1. Consider the Jordan block $J_k(\lambda)$.
 (a) Find $J_k(\lambda)^m$, for integers $m \geq 1$.
 (b) For $m \geq 1$ an integer, what is rank($J_k(\lambda)^m$) when $\lambda = 0$? What about when $\lambda \neq 0$?
 (c) A matrix $A = (a_{ij}) \in M_n$ is called convergent if $\lim_{m \to \infty} (A^m)_{ij} = 0$ for all $i = 1, \ldots, n$, $j = 1, \ldots, n$. Find necessary and sufficient conditions for $A = J_k(\lambda)$ to be convergent, for $k \geq 1$ an integer. What about when A is a direct sum of Jordan blocks?

2. Consider square matrices that are direct sums of Jordan blocks, and only have one distinct eigenvalue of 2, with $am(2) = 5$ and $gm(2) = 3$.
 (a) Find all such matrices, up to similarity.
 (b) For each of your matrices, A, compute rank($(A - 2I)^m$), for $m = 1, 2, \ldots$.

3. A matrix A is idempotent if $A^2 = A$.
 (a) Prove a Jordan block $J_k(\lambda)$ is idempotent if and only if $k = 1$ and $\lambda = 0$ or 1.
 (b) Prove a matrix $A \in M_n$ is idempotent if and only if it is similar to
 $$
 \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}.
 $$

4. Let $A \in M_n$. Prove A can be written in the form $A = B + C$, where B is diagonalizable, C is nilpotent, and $BC = CB$.

5. Use Jordan canonical form to prove a matrix in M_n whose eigenvalues are all real is similar to a matrix in $M_n(\mathbb{R})$.

6. Given $\alpha \neq 0$, use diagonal matrices in a similarity transform to show the Jordan block $J_k(\lambda)$ is similar to $B = (b_{ij}) \in M_k$, defined by
 $$
 b_{ij} = \begin{cases}
 \lambda, & \text{if } i = j \\
 \alpha, & \text{if } i + 1 = j \\
 0, & \text{otherwise.}
 \end{cases}
 $$
 What if $\alpha = 0$?

7. Let $A \in M_n$ and suppose there exists nonsingular $X \in M_n$ such that $X^{-1}AX$ is a direct sum of matrices: $Y_1 \oplus \ldots \oplus Y_s$, for some s, where $Y_j \in M_{k_j}$. Also partition $X = [X_1 \ldots X_s]$, where $X_j \in M_{n,k_j}$.
 (a) Let $\mathcal{B} = \text{set of columns of } X_j$, and let $v \in \text{span}(\mathcal{B})$. Find $[Av]_\mathcal{B}$ in terms of $[v]_\mathcal{B}$.

1
(b) Suppose further that each Y_j happens to be a Jordan block $J_{k_j}(\mu_j)$, for some $\mu_j \in \mathbb{C}$, and partition $X_j = [x^{(j)}_1 \ldots x^{(j)}_{k_j}]$, where $x^{(j)}_k \in \mathbb{C}^n$, for $k = 1, \ldots, k_j$. Prove $x^{(j)}_1$ is an eigenvector of A. Also find an expression for $Ax^{(j)}_{k+1}$ in terms of $x^{(j)}_k$ and $x^{(j)}_{k+1}$, for $k = 1, \ldots, k_j - 1$.