw ≃ Ndry = 0, despite the fact that a few water molecules fit

in, but consistent with experiments on a similarly sized protein pocket [6]. The R8 system,

however, is found to be weakly hydrated. The G(Nw) distribution shown for d = 9 Å in Fig. 2

reveals an almost barrierless transition between wet and dry states. Here, the metastable wet

state comprises Nw ≃ 9 = Nwet water molecules in the pocket, which roughly corresponds

to bulk density.

We find that the approaching ligand considerably changes the G(Nw) distribution in the

R8 system. As plotted in Fig. 2, for d = 6.5 Å the free energy exhibits a minimum at the

wet state which is slightly stabilized (by ≃ 0.4 kBT ) over the dry state. The free energy

function G(Nw) develops, however, concave curvature for Nw ≃ 0 indicative of the onset of a

thermodynamic instability. Indeed, upon further approach of the ligand (d = 5.5 Å) a local

minimum forms at the dry state. It becomes a stable, global minimum at the critical distance
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dc ≃ 4.5 Å. The now metastable wet state completely vanishes for d . 0 Å. The free energy

difference between the wet and dry state at this distance is G(Ndry)−G(Nwet) ≃ 5kBT . By

investigating the water density distributions corresponding to d between 0 and 9 Å (Fig. 2,

right panel), we find that a possible reason for the stabilized wet state at d = 6.5 Å may

be the first methane hydration penetrating partly into the pocket. The average occupancy

〈Nw〉 thus exhibits a maximum at d = 6.5 Å (where 〈Nw〉 ≃ 6) while it jumps down to ≃ 0

at d ≃ dc (see supplementary information).

In the VISM calculation where thermal interface fluctuations are not yet considered, we

start the numerical relaxation of the functional (1) from (i), one closed solvent boundary

which is arbitrary and loosely envelopes both the pocketed wall and the ligand, or (ii), the

(tight) van der Waals surface around the pocketed wall and the ligand giving rise to two

separated surfaces. In Fig. 3 we plot examples of the resulting VISM interfaces for both

(i) and (ii), obtained for the ligand at d = 4.5 Å. For (i) the solution relaxes to a single

interface that wraps both wall and the ligand together, thereby indicating a dry pocket state

[Fig. 3 (a)], while for (ii) the solution relaxes to two separate surfaces, one of which closely

follows the pocket contours indicating a wet state [Fig. 3 (b)]. The existence of two distinct

results can be clearly attributed to the energy barrier between wet and dry states observed

in the simulation (cf. Fig. 2).

By systematically investigating different initial configurations and ligand distances we find

that the solution for R8 relaxes to at most three distinct interfaces: 1. a single enveloping

surface around the dry pocket and ligand (1s), 2. two separated surfaces with a dry pocket

(2s-dry), and 3. two separated surfaces with a wet pocket (2s-wet). Selected examples

for the interface at ligand distances d = −2, 2, 4.5 and 9 Å are shown in Fig. 3, where we

plot the bisected VISM interface for a clearer view. For the initial configuration (i) and for

d . 7 Å, the results converge to the 1s state while for larger separations a breakup into two

interfaces (2s-dry) is observed [Fig. 3 (c)]. The stable 2s-dry state exists also for 5 < d < 7

Å, where it is reached from an initial configuration intermediate between (i) and (ii). For

the initial configuration (ii) and for d & 0, the results converge to two separated surfaces

with a wet pocket (2s-wet) while for smaller separations there is only one enveloping surface

(1s), see Fig. 3 (d). For R5 we just find two distinct solutions, 1s and 2s-dry, indicating a

very stable dry pocket in agreement with the MD simulations and experiments [6]. These

results demonstrate that VISM captures the dewetting transition, and the final interface
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geometry is relaxed into (meta)stable states representing (local) free energy minima. This

is in physical agreement with the bimodal behavior observed in the MD simulation and is

further quantified in the following.

The minimum VISM free energy (1) vs. d is is plotted for R8 in Fig. 4: for d < 0 all

possible VISM solutions converge to 1s, featuring a dry pocket. For 0 . d . dc ≃ 4.5 Å,

the ’dry branch’ 1s is favored over the second appearing branch corresponding to the 2s-

wet interface (by ≃ 8 kBT at d = 0) in excellent agreement with the bimodality in the

MD simulation. For dc . d . 7 Å the 2s-dry state is favored over 2s-wet and 1s which

is now highly metastable. For d & 7 Å the 1s state disappears and 2s-dry is favored by

roughly 2kBT over 2s-wet. The fact that a dry pocket is favored in VISM for large d is in

contrast to the MD simulation which supplied a very weakly hydrated pocket for d & 6.5 Å.

Changing the curvature parameter δ shows that this failure can be attributed to a too high

energy penalty for concave interface curvature (a too large δ for H < 0) which favors pocket

dewetting. It thus appears that the simple curvature correction applied breaks down and is

not symmetric with respect to concavity and convexity on these small scales. The symmetry

may be broken by higher order correction terms in the the curvature expansion of the surface

tension, if feasible [28].

If thermal fluctuations were included in VISM, the various energy branches would be

sampled in a Boltzmann-weighted fashion to yield the solvent-mediated potential of mean

force (pmf) between the ligand and the pocket. At present, allowing the existence of multiple

local minima for a given d in the G[v] functional that correspond to the ensemble {v}m

of most probable solvent configurations, we obtain the ensemble-averaged (EA) pmf as

G = −kBT ln
∑

{v}m
e−G[v]/kBT +G′′, with G′′ being an arbitrary constant. The resulting pmfs

for R8 and R5 are shown in Fig. 4 together with the MD simulation results. The curves are

overall in good, almost quantitative agreement. A detailed analysis of the individual energy

contributions to (1) reveals that the inclusion of the dispersion and curvature correction

terms in VISM is crucial to capture the onset of the attraction at dc = 4.5 Å for R8, while

SA type of calculations yield a too low dc ≃ 0 [13]. Furthermore, the ∼ 1 kBT energy

barrier at d ≃ 6 Å for the R5 system is nicely captured by VISM; it can be attributed

to the unfavorable curvature correction term arising from the development of a concave

solvent boundary penetrating the pocket, as well as the wall-water dispersion term, whose

repulsive contribution stems from displacement of water close to the small R5 pocket. An
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EA performed to estimate the average occupancy 〈Nw〉 for R8 yields qualitative agreement

with the MD, i.e., a maximum at d ≃ 6.0 and vanishing values for d < dc (see supplementary

Info).

In summary, we have exemplified the complex solvation physics of biologically relevant

hydrophobic pocket-ligand systems. The geometry-based VISM captures the phenomena

observed in MD simulations and experiments, in contrast to established SA models, and

exemplifies the significance of interfacial fluctuations [29] in hydrophobic confinement where

the free energy can be polymodal. Pocket dewetting may be regarded as the rate-limiting

step for protein-ligand binding as found in folding [30]. Our findings indicate, however,

that the existence and height of activation barriers and the range of attraction can strongly

depend on pocket size and geometry. Thus, our study, describing pocket-ligand hydration in

terms of nanoscopic capillary mechanisms, in which dispersion and concave-convex curvature

effects play explicit roles, may represent a valuable step towards proper interpretation of

experimental binding rates [1].
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(a) (b)

FIG. 1: (a) Sketch of the generic model. The pocket has a radius R. The methane (Me) lig-

and is fixed at a distance d from the wall surface. (b) MD simulation snapshot illustrating the

wall/ligand/water system.
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FIG. 2: MD simulation results for the free energy G(Nw) vs. pocket water occupancy Nw in pocket

R8 for ligand distances d=0.0, 2.5, 4.0, 5.5, 6.5, and 9 Å. The curves are shifted vertically and

we use two scales (1 and 2 kBT ) for a better illustration. The right panel exemplifies the water

density (ρ) distribution around pocket and ligand for selected d.
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(c)(a) (b) (d)

FIG. 3: VISM solution of the aqueous interface for the R8 system. a) and b), full three-dimensional

interface for the ligand at d = 4.5 for one surface (i) and two separated surfaces (ii) as initial

boundary inputs, respectively. c) and d), the bisected interface for initially one surface (i) and two

surfaces (ii), respectively, for distances d = -2, 2, 4.5, and 9 Å (black, magenta, blue, and red).

11



−6

−4

−2

 0

 2

 4

 6

G
/k

B
T

R8

pmf (MD)
pmf (EA)

1s
2s−wet
2s−dry

−6

−4

−2

 0

 2

 4

 6

−4 −2  0  2  4  6  8  10

G
/k

B
T

d/Å

R5

pmf (MD)
pmf (EA)

1s
2s−dry
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The wall-water interaction

In order to construct hydrophobic walls we considered
a paraffine-like material of 0.8 g/cm3 density composed
of CH2 units. Assuming a hexagonally closed-packed ar-
rangement, the given density requires a lattice constant
of 3.5 Å which is too coarse to produce a relatively
smooth hemispherical pocket. Thus, we reduced the lat-
tice constant to 1.25 Å while at the same time adjust-
ing the Lennard-Jones potential parameters of the wall
pseudo-atoms to reproduce the original paraffine wall -
water interaction energy (see inset to Fig. 1) that was ob-
tained with the united atom OPLS parameters for CH2

units [1].
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FIG. 1: Water oxygen density vs. the distance z from the
flat wall surface; g(z) = 1.0 corresponds to a water number
density of 0.0334 Å−3. Inset: wall-water interaction energy
for the original 3.5 Å grid lattice (dashed line), and the 1.25 Å
grid lattice with adjusted LJ potential parameters (squares).

The height of the first peak in the wall-water density
profile from our MD simulations (Fig. 1) is within the
range (1.3 to 1.6) observed in all atom MD simulations of
hydrocarbon-water interfaces [1–3], suggesting that the
walls indeed closely resemble a paraffine-like material.

Average water occupancy of the pocket

Based on the VISM results we estimated an average
pocket occupancy 〈Nw〉 for different ligand positions by

the ensemble average

〈Nw〉 =
∑
{v}m

N [v]e−G[v]/kBT /
∑
{v}m

e−G[v]/kBT , (1)

where N [v] = 0 for dry-type solutions and N [v] =
Nwet = 9 for wet-type solutions. A comparison with MD
results (Fig. 2) shows the correct qualitative behavior
with a transient increase in pocket wetting at d ≃ 6 Å,
followed by ligand induced dewetting. The qualitative
discrepancy is due to a) the approximations in the VISM
functional leading to over-stabilization of dry state rela-
tive to wet state, and b) including only local G[v] min-
ima in the ensemble average while omitting intermediate
states of not much higher free energy. We expect the
qualitative agreement to improve upon inclusion of in-
terface thermal fluctuations into VISM.
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FIG. 2: Average pocket occupancy 〈Nw〉 from MD simulation
and VISM ensemble average.
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