CLOSED TYPE I ANCIENT SOLUTIONS TO RICCI FLOW
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Ancient solutions to Ricci flow arise as the blow up limit of the finite singularities. Accord-
ing to the speed of the singularity forming, it is divided into two types of ancient solutions.
An ancient solution (M, g(¢)) defined on M X (—o0,0) is called of type I if there exists a C
such that

(0.1) Rl (z,1) < %.

Ancient solutions in dimension 2 and 3 have nonnegative curvature operator by Hamilton-
Ivey’s pinching estimate [H]. In this note we shall restrict to the type I ancient solutions with
nonnegative curvature operators. In general, nonnegative curved ancient solutions (even k-
non-collapsed) may not be (locally) symmetric as shown by examples from [H] and [P3] (see
also [CLN]). However in [H|, Hamilton proves that any closed simply-connected ancient
type I solution to Ricci flow must be the round sphere. In dimension 3, Perelman [P1]
observed that any positively curved x-non-collapsed type I ancient solution must also be the
quotient of spheres. Using the recent result of [BW] we show the following high dimensional
analogue.

Proposition 0.1. Assume that (M, g(t)) is a closed type I, k-non-collapsed (for some
Kk > 0) ancient solution to the Ricci flow with positive curvature operator. Then (M, g(t))
must be the quotients S™.

It is an easy consequence of [BW] that any compact shrinking soliton with positive
curvature operator (or 2-positive curvature operator) must be the quotient of spheres. We
first observe the following generalizations to closed gradient shrinking solitons.

Lemma 0.2. Assume that (M, g(t)) is a closed gradient shrinking soliton with 2-non-
negative curvature operator. Then (M, g(t)) must be the quotients of the product of compact
symmetric spaces.

Proof. By Corollary 2.4 of [NW], we know that the universal cover (M,gj) must be the
product of closed symmetric spaces and some Euclidean space R¥. We only need to rule out
the possibility of R in the factor. A simple way of showing that is by Theorem 1 of [L],
which implies that the gradient shrinking soliton with nonnegative Ricci curvature must has
finite fundamental group. This implies that the universal cover does not have the factor R¥.

q.e.d.

Lemma 0.3. Assume that (M, g(t)) is an type I ancient solution of Ricci flow satisfying
(0.1). Assume that the diameter of M Di = Diam(M, g(—1)) < oco. Then there exists a
C = C(n,A) such that for any t < —1, the diameter of (M, g(t) satisfies

(0.2) Diam(M, g(t)) < (2C + max{D1, 1} + 1)v/—t.

Proof. Let 7 = —t. We prove this through arguing by the contradiction. Assume that
there exist = and y such that d-(z,y) > C1/7 for some C} to be chosen later. Here d (-, ) is
the distance function with respect to metric g(t). By Theorem 17.1 of [H] (see also Lemma
8.3 of [P2]) we know that there exists Ca(n, A) such that for any z1,z1 with d-(z1,22) > /7

Ca

d
(0.3) ad.,—(:pl,xz) > fﬁ.
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dy(x,y) > /M, by Theorem 17.1 of [H]) we have that

Hence for any 1 < 71 < 7 as far as (0.3) holds for all 1 < n < 7, (which follows from

7'02
dry(2,y) 2 dr(wy)— [ ——dn
: - i
> C1\ﬁ* 2C2ﬁ
>  max{Diam(M, g(—1)), 1}/71

if we have chosen C7 = 2C2 4+ max{Diam(M, g(—1)), 1} + 1. This inductively shows that we
can apply the above estimate for all 1 < 71 < 7. In particular, we have that

di(z,y) > max{Diam(M, g(—1)),1} + 1

which is clearly a contradiction. q.e.d.

Proof. (of the proposition 0.1.) Apply the the blow-down to (M, g(t)) as t — —oo and
using Proposition 11.2 of Perelman to show that the blow-down limit is a closed gradient
shrinking soliton. For this we need the assumption that (M, g(t)) is x-non-collapsing for
some k > 0. Here, since we are dealing with type I solution we can pick o € M and
perform the blow down at (o,7) by factor % The x non-collapsing and Proposition 11.2
of [P2] implies that (M, o, g,(s)) with g-(t') = %g(t/’r) converge to a gradient shrinking
soliton (Moo, 000, goo(t')) . By (0.2) we know that for each (M, (0,7),g+(t')), at the slice
t’ = —1, its diameter is bounded by some uniform constant C;. Hence (Mo, goo) is closed
and topologically same as (M, g(—1)), namely a quotient of S*. By Lemma 0.2 we conclude
that it is metrically a quotient of S™.

Finally, by [P2], the entropy invariant v(M, g(t)) is monotone non-decreasing in ¢. v(M, g(t))
is defined to be infro p(M, g(t), 7) with

u(M,g(t),7) =  inf / (F(VF2 + R) + f — n) udpig(r)
Jarwdpgey=1Mm

ﬁ. By fact that (M, g(t)) — (Moo, goo(t)) after re-scaling, as too — oo,
we conclude that v(M, g(t)) > v(Moeo, goo(t)), which is a constant. However, by [BW], we
also have that (M, g(t)) — (Moo, goo(t)) as t — 0. This implies that v (M, g(t)) is constant.
Hence (M, g(t)) is a gradient shrinking soliton. q.e.d.

with v =

The argument employed in the above proof also yields the following corollary (using [BS]
instead of [BW]).

Corollary 0.4. 1) Assume that (M, g(t)) is a closed type I, k-non-collapsed (for some
Kk > 0) ancient solution to the Ricci flow with positive complex sectional curvature in the
sense that (R(Z, W)?, W) > 0 for any nonzero complex tangent vectors Z and W. Then
(M, g(t)) must be the quotients S™.

2) Assume that (M, g(t)) is a closed type I, k-non-collapsed (for some k > 0) ancient
solution to the Ricci flow with 2-nonnegative curvature operator. Then (M, g(t)) must be
quotients of products of symmetric spaces.
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