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Ancient solutions to Ricci flow arise as the blow up limit of the finite singularities. Accord-
ing to the speed of the singularity forming, it is divided into two types of ancient solutions.
An ancient solution (M, g(t)) defined on M × (−∞, 0) is called of type I if there exists a C
such that

(0.1) |Rm|(x, t) ≤ A

|t| .

Ancient solutions in dimension 2 and 3 have nonnegative curvature operator by Hamilton-
Ivey’s pinching estimate [H]. In this note we shall restrict to the type I ancient solutions with
nonnegative curvature operators. In general, nonnegative curved ancient solutions (even κ-
non-collapsed) may not be (locally) symmetric as shown by examples from [H] and [P3] (see
also [CLN]). However in [H], Hamilton proves that any closed simply-connected ancient
type I solution to Ricci flow must be the round sphere. In dimension 3, Perelman [P1]
observed that any positively curved κ-non-collapsed type I ancient solution must also be the
quotient of spheres. Using the recent result of [BW] we show the following high dimensional
analogue.

Proposition 0.1. Assume that (M, g(t)) is a closed type I, κ-non-collapsed (for some
κ > 0) ancient solution to the Ricci flow with positive curvature operator. Then (M, g(t))
must be the quotients Sn.

It is an easy consequence of [BW] that any compact shrinking soliton with positive
curvature operator (or 2-positive curvature operator) must be the quotient of spheres. We
first observe the following generalizations to closed gradient shrinking solitons.

Lemma 0.2. Assume that (M, g(t)) is a closed gradient shrinking soliton with 2-non-
negative curvature operator. Then (M, g(t)) must be the quotients of the product of compact
symmetric spaces.

Proof. By Corollary 2.4 of [NW], we know that the universal cover (M̃, g̃) must be the
product of closed symmetric spaces and some Euclidean space Rk. We only need to rule out
the possibility of Rk in the factor. A simple way of showing that is by Theorem 1 of [L],
which implies that the gradient shrinking soliton with nonnegative Ricci curvature must has
finite fundamental group. This implies that the universal cover does not have the factor Rk.

q.e.d.

Lemma 0.3. Assume that (M, g(t)) is an type I ancient solution of Ricci flow satisfying
(0.1). Assume that the diameter of M D1 + Diam(M, g(−1)) < ∞. Then there exists a
C = C(n, A) such that for any t ≤ −1, the diameter of (M, g(t) satisfies

(0.2) Diam(M, g(t)) ≤ (2C + max{D1, 1}+ 1)
√−t.

Proof. Let τ = −t. We prove this through arguing by the contradiction. Assume that
there exist x and y such that dτ (x, y) ≥ C1

√
τ for some C1 to be chosen later. Here dτ (·, ·) is

the distance function with respect to metric g(t). By Theorem 17.1 of [H] (see also Lemma
8.3 of [P2]) we know that there exists C2(n, A) such that for any x1, x1 with dτ (x1, x2) ≥ √

τ

(0.3)
d

dt
dτ (x1, x2) ≥ − C2√

τ
.
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Hence for any 1 ≤ τ1 ≤ τ as far as (0.3) holds for all τ1 ≤ η ≤ τ , (which follows from
dη(x, y) ≥ √

η, by Theorem 17.1 of [H]) we have that

dτ1 (x, y) ≥ dτ (x, y)−
∫ τ

τ1

C2√
η

dη

≥ C1
√

τ − 2C2
√

τ

≥ max{Diam(M, g(−1)), 1}√τ1

if we have chosen C1 = 2C2 + max{Diam(M, g(−1)), 1}+ 1. This inductively shows that we
can apply the above estimate for all 1 ≤ τ1 ≤ τ . In particular, we have that

d1(x, y) ≥ max{Diam(M, g(−1)), 1}+ 1

which is clearly a contradiction. q.e.d.

Proof. (of the proposition 0.1.) Apply the the blow-down to (M, g(t)) as t → −∞ and
using Proposition 11.2 of Perelman to show that the blow-down limit is a closed gradient
shrinking soliton. For this we need the assumption that (M, g(t)) is κ-non-collapsing for
some κ > 0. Here, since we are dealing with type I solution we can pick o ∈ M and
perform the blow down at (o, τ) by factor 1

τ
. The κ non-collapsing and Proposition 11.2

of [P2] implies that (M, o, gτ (s)) with gτ (t′) = 1
τ

g(t′τ) converge to a gradient shrinking

soliton (M∞, o∞, g∞(t′)) . By (0.2) we know that for each (M, (o, τ), gτ (t′)), at the slice
t′ = −1, its diameter is bounded by some uniform constant C1. Hence (M∞, g∞) is closed
and topologically same as (M, g(−1)), namely a quotient of Sn. By Lemma 0.2 we conclude
that it is metrically a quotient of Sn.

Finally, by [P2], the entropy invariant ν(M, g(t)) is monotone non-decreasing in t. ν(M, g(t))
is defined to be infτ>0 µ(M, g(t), τ) with

µ(M, g(t), τ) + inf∫
M u dµg(t)=1

∫

M

(
τ(|∇f |2 + R) + f − n

)
udµg(t)

with u = e−f

(4πτ)n/2 . By fact that (M, g(t)) → (M∞, g∞(t)) after re-scaling, as t∞ − ∞,

we conclude that ν(M, g(t)) ≥ ν(M∞, g∞(t)), which is a constant. However, by [BW], we
also have that (M, g(t)) → (M∞, g∞(t)) as t → 0. This implies that ν(M, g(t)) is constant.
Hence (M, g(t)) is a gradient shrinking soliton. q.e.d.

The argument employed in the above proof also yields the following corollary (using [BS]
instead of [BW]).

Corollary 0.4. 1) Assume that (M, g(t)) is a closed type I, κ-non-collapsed (for some
κ > 0) ancient solution to the Ricci flow with positive complex sectional curvature in the

sense that 〈R(Z, W )Z, W 〉 > 0 for any nonzero complex tangent vectors Z and W . Then
(M, g(t)) must be the quotients Sn.

2) Assume that (M, g(t)) is a closed type I, κ-non-collapsed (for some κ > 0) ancient
solution to the Ricci flow with 2-nonnegative curvature operator. Then (M, g(t)) must be
quotients of products of symmetric spaces.
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