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Abstract

In this article, by extending the method of Andrews and Clutterbuck (2011) [2] we prove a sharp estimate on the expansion
modulus of the gradient of the logarithm of the parabolic kernel to the Schrödinger operator with convex potential on a bounded
convex domain. The result improves an earlier work of Brascamp–Lieb which asserts the log-concavity of the parabolic kernel.
We also give an alternate proof to a corresponding estimate on the first eigenfunction of the Schrödinger operator, obtained firstly
by Andrews and Clutterbuck via the study of the asymptotics to a parabolic problem. Our proof is more direct via an elliptic
maximum principle. An alternate proof of the fundamental gap theorem of Andrews and Clutterbuck (2011) [2], by considering
the quotient of moduli of continuity, is also obtained. Moreover we derive a Neumann eigenvalue comparison result and some
other lower estimates on the first Neumann eigenvalue for Laplace operator with a drifting term, including an explicit estimate on
a conjecture of P. Li.
© 2012 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article, en étendant la méthode de Andrews et Clutterbuck (2011) [2] on obtient une inégalité fine sur le module
d’expansion du gradient du logarithme du noyau parabolique de l’opérateur de Schrödinger avec potentiel convexe sur un do-
maine borné et convexe. Ceci améliore le résultat de Brascamp–Lieb qui établit la log-concavité du noyau parabolique. On donne
également une démonstration différente de l’inégalité sur la première function propre de l’opérateur de Schrödinger avec potentiel
convexe obtenue par Andrews and Clutterbuck via l’étude de l’asymptote parabolique. Notre demonstration, utilisant un principe
de maximum elliptique, est plus directe. On donne aussi une autre démonstration du théorème de l’écart fondamental de Andrews
et Clutterbuck (2011) [2], en considérant le quotient du module de contuinité. De plus, on dédiut un résultat de comparaison de
valeurs propres de Neumann, et d’autres inégalités sur la première valeur propre de Neumann du laplacien avec dérive, ce qui inclut
une inégalité explicite d’une une conjecture de P. Li.
© 2012 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In [6], for any bounded convex domain Ω ⊂ R
n, it was proved that the first eigenfunction φ0, of the operator

Lq = � − q(x) with the Dirichlet boundary value, has the property that − logφ0 is a convex function on Ω , provided
that the potential q(x) is a convex function on Ω . See also [7,8,13,18] for alternate proofs, as well as generaliza-
tions/applications of this important result, via the maximum principle.

Recently, this log-concavity property of the first eigenfunction was sharpened into the following convexity estimate:

−(
(∇ logφ0)(y) − (∇ logφ0)(x)

) · y − x

|y − x| � 2
π

D
tan

(
π |y − x|

2D

)
(1.1)

for any pair of points (x, y) in Ω with x �= y, by Andrews and Clutterbuck [2]. Here D is the diameter Diam(Ω).
This improved convexity (or log-concavity for φ0) estimate, which is the novel crucial step in the proof to the funda-
mental gap conjecture, was proved in [2] by the study of the precise asymptotics (as t → ∞) to a parabolic equation
(cf. Theorem 4.1 and Corollary 4.4 in [2]) as well as some delicate constructions of barrier functions via the Prüfer
transformation.

Motivated by this result, via studying a modified parabolic equation for the vector fields we prove a log-concavity
estimate for the fundamental solution (with Dirichlet boundary data). The result sharpens a corresponding result by
Brascamp and Lieb [5] (see also [6] Theorem 6.1) on the log-concavity of the fundamental solution. Precisely, if

H(x,y, t) is the fundamental solution of ∂
∂t

−Lq and if H̄ (s, t) is the fundamental solution of ∂
∂t

− ∂2

∂s2 centered at 0

with Dirichlet boundary condition on [−D
2 , D

2 ]. Then for any t > 0, x �= y,

−(∇y logH(z, y, t) − ∇x logH(z, x, t)
) · y − x

|y − x| �−2(log H̄ )′
( |y − x|

2
, t

)
, (1.2)

provided that q(x) is convex. This estimate yields (1.1) by taking t → ∞. As in [2], even when q(x) is not convex,
the proof can still give a comparison result with the one-dimensional case. Since H̄ ′ > 0 on (0, D

2 ), the estimate
(1.2) sharpens the log-concavity assertion of [5] on the fundamental solution. Our approach allows a more direct
alternate argument to the estimate (1.1) via an elliptic maximum principle on vector fields satisfying nonlinear equa-
tions. Furthermore we interpret estimates (1.1) and (1.2) as comparisons of the energy of line intervals with respect
to complete Riemannian metrics (in the case that Ω is a strictly convex C2-domain) associated with φ0 and H .
See Corollary 3.3. This geometric interpretation may be of interest to a refined understanding of φ0.

We also derive an eigenvalue (Neumann) comparison result for such manifolds and other lower estimates on the
first Neumann eigenvalue for Laplace operator with a drifting term. This includes an explicit estimate addressing a
conjecture of P. Li (see also [3,10] for earlier related works).

Here is how the paper is organized. In Section 2 we prove a maximum principle for vector fields satisfying a
nonlinear PDE. This together with the precise boundary asymptotics in Section 3 provides an elliptic proof to (1.1).
The estimate (1.2) was proved in Section 4 along with a parabolic maximum principle. Section 5 is devoted to an
alternate perturbation in Andrews–Clutterbuck’s parabolic approach to the fundamental gap conjecture. In Section 6
we give an elliptic proof to the fundamental gap theorem of [2]. Section 7 is on various applications including an
explicit estimate on Li’s conjecture.

2. Maximum principles

Recall that a function ω(s) : [0,+∞) → R, is called a modulus of the expansion for a vector field X if(
X(y) − X(x)

) · y − x

|y − x| � 2ω

( |y − x|
2

)
. (2.1)

Under this terminology (1.1) amounts to show that π
D

tan( π
D

s) is a modulus of expansion for X = −∇ logφ0. On a
Riemannian manifold, (2.1) can be modified into a condition:

X
(
γ (d)

) · γ ′(d) − X
(
γ (0)

) · γ ′(0) � 2ω

(
r(y, x)

2

)
(2.2)

for a minimizing geodesic γ (s) : [0, d] → M with γ (0) = x, γ (d) = y, d = r(x, y).
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Let X(x) be a C2-vector field on Ω . Assume that X satisfies the differential equation:

�X = 2∇XX − V (x,X), (2.3)

where V (x,p) is a C1-vector field defined on Ω × R
n, which we assume that it is jointly convex in the sense that

ω(s) ≡ 0 is an expansion modulus of V , namely(
V

(
y,X(y)

) − V
(
x,X(x)

)) · y − x

|y − x| � 0. (2.4)

Let ψ(s) : [0, D
2 ) → R be a C2 function which satisfies that ψ(0) = 0,

ψ ′′ � −2ψ ′ψ (2.5)

and ψ ′ < 0.

Theorem 2.1. Assume that X(x) is a solution to (2.3) on Ω , a bounded domain in R
n with diameter D. Let ψ be a

function defined above. Then

C(x, y) �
(
X(y) − X(x)

) · y − x

|y − x| + 2ψ

( |y − x|
2

)
cannot attain a negative minimum in the interior, namely for some (x0, y0) with x0, y0 ∈ Ω .

Proof. Argue by contradiction. Assume that at (x0, y0), C(x, y) attains a negative minimum. Clearly x0 �= y0 since
C(x, x) = 0. Since for any w1 ∈ Tx0R

n and w2 ∈ Ty0R
n, ∇w1⊕w2C(x, y)|(x0,y0) = 0, if we choose as in [2] a local

orthonormal frame {ei} at x0 such that en = y0−x0|y0−x0| and parallel translate them along the line interval joining x0, y0, it
then implies that at (x0, y0), with 1 � i � n − 1,

∇ei
X(y) · y − x

|y − x| = −X(y) − X(x)

|y − x| · ei = ∇ei
X(x) · y − x

|y − x| , (2.6)

∇enX(y) · y − x

|y − x| = −ψ ′
( |y − x|

2

)
= ∇enX(x) · y − x

|y − x| . (2.7)

Let Ei = ei ⊕ ei ∈ T(x0,y0)R
n × R

n for 1 � i � n − 1, and En = en ⊕ (−en). Then the fact that C(x, y) attains its
minimum at (x0, y0) implies that

∇2
Ej Ej

C
∣∣
(x0,y0)

� 0, for 0 � j � n.

Direct calculation shows that at (x0, y0), with 1 � i � n − 1,

0 �∇2
EiEi

C = (∇2
eiei

X(y) − ∇2
eiei

X(x)
) · y − x

|y − x| , (2.8)

0 � ∇2
EnEn

C = (∇2
enen

X(y) − ∇2
enen

X(x)
) · y − x

|y − x| + 2ψ ′′. (2.9)

On the other hand using Eq. (2.3), assumption (2.4) we have that at (x0, y0),

n∑
j=1

∇2
Ej Ej

C = (
�X(y) − �X(x)

) · y − x

|y − x| + 2ψ ′′

� 2
(∇X(y)X(y) − ∇X(x)X(x)

) · y − x

|y − x| − 4ψ ′ψ.

Now note that at (x0, y0), using (2.6) and (2.7),
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∇X(y)X(y) · y − x

|y − x| = 〈∇X(y)X(y), en

〉
=

n∑
j=1

〈
X(y), ej

〉〈∇ej
X(y), en

〉

= − 1

|y − x|
n−1∑
i=1

〈
X(y), ei

〉〈
X(y) − X(x), ei

〉 − ψ ′X(y) · y − x

|y − x| .

Combining the above two inequalities we conclude that at (x0, y0),

n∑
j=1

∇2
Ej Ej

C � − 2

|y − x|
n−1∑
i=1

〈
X(y) − X(x), ei

〉2 − 2ψ ′(X(y) − X(x)
) · y − x

|y − x| − 4ψ ′ψ

� −2ψ ′C. (2.10)

By assumption that C(x0, y0) < 0 and ψ ′ < 0, estimate (2.10) is contradictory to the fact that

n∑
j=1

∇2
Ej Ej

C|(x0,y0) � 0. �

With little modification, the proof gives the same result for V with non-vanishing expansion modulus ω(s). In this
case ψ is assumed to satisfy:

ψ ′′ � −2ψψ ′ + ω. (2.11)

Similar argument also proves the following result for a related parabolic equation, which is quite close to Theorem 4.1
of [2].

Theorem 2.2. Assume that X(x, t) on Ω × [0, T ] satisfies the equation:(
∂

∂t
− �

)
X(x, t) = −2∇X(x,t)X(x, t) + V

(
x,X(x, t)

)
(2.12)

with the vector field V (x,X(x)) having a modulus of expansion ω(s). Let ψ(s, t) be a function defined on
[0, D

2 ) × [0, T ], with ψ(0, t)) = 0 and ψ ′(s, t) < 0, satisfies the parabolic inequality

ψt − ψ ′′ � 2ψ ′ψ − ω. (2.13)

Then C(x, y, t) = 〈X(y, t) − X(x, t),
y−x
|y−x| 〉 + 2ψ(

|y−x|
2 , t) cannot attain the negative minimum in the (parabolic)

interior.

3. Boundary asymptotics

First we show how to apply Theorem 2.1 to obtain the estimate (1.1) by establishing the boundary asymptotical
estimates on C(x, y) for the case X(x) = − logφ0. For this application we assume that Ω is C2, and strictly convex,
and we take ψ(s) = − π

D′ tan( π
D′ s) with D′ > D, and X = −∇ logφ0. It is easy to see that X satisfies (2.3) with

V (x) = ∇q . One can also check that ψ ′( |y−x|
2 ) < 0 and ψ ′′ = −2ψψ ′. The strategy is to prove that C(x, y) � 0

for any D′ > D and then taking D′ → D to obtain the estimate (1.1). Clearly for D′ > D, ψ(
|y−x|

2 ) is uniformly
continuous on Ω × Ω .

Recall that φ0, the first eigenfunction (with the Dirichlet boundary) of Lq , is a smooth function on Ω such that
φ0(x) > 0 for any x ∈ Ω , φ0|∂Ω = 0 and ∂φ0

∂ν
|∂Ω < 0, where ν is the exterior unit normal. We assume that

‖φ0‖C2(Ω) �
A

(3.1)

2
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for some A > 0. For any given ε > 0 we shall prove that C(x, y) � −ε on Ω × Ω . Note that on the diagonal
� = {(x, x) | x ∈ Ω}, ψ(

|y−x|
2 ) ≡ 0. Thus by the uniform continuity of ψ(

|y−x|
2 ), there exists η > 0 such that on

{(x, y) ∈ Ω × Ω | |y − x|� η}, a η-neighborhood of �, denoted by �η, 2ψ � −ε.
Now let Ωδ = {x | φ0(x) � δ}. Also assume that δ � η. We shall show that

C(x, y)� 0 on ∂(Ωδ × Ωδ) \ �η, (3.2)

for δ sufficiently small. On ∂�η , by the log-concavity of Brascamp–Lieb (we can avoid appealing to this result, as
explained in the remark below), C(x, y) � 2ψ � −ε. Hence Theorem 2.1 implies that C(x, y) � −ε. Below we shall
show claim (3.2). This can be seen via the following considerations.

Since |∇φ0| > 0 on ∂Ω , we assume that there exist δ0 > 0 and θ1 > 0 such that

|∇φ0|� θ1 (3.3)

for x ∈ Ω \ Ωδ0 . This in particular implies that for δ � δ0, ∂Ωδ is a smooth hypersurface. Since Ω is convex, we may
choose δ0 small enough so that there exists θ2 > 0 such that for any δ � δ0, the second fundamental form II(· , ·) of
∂Ωδ satisfies

II(· , ·) � θ2 I(· , ·), (3.4)

where I(· , ·) denotes the induced metric tensor on ∂Ωδ . On the level hypersurface ∂Ωδ , the following formula is also
well known:

II(· , ·) = ∇2φ0(· , ·)
|∇φ0| (3.5)

as symmetric tensors on T ∂Ωδ . We also make δ0 � η.

Now let C1 = 1
2 ( A2

θ1θ2
+ A) and δ1 = min{δ0,

θ2
1

4C1
, 1

θ2
}. Since Ω is strictly convex, if x ∈ ∂Ω and y ∈ Ω such that

|y − x|� δ1/A > 0 there exists θ3 > 0, depending only on δ1/A and Ω such that〈
−νx,

y − x

|y − x|
〉
� θ3. (3.6)

By the continuity we may also assume that the same estimate holds if Ω is replaced by Ωδ for δ � δ0.
For x ∈ ∂Ωδ/2, y ∈ Ωδ/2, let γ (s) be the line interval joining x to y parametrized by the arc-length. Denote γ ′(s) by

W . Along γ (s), W can be splitted into the tangential part WT and the normal part W⊥ with respect to Tγ (s)Ωφ0(γ (s))

and the inner-normal −νγ (s). The estimate (3.6) asserts that |W⊥| � θ3. We also have the estimate

∇2φ0(W,W) = ∇2φ0
(
WT,WT

) + 2∇2φ0
(
WT,W⊥) + ∇2φ0

(
W⊥,W⊥)

� −|∇φ0| II
(
WT,WT

) + A
∣∣W⊥∣∣∣∣WT

∣∣ + A

2

∣∣W⊥∣∣2

� −θ1θ2
∣∣WT

∣∣2 + A
∣∣W⊥∣∣∣∣WT

∣∣ + A

2

∣∣W⊥∣∣2

� −θ1θ2

2

∣∣WT
∣∣2 + C1(θ1, θ2,A)

∣∣W⊥∣∣2
. (3.7)

Here in second line above we used (3.1), and in the third line we used (3.3) and (3.4).
Hence if for some integer j �−1, δ′ = 2j+1δ and δ′/2 � φ0 � δ′, we estimate

∇2 logφ0(W,W) = ∇2φ0(W,W)

φ0
− |∇φ0|2

φ2
0

∣∣W⊥∣∣2

� −θ1θ2

2δ′
∣∣WT

∣∣2 + 2C1

δ′
∣∣W⊥∣∣2 − θ2

1

δ′2
∣∣W⊥∣∣2

� −θ1θ2

2δ′
∣∣WT

∣∣2 − θ2
1

2(δ′)2

∣∣W⊥∣∣2
, (3.8)

for δ′ � δ1 and γ (s) ∈ Ω \Ωδ1 . Here in the second line we used (3.7) and in the third line we used the definition of δ1.
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On the other hand, direct calculation shows(
X(y) − X(x)

) · y − x

|y − x| = 〈
X

(
γ (s)

)
, γ ′(s)

〉∣∣|y−x|
0

=
|y−x|∫
0

d

ds

(〈
X

(
γ (s)

)
, γ ′(s)

〉)
ds

=
|y−x|∫
0

∇2(− logφ0)
(
γ ′(s), γ ′(s)

)
ds.

Thus if γ (s) ∈ Ω \ Ωδ1 , (3.8) implies (
X(y) − X(x)

) · y − x

|y − x| � 0. (3.9)

Otherwise, there exists s′′, the first s such that φ0(γ (s)) = δ1. Let k be the integer such that 2kδ � δ1 < 2k+1δ. Since
|∇φ0| � A

2 , we deduce that if sj is the first s with φ0(γ (s)) = δ′/2 and s′
j is the first s with φ0(γ (s)) = δ′, then

s′
j − sj � δ′

A
. Similarly s′′ � δ1

A
, which particularly implies |y − x|� δ1

A
. Clearly s−1 = 0, s′

j = sj+1. Now

(
X(y) − X(x)

) · y − x

|y − x| �
k−1∑

j=−1

s′
j∫

sj

∇2(− logφ0)
(
γ ′, γ ′) +

s′′∫
sk

+
∫

φ0(γ (s))�δ1

∇2(− logφ0)
(
γ ′, γ ′)

�
θ2

1 θ2
3

4δA

k−1∑
j=−1

1

2j
− 4A2

δ2
1

D

� C2

δ
− C3

δ2
1

. (3.10)

Here in the first line (3.9) is used, in the second line (3.8), (3.6) are used, and that C2 = θ2
1 θ2

3
2A

, C3 = 4A2D.
The estimates (3.9), (3.10) together with the fact that ψ is uniformly continuous on Ω × Ω implies the claim (3.2)

hence that for δ small C(x, y) �−ε on ∂(Ωδ
2
× Ωδ

2
\ �η). Taking δ → 0 we have that

C(x, y) � −ε

for x, y ∈ Ω . Taking ε → 0 and then D′ → D we have (1.1).

Remark 3.1. First observe that (3.10) implies that for δ sufficiently small, (3.9) holds for any (x, y) ∈ ∂(Ωδ
2

× Ωδ
2
).

By taking ψ(s) = −ε tan(εs) with ε > 0 small, Theorem 2.1 and estimate (3.9) showed C(x, y) � 0 for this case,
which implies Brascamp–Lieb’s result on the log-concavity of φ0 as ε → 0.

Also note that in the above proof of the asymptotics of C(x, y) we did not use any other properties of φ0 being the
first eigenfunction besides that φ0 = 0, with non-vanishing gradient, on the boundary.

Replacing ψ by ψ̃ = cψ(cs) with 0 < c < 1 and letting c → 1, the same argument as above proves the following
corollary which asserts that ‘boundary convexity’ implies the ‘strong convexity’ even the domain may not be convex.

Corollary 3.2. Assume that Ω is a bounded domain such that there exists a smooth exhaustion Ωδ with Ωδ → Ω as
δ → 0. Assume that X be a C2(Ω) vector field satisfying (2.3), such that there exists δ1 > 0, for (x, y) ∈ ∂(Ωδ × Ωδ)

with |y − x| � δ1 (3.9) holds, and for (x, y) with |x − y| � δ1, (X(y) − X(x)) · y−x
|y−x| → +∞ as δ → 0. Let ψ be as

in Theorem 2.1. Then C(x, y) � 0 for any x, y ∈ Ω .
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Corollary 3.3. Assume that Ω is a strictly convex bounded C2-domain. Let gij (x) = −∇2
ij logφ0. Then gij dxi ⊗ dxj

is a complete Riemannian metric on Ω . The estimate (1.1) (as well as the estimate (1.2)) can be interpreted as
a comparison on the energy of the line segment in terms of this metric (in case of (1.2), in terms of the metric
gij (x, t) = −∇2

ij logH(z, x, t)) with the corresponding (complete) metric in one-dimensional model.

Proof. We shall prove the result under the assumption Ω is C3 since the argument is cleaner. The C2 case can be

derived by applying the similar argument to a neighborhood of points on ∂Ω with ∂2φ0
∂xi∂xj

∂φ0
∂xi

∂φ0
∂xj > 0, = 0 and < 0

respectively.
Let F(x) = − logφ0(x). Then gij (x) = Fij , the Hessian of F . Clearly F(x) → ∞ as x → ∂Ω . We shall write ∇g

as the covariant derivative with respect to g and denote by | · |g and 〈· , ·〉g the norm and the inner product with respect
to the metric g. Observe that φ0

ρ
, with ρ being the distance to ∂Ω , is a positive C2-function on Ω , if Ω is C3. Hence

the completeness of g is equivalent to the completeness of −∇2
ij logρ near ∂Ω . Thus we may assume that φ0 is the

distance function to ∂Ω .
We shall prove that |∇gF |g � 1 near ∂Ω . This implies that the metric g is complete, since for any curve γ (t),

a � t � b, with γ (b) approaching to ∂Ω we have that

b∫
a

∣∣γ ′∣∣
g
dt �

b∫
a

〈∇gF,γ ′〉
g
dt � F

(
γ (b)

) − F
(
γ (a)

) → ∞.

Consider gε
ij = gij + εδij = − (φ0)ij −εφ0δij

φ0
+ (φ0)i (φ0)j

φ2
0

, with δij being the Euclidean metric. For simplicity we denote

(φ0)ij − εφ0δij by Aij .
Now we compute the inverse of (gε

ij ). First let (Aij ) being the inverse of Aij . Also let φi
0 = Aij ∂φ0

∂xj . Then direct
calculation shows that (

gij
ε

) = −φ0

(
Aij + φi

0φ
j

0

φ0 − β

)
with β = Aij ∂φ0

∂xi

∂φ0
∂xj < 0. Using the above expression for (g

ij
ε ), we have∣∣∇gε F

∣∣2
gε = gij

ε FiFj = −β

−β + φ0
� 1.

Taking ε → 0 we have that |∇gF |g � 1. Hence we prove the completeness.
Recall that for any path γ (s) with a � s � b, the energy of the path (with respect to a Riemannian metric g) Eg(γ )

is defined as
∫ b

a
|γ (s)|2g ds. If γ (s) = x + s

y−x
|y−x| , with 0 � s � |y −x|, X(x) = −∇ logφ0(x), direct calculation shows

that

(
X(y) − X(x)

) · y − x

|y − x| =
|y−x|∫
0

−∇2 logφ0
(
γ ′, γ ′)ds =

|y−x|∫
0

∣∣γ ′∣∣2
g
ds.

It was Bruce Driver who suggested the possible path energy interpretation of (1.1). �
Remark 3.4. The location where the maximum of φ0 is attained has attracted much study. It is easy to show by direct
calculation that the metric g in the above result has vanishing Ricci curvature at the maximum point of φ0.

4. The modulus of expansion estimate for the fundamental solution

Here we improve the log-concavity of the fundamental solution proved in [6]. Let H(z, x, t) be the fundamental
solution to the heat operator ∂

∂t
−Lq with Dirichlet boundary value on a strictly convex domain D. We use K(z, x, t) to

denote the Euclidean heat kernel 1
(4πt)n/2 exp(−|x−z|2

4t
). It was proved in [6] that φ(x, t) � (H

K
)(z, x, t) is a log-concave

function of x. The improved estimate asserts that −∇ logφ has an expansion modulus given by the one-dimensional
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case. Before we state the improved version precisely, first let H̄ (s, t) and K̄(s, t) be the corresponding fundamental

solutions (concentrated at s = 0) on [−D
2 , D

2 ] and R for operator ∂
∂t

− ∂2

∂s2 . Let ψ(s, t) = (log( H̄

K̄
))′.

Theorem 4.1. With the notation above, if q is convex, then for any t � 0

−(∇y logφ(y, t) − ∇x logφ(x, t)
) · y − x

|y − x| � −2ψ

( |y − x|
2

, t

)
. (4.1)

The estimate (4.1) has the following equivalent form:(∇y logH(z, y, t) − ∇x logH(z, x, t)
) · y − x

|y − x| � 2(log H̄ )′
( |y − x|

2
, t

)
. (4.2)

Since (log H̄ )′ < 0 and (log( H̄

K̄
))′ < 0 on (0, D

2 ), Theorem 4.1 and (4.2) improve the earlier result of Brascamp–Lieb.
It is sharp since the equality holds for dimension one. For its proof we need the following variation of Theorem 2.2.

Theorem 4.2. Let Ω be bounded domain of Rn with diameter D. Let X(x, t) be a C2-vector field defined on Ω ×(0, T ]
satisfying the equation(

∂

∂t
− �

)
X(x, t) = V

(
x,X(x, t)

) − 2∇XX(x, t) − 1

t

〈∇(·)X(x, t), x − z
〉 − 1

t
X(x, t) (4.3)

where z ∈ R
n is fixed, with V (x,X) being jointly convex. Assume further that X is symmetric i.e. 〈∇W1X,W2〉 =

〈∇W2X,W1〉 for any Wi . Let ψ(s, t) be as in Theorem 4.1, or more generally a C2,1-function on [0, D
2 ) × R+ → R

with ψ(0, t) = 0, ψ ′(s, t) < 0 for s > 0, and satisfying

ψt − ψ ′′ � 2ψψ ′ − ψ

t
− ψ ′

t
s. (4.4)

Then

C(x, y, t) � t

(〈
X(y, t) − X(x, t),

y − x

|y − x|
〉
+ 2ψ

( |y − x|
2

, t

))
cannot attain a negative minimum in the parabolic interior.

Here 〈∇(·)X, x − z〉 is a vector whose inner product with any vector W is 〈∇WX,x − z〉. Direct calculation shows
that X(x, t)� −∇ logφ(x, t) satisfies Eq. (4.3) with V (x,X) = ∇q(x). We first prove Theorem 4.2.

Proof. Argue by contradiction. Assume that at (x0, y0, t) with t > 0, x0, y0 ∈ Ω , C attains a negative minimum on
Ω × Ω × (0, T ]. Following the notations from the proof to Theorem 2.1, the first variation consideration yields (2.6)
and (2.7), which together imply that 〈∇(·)X(y), en

〉 = 〈∇(·)X(x), en

〉
. (4.5)

From now on, in the proof, when the meaning is clear we omit t variable dependence in X(x, t). Now we compute

0 �
(

∂

∂t
−

n∑
j=1

∇2
Ej Ej

)
C(x, y, t)

∣∣
(x0,y0,t)

= t

〈
V

(
y,X(y)

) − V
(
x,X(x)

)
,

y − x

|y − x|
〉

− 2t

〈
∇X(y)X(y) − ∇X(x)X(x),

y − x

|y − x|
〉

− 〈∇enX(y), y − z
〉 + 〈∇enX(x), x − z

〉 − 〈
X(y) − X(x),

y − x

|y − x|
〉

+ 2t
(
ψt − ψ ′′) +

〈
X(y) − X(x),

y − x
〉
+ 2ψ.
|y − x|
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Here the right-hand side is evaluated at (x0, y0) and we have used (4.3). The first term is nonnegative by the convexity
assumption on V (x,X). As in the proof of Theorem 2.1, Eqs. (2.6) and (2.7) imply that the second term equals to

2t

|y − x|
n−1∑
i=1

〈
X(y) − X(x), ei

〉2 + 2tψ ′〈X(y) − X(x), en

〉
. (4.6)

Applying (2.7) again, at (x0, y0, t), we have

−〈∇enX(y), y − z
〉 + 〈∇enX(x), x − z

〉 = ψ ′|y − x|. (4.7)

Combining the previous computation with (4.6) and (4.7) we have that, at (x0, y0, t),

0 � 2tψ ′〈X(y) − X(x), en

〉 + ψ ′|y − x| + 2ψ + 2t
(
ψt − ψ ′′). (4.8)

On the other hand ψ satisfies (4.4). Plugging (4.4) and s = |y−x|
2 into it, (4.8) then implies at (x0, y0, t)

0 � 2tψ ′〈X(y) − X(x), en

〉 + 4tψ ′ψ = 2ψ ′C.

This is a contradiction to C(x0, y0, t) < 0 and the fact that ψ ′ < 0 (which follows from the log-concavity of H̄

K̄
and the

strong maximum principle, noticing x0 �= y0). �
Observe that φ(x, t) = H(z,x,t)

K(z,x,t)
here also satisfies that φ(x, t) > 0 on Ω , φ(x, t) = 0 on ∂Ω and the partial differ-

ential equation: (
∂

∂t
− �

)
φ = −qφ + 2〈∇φ,∇ logK〉.

Hence the parabolic Hopf’s lemma implies that ∂φ
∂ν

< 0 on ∂Ω . Therefore the same argument of Section 3 im-
plies the estimates (3.9) and (3.10) for X(x, t) = −∇ logφ(x, t) on the points near the boundary. Now replacing
ψ with ψ̃(s, t) = εψ(εs, ε2t) with ε ∈ (0,1), and observing that the heat kernel asymptotics (cf. [14,15]) imply that
C(x, y, t) � 0 holds at t = 0, Theorem 4.2 implies that C(x, y, t) � 0. Letting ε → 0 we get a maximum principle
proof for Brascamp–Lieb’s log-concavity of H

K
and letting ε → 1 we get Theorem 4.1. The general ε serves a natural

interpolation between the strong and the weak result.

Remark 4.3. By taking t → ∞, since eλ0tH(z, x, t) → φ0(z)φ0(x), the estimate (4.2) implies the improved log-
concavity estimate (1.1). One can formulate a general maximum principle for the case that V (x,X) has a convexity
module as in Theorem 2.2. Similarly, Theorem 4.1 can be generalized to the case that ∇q has an expansion modulus
ω(s) as in [2]. Without insisting ψ ′ < 0 in Theorem 4.2, the argument also proves that C(x, y, t) � 0 is preserved
by (4.3).

5. Alternate perturbation for the proof of fundamental gap theorem

In [2], by relating the fundamental gap to the exponential decay rate of the solution to a parabolic equation, the
authors proved the following result.

Theorem 5.1 (Andrews–Clutterbuck). Let Ω be a strictly convex bounded domain in R
n with diameter D. Then the

gap between the second eigenvalue λ1 and the first λ0 (for the operator Lq with q being convex) satisfies:

λ1 − λ0 �
3π2

D2
. (5.1)

Recall that w̄(s) is called a modulus of continuity of a continuous function w(x) : Ω → R if w(y) − w(x) �
2w̄(

r(x,y)
2 ) for any x, y. In [2], the result was proved by applying the following comparison result on the continuity

modulus.
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Theorem 5.2. (See [2, Theorem 2.1].) Let Ω ⊂R
n be a strictly convex domain with diameter D and smooth boundary.

Let w(x, t) be a solution to
∂v

∂t
= �v − 2〈X,∇v〉 (5.2)

with Neumann boundary condition. Suppose that

(a) X(·, t) has modulus of expansion ω(·, t) for each t > 0, where ω(s, t) : [0,D/2] ×R+ → R is smooth;
(b) v(·,0) has a modulus of continuity ϕ0, where ϕ0(s) : [0,D/2] → R is smooth with ϕ0(0) = 0 and ϕ′

0(s) > 0 on
[0, D

2 ];
(c) ϕ(s, t) : [0,D/2] ×R+ →R satisfies

(i) ϕ(s,0) = ϕ0(s) on [0,D/2];
(ii) ∂ϕ

∂t
� ϕ′′ − 2ωϕ′ on [0,D/2] ×R+;

(iii) ϕ′(s, t) > 0 on [0, D
2 ] ×R+;

(iv) ϕ(0, t)� 0 for each t � 0.

Then ϕ(s, t) is a modulus of continuity of v(x, t).

Theorem 5.1 can be derived from Theorem 5.2 by letting v(x, t) = e−(λ1−λ0)t φ1(x)
φ0(x)

with φi being (i + 1)-th eigen-

function and λi being the corresponding eigenvalue, and letting ϕ(s, t) = Ce−(μ1−μ0)t φ̄1
φ̄0

with φ̄i being (i + 1)-th

eigenfunction and μi being the corresponding eigenvalue for the operator d2

ds2 on [−D
2 , D

2 ]. Here X = −∇ logφ0,

ω(s) = −(log φ̄0)
′ and C is a constant sufficiently large. Estimate (1.1) asserts that ω(s) is an expansion modulus of

X. This is how (1.1) plays the crucial role in the proof of Theorem 5.1.
The only problem here is that ϕ′(D

2 , t) > 0 does not hold and the corresponding ω(s) = −(log φ̄0)
′ is not smooth

on [0, D
2 ]. In [2] a perturbation via the Prüfer transformation was introduced to handle this.

On the other hand, the issue can be also dealt with in the following way. Let D′ > D. Let φ̄D′
i be the cor-

responding eigenfunctions on [−D′
2 , D′

2 ] (which are given by cos( π
D′ s) and sin( 2π

D′ s) for i = 0,1). Let ωD′
(s) =

−(log φ̄D′
0 )′. Since ω(s) � ωD′

(s), ωD′
(s) is still an expansion modulus of X. And now the corresponding ϕD′

(s) =
2Ce−(μD′

1 −μD′
0 )t sin( π

D′ s) does have ϕ′D′
(s, t) > 0 on [0, D

2 ] × R+. Hence Theorem 5.2 can be applied to conclude
that

e−(λ1−λ0)t

(
φ1(y)

φ0(y)
− φ1(x)

φ0(x)

)
� Ce−(μ̄D′

1 −μ̄D′
0 )t sin

(
π

D′
|y − x|

2

)
since there exists such a constant C at t = 0. From this one has that λ1 − λ0 � μ̄D′

1 − μ̄D′
0 . The claimed result follows

by letting D′ → D.
Theorem 5.2 effectively implies a type of Barta’s theorem on Neumann eigenvalue comparison:
Let Ω be a strictly convex domain in R

n with diameter D. Suppose that ω(s) is a modulus of expansion of the
vector field X and there exists ϕ0(s) : [0, D

2 ] → R+ with ϕ0(0) = 0, ϕ′
0(s) > 0 on [0, D

2 ) and ϕ′′
0 − 2ωϕ′

0 � −λ̄1ϕ0.

Then for any nonzero Neumann eigenvalue λ̃1, of the operator � − 2〈X,∇(·)〉, the real part Re(λ̃1) is bounded from
below by λ̄1.

We refer the interested readers to [2] for the motivation, history and comprehensive literatures on previous works
related to Theorem 5.1.

6. An elliptic proof

In this section we give an alternate proof of Theorem 5.1 without evoking the parabolic method. Here we apply the
maximum principle to the quotient of the continuity moduli. The estimate (1.1) plays the crucial role again.

Let w(x) = φ1(x)
φ0(x)

and w̄(s) = 1
2

φ̄1(s)

φ̄0(s)
. Here φi and φ̄i are eigenfunctions of the Schrödinger operator as well as the

1-dimension model operator as in the last section. Direct calculation shows that w satisfies

�w = −(λ1 − λ0)w − 2〈∇ logφ0,∇w〉. (6.1)

By [18], w can be extended to a smooth function on Ω (still denoted by w) and ∂w = 0 on ∂Ω .

∂ν
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Consider the quotient of the oscillations of w and w̄(s) and let

Q(x, y)� w(x) − w(y)

w̄(
|x−y|

2 )

on Ω × Ω \ � with � = {(x, x) |x ∈ Ω} being the diagonal. The function Q can be extended to a set C, a natural
‘compactification’ of Ω × Ω \ � (or a ‘blow-up’ of �), namely the disjoint union of Ω × Ω \ � with the unit sphere
bundle UΩ = {(x,X) |x ∈ Ω, |X| = 1}, with the extension defined as

Q(x,X) = 2〈∇w(x),X〉
w̄′(0)

.

Note here that w̄(s) = sin( π
D

s), hence w̄′′(s) = −μ0w̄(s), with μ0 = π2

D2 , and w̄′(0) = π
D

. By the scaling we can
assume without the loss of the generality that D = π . The extended function Q, which is continuous, attains its
maximum somewhere on C. We consider two cases.

Case 1: the maximum of Q, which is clearly nonzero and denoted by m, is attained at some (x0, y0) with x0 �= y0.
The Neumann condition ∂w

∂ν
= 0, and the convexity of Ω force that both x0 and y0 must be in Ω . Now we pick a local

orthonormal frame {ei}, 1 � i � n such that en = y0−x0|y0−x0| . We then parallel translate the frame to y0 and let Ei = ei ⊕ei

for 1 � i � n − 1 and En = en ⊕ (−en). Now {Ei} be tangent vectors of the product Ω × Ω as before. Since Q has
an interior maximum, the first variation consideration implies that at (x0, y0):

∇x
ei
w(x)

w̄
= ∇y

ei
w(y)

w̄
= 0;

∇enw(x) = ∇enw(y) = −m

2
w̄′.

Putting them together we have that at (x0, y0),

∇w(x) = ∇w(y) = −m

2
w̄′ y − x

|y − x| . (6.2)

The second variation consideration yields for 1 � i � n − 1, at (x0, y0),

0 � ∇2
Ei,Ei

Q= ∇2
eiei

w(x) − ∇2
eiei

w(y)

w̄
(6.3)

and

0 � ∇2
EnEn

Q

= ∇2
enen

w(x) − ∇2
enen

w(y)

w̄
+ 2

∇enw(x) + ∇enw(y)

w̄2
w̄′ + 2m

(
w̄′

w̄

)2

− m
w̄′′

w̄
. (6.4)

Using (6.2) and w̄′′ = −μ0w̄ we can write (6.4) as

0 �
∇2

enen
w(x) − ∇2

enen
w(y)

w̄
+ μ0m. (6.5)

Adding (6.3) (6.5), and using (6.1), (6.2) we have that at (x0, y0),

0 � �w(x) − �w(y)

w̄
+ μ0m

= −(λ1 − λ0)m + 2
〈−∇ logφ0(x),∇w(x)〉 − 〈−∇ logφ0(y),∇w(y)〉

w̄
+ μ0m

= −(λ1 − λ0)m + mw̄′ (−∇ logφ0(y) + ∇ logφ0(x)) · y−x
|y−x|

w̄
+ μ0m.

Applying (1.1), it then implies that
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0 � −(λ1 − λ0)m + 2
π2

D2
m + μ0m (6.6)

from which one concludes that λ1 − λ0 � 3 π2

D2 .

Case 2: the maximum of Q is attained at some (x0,X0) ∈ UΩ . It is easy to see that X0 = ∇w
|∇w| at x0 and

m = 2|∇w|(x0). Moreover |∇w|(x0) � |∇w|(x) for any x ∈ Ω . Again the convexity of Ω and ∂w
∂ν

= 0 rule out the
possibility that x0 is on ∂Ω . Now pick an orthonormal frame {ei} at x0 so that en = ∇w

|∇w| . We also parallel translate it
to a neighborhood of x0. Under such a frame it is easy to see that wi = 0 for 1 � i � n − 1 and wn = ∇w.

Since |∇w|2(x) attains its maximum at the interior point x0, we have that

∇|∇w|2 = 0, hence wkn = 0, 1 � k � n. (6.7)

Moreover, the maximum principle concludes for any 1 � k � n − 1,

0 �
(|∇w|2)

kk
= 2

n∑
j=1

(
w2

jk + wkkjwj

)
� 2wkknwn. (6.8)

Above we have used (6.7) and wj = 0 for 1 � j � n − 1.
Let x(s) = x0 + sen, y(s) = x0 − sen and g(s) = Q(x(s), y(s)). Since Q achieves its maximum at (x0,

∇w
|∇w| (x0))

we have that g(s) � g(0) = m for all s ∈ (−ε, ε), which implies that lims→0 g′(s) = 0 and lims→0 g′′(s) � 0. In the
following we shall exploit these facts.

Direct calculation shows that

g′(s) = 〈∇w(x(s)), en〉 + 〈∇w(y(s)), en〉
w̄

− g(s)
w̄′

w̄
,

g′′(s) = ∇2
enen

w(x(s)) − ∇2
enen

w(y(s))

w̄(s)
− 2

〈∇w(x(s)), en〉 + 〈∇w(y(s)), en〉
w̄

w̄′

w̄

+ μ0g(s) + 2g(s)

(
w̄′

w̄

)2

.

Observing that lims→0
g′(s)
w̄(s)

= g′′(0), and making use of the first equation above, the second equation implies that

lim
s→0

g′′(s) = 2wnnn(x0) − 2 lim
s→0

g′′(s) + μ0m.

Hence we have that at x0,

0 � 2wnnn + μ0m. (6.9)

Now multiply wn on (6.9) and add the resulting inequality to (6.8). Then we have that at x0,

0 �
〈∇(�w),∇w

〉 + μ0|∇w|2.
Apply (6.1) to the above estimate and note that wkn = 0. Then we conclude that at x0

0 � −(λ1 − λ0)|∇w|2 − 2∇2(logφ0)(∇w,∇w) + μ0|∇w|2.
The estimate λ1 − λ0 � 3 π2

D2 follows from the estimate −∇2 logφ0 � π2

D2 id, which is a direct consequence of (1.1).
Putting them together we have a proof of Theorem 5.1. In some sense, the above argument combines those of [2]

and [18].

7. Further applications

Theorem 2.1 of [2] and the argument of the last section effectively give the following result on a lower bound
of the second Neumann eigenvalue for the operator �X � � − 2〈∇(·),X〉 (with non-constant eigenfunction) on a
strictly convex domain Ω with diameter D. In case that the eigenvaluese λ̃1 of �X are complex (with complex-valued
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eigenfunction w), the argument of Section 5/Section 6 applying to Re(e−λ̃1tw), effectively provides the same lower
bounds for Re(λ̃1), the real part of any nonzero eigenvalues. For the simplicity below we only prove the results for
the case λ̃ is real. Recall that μ0 = ( π

D
)2 and let w̄ = sin( π

D
s).

Corollary 7.1.

(i) If X has an expansion modulus given by −(log φ̄0)
′, then for any nonzero Neumann eigenvalue λ̃1 of the operator

� − 2〈∇(·),X〉, Re(λ̃1) is bounded from below by μ1 − μ0;
(ii) If X is merely convex, or more generally X has ε′ w̄

w̄′ as its expansion modulus for ε′ > −μ0
2 , then Re(λ̃1) �

2ε′ + μ0. The convexity of X amounts to ε = 0.

Both results still hold for Ω being a strictly convex domain in a Riemannian manifold with nonnegative Ricci curva-
ture, or for any compact Riemannian manifold (without boundary) with nonnegative Ricci curvature.

Since the argument of previous section works equally well if v(x, t) = e−λ̃1tw(x) with w(x) being the Neumann
eigenfunction of �X . This implies Part (i). For the proof of the second statement in Corollary 7.1, letting w be the first
non-trivial eigenfunction in the argument of the last section, it suffices to let ϕ(s, t) = Ce−(2ε′+μ0)t w̄ with and observe
that w̄′′ = −μ0w̄. The part (ii) generalizes an earlier result of Payne and Weinberger [16] which asserts the same
statement for X(x) ≡ 0. Note that it even applies to the case that ε < 0. One candidate of the vector field X satisfying
the assumption of the part (i) is −∇ log φ̃0 with φ̃0 being the first eigenfunction of some domain Ω ′ containing Ω , but
with the same diameter.

For the last statement, after some obvious modifications on the definition of the modulus of expansion and replacing
|y − x| by r(x, y) (the distance function), it suffices to observe that the second variation (without fixing either end)
of the distance function r(x, y) is non-positive while ϕ′ > 0. Hence the proof to Theorem 5.2 in [2] goes without any
changes. Note that on a compact Riemannian manifold any convex vector field X (being convex is equivalent to that
〈∇WX,W 〉 � 0) must be parallel. Hence statement here generalizes a corresponding result of Li and Yau [11] and
Zhong and Yang [19] for strictly convex domains in a Riemannian manifold (or for a compact Riemannian manifold
when X is non-convex).

Secondly we consider the case that Ω is a compact manifold with Ric � n − 1 or a bounded convex domain in
such a Riemannian manifold. The argument in the last section can yield an interpolating estimate on Re(λ̃1), where
λ̃1 is any nonzero eigenvalue. First recall the following lemma which may be well known for experts.

Lemma 7.1. Assume that x, y ∈ M with Ric � n − 1. Let γ (s) be a minimizing geodesic joining x and y. Let {ei}
be an orthonormal frame at x and parallel translate it along γ (s) with en = γ ′(s). Then for x, y ∈ M , with distance
r(x, y) < π ,

n−1∑
i=1

∇2
EiEi

r(x, y) � −2(n − 1)
sin(

r(x,y)
2 )

cos( r(x,y)
2 )

. (7.1)

Proof. Since the distance function r(x, y) may not be smooth, the estimate is understood in the sense of support. Let
γi(s, η) = expγ (s)(ηVi(s)) for i = 1, . . . , n − 1 with Vi = (cos(s) + 1−cosd

sind
sin s)ei(s). Here we denote r(x, y) by d .

Since Dγ
∂η

(0, η) = ei(0),
Dγ
∂η

(d, η) = ei(d) and r(γ (0, η), γ (d, η)) � L(γ (s, η)), the arc-length of γ (·, η), the second
variation formula implies the following differential inequality in the barrier sense,

∇2
EiEi

r(x, y) � d2

dη2

d∫
0

∣∣∣∣Dγ

∂s

∣∣∣∣(s, η) ds

∣∣∣∣
η=0

=
d∫ (∣∣V ′

i

∣∣2 − 〈
R

(
Vi, γ

′)Vi, γ
′〉)ds.
0
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The lemma follows by summing the above for i = 1 to n− 1, plugging in the assumption Ric � n− 1, and elementary
identities. �

The argument in the last section then shows the following result regarding for any nonzero Neumann eigenvalue of
� − 2〈∇(·),X〉.

Corollary 7.2. Let Ω be a compact manifold without boundary, or a strictly convex domain in a Riemannian manifold,
with Ric � (n − 1)K . Assume that the diameter of Ω satisfies D < π√

K
, and that X has a modulus of expansion ε′ w̄

w̄′ .

Then for any D′ ∈ (D, π√
K

],

Re(λ̃1) � 2ε′ + (n − 1)
√

K
π

D′ inf
0�r�D/2

tan(
√

Kr)

tan( π
D′ r)

+
(

π

D′

)2

. (7.2)

We remark that a similar, probably more geometrically formulated result, but with X = 0, was obtained by Andrews
and Clutterbuck as described in [1]. The formulation here is a bit simple-minded. Nevertheless it gives an explicit
lower bound. Another explicit lower bound was also obtained in [4, Corollary 17]. By taking D′ = π/

√
K , the result

contains the Lichnerowicz’s λ̃1 � nK (so does the formulation of Andrews–Clutterbuck, as well as Corollary 17
of [4]), and when K = 0 it recovers Li and Yau [11], Zhong and Yang’s [19] estimate. Hence it addresses a conjecture
of P. Li [12]. The above result also generalizes an earlier estimate of Reilly [17] for convex domains in a Riemannian
manifold with Ric � (n − 1)g. Note that Reilly’s method is quite different, and may not apply to the case X �= 0
considered here.

Proof. It suffices to prove for K = 1. Now observe that the proof of Theorem 2.1 in [2] implies that Theorem 5.2 still
holds on such a Riemannian manifold if the part (ii) in assumption (c) is replaced by

∂ϕ

∂t
� ϕ′′ − (

2ω + (n − 1)
√

K tan(
√

Ks)
)
ϕ′. (7.3)

Now let v(x, t) = e−λ̃1tw(x) with w(x) being the Neumann eigenfunction of �X and let ϕ(s, t) = Ce−λ̄t ω̄ with λ̄

being the right-hand side of (7.2). It is now easy to check that (7.3) and other assumptions of Theorem 5.2 hold for
any D′ > D. Hence we conclude that λ̃1 � λ̄ as before. �

The following slightly more general result can be obtained by tracing the argument carefully.

Corollary 7.3. Let Ω be a compact manifold without boundary, or a strictly convex domain in a Riemannian manifold,
with Ric � (n − 1)K . Assume that the diameter D < π√

K
, and that X has a modulus of expansion σ(s). If for

any D′ ∈ (D, π√
K

], there exist a constant λ̄ and a C2-function w̄ : [0, D′
2 ] → [0,∞) with w̄′ > 0 on [0, D

2 ], and

−w̄′′(s) + (n − 1)
√

K tan(
√

Ks)w̄′(s) + 2σ( D
D′ s)w̄′(s) � λ̄w̄(s), on [0, D

2 ], then Re(λ̃1) � λ̄.

The estimate (1.1) has another application on the lower estimate of λ0, the first (Dirichlet) eigenvalue of the oper-
ator Lq . Note that when q(x) ≡ 0, the estimate is only sharp for n = 1 (cf. [9]).

Corollary 7.4. Assume that Ω is a bounded strictly convex domain in R
n with diameter D. Assume that q(x) is

convex. Then

λ0 � n

(
π

D

)2

+ inf
x∈Ω

q(x). (7.4)

It then implies that the second eigenvalue has the lower bound estimate:

λ1 � (n + 3)

(
π

D

)2

+ inf
x∈Ω

q(x). (7.5)
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Proof. Since φ0 = 0 on ∂Ω and φ0 > 0, it must attain its maximum for some x0 ∈ Ω . For r small integrate the
estimate (1.1) over the ∂Bx0(r):

ωn−1r
n−12

π

D
tan

(
πr

2D

)
�

∫
∂Bx0 (r)

(
X(y) − X(x0)

) · ν dA(y)

=
∫

Bx0 (r)

divX(y)dμ(y)

= λ0
ωn−1

n
rn +

∫
Bx0 (r)

(|∇ logφ0|2 − q
)
dμ(y).

Here ωn−1 is the area of the ∂B0(1) and recall that X = −∇ logφ0. Hence we have that

λ0 �
2nπ

rD
tan

(
πr

2D

)
+

∫
Bx0 (r)

(
q − |∇ logφ0|2

)
dμ(y).

Taking r → 0 in the right-hand side above we get the desired result, since ∇φ0(x0) = 0 and

lim
r→0

2nπ

rD
tan

(
πr

2D

)
= nπ2

D2
. �

Using a similar argument as in the proof of Corollary 7.4, (1.2) implies the following sharp upper bound on the
growth rate of H(x,y, t).

Corollary 7.5. Assume that Ω is strictly convex and q(x) is convex. Let H(z, x, t) be the Dirichlet heat kernel for
∂
∂t

−Lq with potential function q . For any fixed z ∈ Ω , let m(z, t) � maxx∈Ω H(z, x, t). Then

d

dt
logm(z, t) � n

d

dt
log H̄ (0, t) − infq.

Proof. Since m(y, t) may not be smooth in general, the derivative is understood as the Dini derivative from the left.
Since H(z, x, t) takes the 0 value on the boundary, it attains its maximum interior. Let x(t) be such a point where
m(z, t) is attained. Then

d

dt
logm(z, t) � lim

h→0

logH(z, x(t), t) − logH(z, x(t), t − h)

h

� �xH(z, x(t), t)

H(z, x(t), t)
− infq

= � logH
(
z, x(t), t

) − infq

� n lim
s→0

(log H̄ (s, t))′

s
− infq

� n
(
log H̄ (0, t)

)′′ − infq

= n(log H̄ )t (0, t) − infq.

Here in the third equation ∇H(z, x(t), t) = 0 is used; in line 4 estimate (1.2) is used; in the last line the fact that
H̄ ′(0, t) = 0 is used. �

Note that Corollary 7.5 implies Corollary 7.4 since the decay rate of H(z, x, t) is e−λ0t and the decay rate of
H̄ (0, t) is e−μ0t .
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