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Abstract. Ancient solutions arise in the study of Ricci flow singularities. Motivated
by the work of Fateev on 3-dimensional ancient solutions we construct high dimensional
ancient solutions to Ricci flow on spheres and complex projective spaces as well as the
twistor spaces over a compact quaternion-Kähler manifold. Di¤ering from Fateev’s exam-
ples most of our examples are non-collapsed. The construction of this paper, di¤erent from
the ad hoc ansatz of Fateev, is systematic, generalizing (as well as unifying) the previous
constructions of Einstein metrics by Bourguignon–Karcher, Jensen, and Ziller in the sense
that the existence problem to a backward nonlinear parabolic PDE is reduced to the study
of nonlinear ODE systems. The key step of solving the reduced nonlinear ODE system is to
find suitable monotonic and conserved quantities under Ricci flow with symmetry. Besides
supplying new possible singularity models for Ricci flow on spheres and projective spaces,
our solutions are counter-examples to some folklore conjectures on ancient solutions of
Ricci flow on compact manifolds. As a by-product, we infer that some nonstandard
Einstein metrics on spheres and complex projective spaces are unstable fixed points of the
Ricci flow.

1. Introduction

Ancient solutions to Ricci flow arise as singularity models in the formation of finite
time singularities of the Ricci flow on compact manifolds. In dimension 2, there exists the
well-known example due to Fateev–Onofri–Zamolodchikov [19], King [28] and Rosenau
[38], which is often called sausage model. In this paper we present examples of ancient solu-
tions on spheres (as well as some other compact manifolds). The three dimensional example
on S3 is originally due to Fateev [18]. Because of many interests in this example, we add
here details (in the appendix of this paper) to make it more accessible to mathematicians.
The higher dimensional generalization is obtained by varying the connection metric on a
principal bundle over a Kähler–Einstein manifold or a quaternion-Kähler manifold with
positive scalar curvature, or by variations of a special Riemannian submersion structure,
then solving a nonlinear ODE system derived out of the Ricci flow equation.

Besides the fact that they provide the prototype for singularities of Ricci flow solu-
tions, there are several other motivations to construct ancient solutions to Ricci flow. The



first comes from [33] in which Perelman constructed a non-collapsing rotationally sym-
metric ancient solution on Sn. (In fact the original example is constructed on S3. With the
recent strong convergence result of Böhm and Wilking [8], this can be easily adapted to
dimensions above three [14].) A natural question is whether or not there exist ancient solu-
tions other than the Einstein (trivial) ones and the rotationally symmetric examples of
Perelman, especially in view of the result of Daskalopoulos, Hamilton and Sesum [16] on
2-dimensional ancient solutions. On the other hand, in [31] the third author proved that
any type-I (according to Hamilton [24] ancient solutions can be divided into type-I and
II), non-collapsed, compact ancient solution, whose curvature operator lies inside a pinch-
ing family (in the sense of Böhm and Wilking [8]), including in particular the one con-
structed from the cone of 2-positive curvature operators as well as the one from the cone
of positive complex sectional curvatures [11], must be isometric to a spherical space form.
This generalizes the corresponding result of Hamilton [24] in dimension two and that of
Perelman [34] in dimension three. Notice that Perelman’s example is of positive curvature
operator, non-collapsed, but of type-II. Thus, a natural question arises whether or not the
non-collapsing condition in the above mentioned classification result can be removed so
that one still has the same assertion for type-I ancient solutions. The third motivation,
which is related to Perelman’s example as well as the classification result, is that there exists
a speculation asserting that a type-II ancient solution of dimension three must be isometric
to the rotationally symmetric one constructed by Perelman. This was formulated on [15],
page 389, along with some other questions on ancient solutions. Recently this speculation
has been confirmed in [16] for dimension two, where, in fact, a complete classification was
obtained.

Concerning ancient solutions of Ricci flow, there also exist motivations from physics,
as they describe trajectories of the renormalization group equations of certain asymptoti-
cally free local quantum field theories in the ultra-violet regime (see, for instance, [37] for
an overview). In particular, two-dimensional non-linear sigma models with target space
a Riemannian manifold with metric g are perturbatively renormalizable and their beta-
function coincides with the Ricci curvature tensor at one loop [36], [20]. Thus, the Ricci
flow describes changes of the metric g (viewed as generalized coupling) under changes of
the logarithm of the world-sheet length scale in quantum theory provided that the curva-
ture is small. Two-dimensional quantum non-linear sigma models with positively curved
target space, and their ancient solutions, serve as toy models for exploring reliably, within
perturbation theory, the high energy behavior of asymptotically free quantum field theories
in four space-time dimensions, such as Yang–Mills theories for strong interactions [22],
[35].

The example of Fateev [18], which will be presented here in detail together with a
thorough analysis of its properties, provides a negative answer to the last two questions
raised above in dimension three. In [18], the solution was described by a set of functions
given with explicit formulae. It is by no means easy to check that these functions indeed
give an ancient solution to Ricci flow. In Section 3 along with long computations in Appen-
dix we provide a detailed verification of Fateev’s result. Besides that it gives rise to a very
interesting family of ancient solutions, it also provides useful insight for the construction of
various examples in higher dimensions. In Section 4, for the sake of higher dimensional ex-
amples, we first study a couple of special solutions derived from Fateev’s example. The gen-
eralization to higher dimensions is done via some general formulations that include metric
constructions, using the connection metrics on principle bundles, as well as the variational
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construction via a Riemannian submersion structure. In particular, the construction of
higher dimensional examples via principle bundles is presented in Sections 5 and 6 (we sum-
marize various useful formulations and collect the necessary formulae of curvature tensors
in Section 2). The construction via the Riemannian submersion is slightly more general and
is needed for one example on S15 and many other examples on complex projective spaces
and flag manifolds. This is described in Section 7.

It turns out that the geometric part of our construction is very much related to the
construction of Einstein metrics on spheres, complex projective spaces, and general homo-
geneous spaces, a subject that has been extensively studied [10], [27], [44], [48], [49] (see also
[7] and references therein for a more complete list). Extra analytic part is needed here since
we have to solve the Ricci flow equation, which is reduced to a nonlinear ODE system, in-
stead of Einstein equation, which is equivalent to a quadratic algebraic equation in this for-
mulation. When solving the nonlinear system equivalent to the Ricci flow equation, instead
of finding the solutions explicitly as in [18], we prove the global existence by finding a first
integral, since the ODE system involved in the high dimensional case of this paper seems a
bit more complicated than Fateev’s three dimensional case. Here, we merely focus on solu-
tions on spheres and the total space of the generalized Hopf fibrations, even though some
of the techniques can be adapted to other manifolds. We also study the geometric proper-
ties of these examples and show that they provide counter-examples to several speculations
in higher dimensions.

The main di¤erence between our examples and Fateev’s three dimensional example is
that some of our ancient solutions are non-collapsed, while every one in Fateev’s family of
examples is collapsed. Sometimes this is useful. For example the speculation that any non-
collapsed positively curved ancient solution on spheres must be rotationally symmetric is
refuted by one of our examples. The existence of ample examples shows, in particular,
that a higher dimensional classification of ancient solutions on spheres is in general a lot
more complicated, if not impossible, than the surface case achieved in [16] (noting that for
dimension two, any ancient solution to Ricci flow on closed manifolds resides on the
2-sphere, unless it is flat).

Another interesting feature of our examples is that some of them ‘connect’ non-

canonical Einstein metrics of lower entropy (in the sense of Perelman [32]) to the round

Einstein metric on spheres. In particular, it implies that these non-canonical Einstein metrics

with lower entropy on spheres are unstable fixed points of the Ricci flow equation.

Here we note that there have been some studies on the stability of Einstein metrics as
well as shrinking Ricci soltions, for example in [12], via entropy functional of Perelman.
Another set of examples evolve a Hermitian metric into a Kähler metric on complex projec-

tive spaces. In fact, they ‘connect’ the non-canonical Einstein metrics (which is not Kähler)
to the Fubini–Study metric on the complex projective spaces. Hence it also shows examples

of unstable fixed points of Ricci flow equation on the complex projective spaces. This applies
similarly to the non-Kähler Einstein metric on the twistor space over any quaternion-
Kähler manifold with positive scalar curvature. Hence as a consequence of the main the-
orems of this paper, we demonstrate many unstable Einstein metrics. Moreover some other
examples in this paper have the e¤ect of collapsing the fiber of a Riemannian submersion
structure as the solutions develop singularities. A similar picture has been described in the
program of Böhm and Wilking on Ricci flow in high dimensions [9]. (In a recent work [41],
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among other things, Song and Weinkove also show that a similar phenomenon happens for
Kähler–Ricci flows.) In particular, on S15, the following result is a consequence of the spe-
cial cases of Theorem 5.1, Theorem 6.2 and Theorem 7.1:

Theorem 1.1. Besides the rotationally symmetric type-II ancient solution constructed

by Perelman, on S15, there are at least five nontrivial (non-Einstein) type-I ancient solutions

to Ricci flow. The first one is collapsed with positive curvature operator, which converges to

the round metric as the time approaches to the singularity. The second and the third ones are

non-collapsed, with positive sectional curvature, each ‘connecting’ one of the two known non-

standard Einstein metrics (at t ¼ �y) to the round metric as the time approaches to the

singularity. The fourth one ‘starts’ with (at t ¼ �y) a nonstandard Einstein metric and col-

lapses the fiber sphere S3 in the generalized Hopf fibration S3 ! S15 ! HP3 as the time

approaches to the singularity. The fifth ancient solution ‘starts’ with another nonstandard

Einstein metric and collapses the fiber sphere S7 in the generalized Hopf fibration

S7 ! S15 ! S8 as the time approaches to the singularity. Here ‘connecting’ means as t

approaches to each of the two ends the re-scaled metric converges to metrics on both ends,
and ‘starts’ means as t ! �y the re-scaled metric limits to the ‘starting’ metric.

One consequence of the above result (as well as the general theorems implying it)
may be of significance is that S3 � R4n and S7 � R8 can be the singularity models of Ricci

flow on spheres. Note here that the neck-pinching examples have been previously con-
structed in [40], [2].

Here we call an ancient solution collapsed if one can not find a k > 0 such that it is
k-non-collapsed on all scales in the sense of Perelman [32]. We refer the reader to Theorem
5.1 in Section 5, Theorem 6.2 in Section 6 and Theorem 7.1 in Section 7 for much general
theorems. These theorems particularly imply that there are at least one nontrivial type-I an-

cient solution on S2mþ1, at least three nontrivial type-I ancient solutions on S4mþ3 and two

on CP2mþ1. Theorem 6.2 also implies a similar result on the twistor spaces over quaternion-

Kähler manifolds with positive scalar curvature.

It remains an interesting question if the present considerations can be modified appro-
priately to obtain noncompact examples of ancient solutions. It is also not known if one
can extend Fateev’s construction of type-II ancient solutions. As a modest classification
question we propose that for the homogeneous ancient solutions as well as ones of the co-
homogeneity one in view of the recent progresses in this direction on positively curved
manifolds [23]. A more specific question is to classify the cohomogeneity one three dimen-
sional ancient solutions. After the first draft of this paper, we were brought attention to the
preprint [13], where 3-dimensional ancient solutions to Ricci flow on homogeneous spaces
are studied.

2. Preliminaries

2.1. First we recall several di¤erent ways of parametrizing the sphere that are
needed in the sequel. Letting Sp HRpþ1 and Sq HRqþ1, we construct

0;
p

2

� �
� Sp � Sq ! Spþqþ1
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as

ðy; x; yÞ ! ðx cos y; y sin yÞ A Rpþqþ2:

This map is not onto. But only two end spheres (corresponding to y ¼ 0 and y ¼ p

2
) need to

be added to have the whole Spþqþ1. Under this representation, the standard metric on
Spþqþ1 can be written as

ds2 ¼ dy2 þ cos2 y ds2
2 þ sin2 y ds2

1ð2:1Þ

where ds2
2 and ds2

1 are the standard metrics on Sp and Sq, respectively. Since this coordi-

nate becomes singular as y ! 0 and y ! p

2
, and we shall make use of the doubly warped

product to construct a family of metrics on spheres, we need a result to ensure that the

metric originally defined on 0;
p

2

� �
� Sp � Sq can be extended smoothly to Spþqþ1.

Let ðM p; ds2
2Þ be a compact Einstein manifold and ðSq; ds2

1Þ be the standard metric
on the sphere. Consider the doubly warped product metric

ds2 ¼ dy2 þ f 2ðyÞ ds2
1 þ g2ðyÞ ds2

2 :ð2:2Þ

The following proposition gives the condition to close up the metric at the ‘end’.

Proposition 2.1 (Bérard-Bergery). Assume that f and g are smooth positive functions

defined on ð0; y0Þ. Then, ds2 extends to give a smooth positive definite metric in a neighbor-

hood of y ¼ 0 if and only if

(1) f ðyÞ extends smoothly to an odd function of t with f 0ð0Þ ¼ 1;

(2) gðyÞ extends smoothly to a strictly positive, even function of y.

Verifying this for the special case (2.1), confirms that ds2 can be extended to a smooth

metric on Spþqþ1 as y ! 0 and y ! p

2
.

2.2. The sphere can also be viewed as the total space of a principle bundle.
The prime example is the Hopf fibration S1 ! S2mþ1 ! CPm, which is given by
ðz1; z2; . . . ; zmþ1Þ A Cmþ1 with

P
jzij2 ¼ 1 to the line ½z1; . . . ; zmþ1� A CPm and its general-

ization S3 ! S4mþ3 ! HPm, which is given similarly using the quaternions. It is conve-
nient to set up the following general formulation. Let p : P ! M be a principal G-bundle
over a Riemannian manifold ðM; gÞ with dim M ¼ n, dim G ¼ p. Let s A W1ðPÞn g be a
connection on P and h� ; �ig be a bi-invariant metric on g. For any a; b > 0, we define a
metric ~gga;b on the total space P as follows:

~gga;b ¼ ahsð�Þ; sð�Þig þ bp�g:

More precisely, for any o A P and any vectors X ;Y A ToP,

~ggðX ;YÞ ¼ ahsðXÞ; sðYÞig þ bðp�gÞðX ;YÞ.
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We need to compute the curvature of this metric on the principal bundle. Let
1e i; j; k e n, n þ 1e a; b; ge n þ p, 1eA;B;C e n þ p. Let fs1; . . . ; sng be an ortho-
normal frame of W1ðMÞ. Then, Cartan’s structure equations are given by

dsi ¼ �sij5sj;

dsij þ sik5skj ¼
1

2
Rijklsk5sl :

Let fXnþ1; . . . ;Xnþpg be an orthonormal basis of g. The structure constants C
g
ab are defined

via

½Xa;Xb� ¼ C
g
abXg:

Since the metric h� ; �ig is biinvariant, C
g
ab are skew symmetric in every pair of indices.

Define the orthonormal 1-form sa by

s ¼ sa � Xa:

Then

fp�s1; . . . ; p
�sn; snþ1; . . . ; snþpg

is an orthonormal frame of W1ðPÞ for ~gg1;1. For the sake of convenience, we also denote
p�si by si. The curvature of the connection s is defined as

W ¼ dsþ 1

2
½s; s�:

If we write W ¼ Wa � Xa, and

Wa ¼ 1

2
F a

ij si5sj;

then, we have

dsa þ
1

2
C a

bgsb5sg ¼
1

2
F a

ij si5sj:

The first covariant derivative of F a
ij is defined byP

k

F a
ij;ksk ¼ dF a

ij � F a
kjski � F a

ikskj � F
b

ij C a
bgsg

and the second Bianchi identity asserts that

F a
ij;k þ F a

jk; i þ F a
ki; j ¼ 0:

For general ~gga;b, let ~ssa ¼
ffiffiffi
a

p
sa, ~ssi ¼

ffiffiffi
b

p
si. Then f~ssa; ~ssig is an orthonormal frame of T �P.

The Levi–Civita connection 1-form ~ssAB of ~gga;b is uniquely determined by
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~ssAB ¼ �~ssBA;

d~ssA ¼ �~ssAB5~ssB:

Therefore,

~ssab ¼ � 1

2
C a

bgsg;

~ssai ¼
1

2

a

b

� �1
2

F a
ij sj;

~ssij ¼ sij �
a

2b
F a

ij sa:

The Riemannian curvatures of ~gga;b can be computed using the equation

d~ssAB þ ~ssAC5~ssCB ¼ 1

2
~RRABCD~ssC5~ssD:

Therefore,

1

2
~RRabab~ssA5~ssB ¼ 1

8a
C

g
abC

g
dh~ssd5~ssh �

1

4

a

b2
F a

ikF
b

jk þ
1

b
F

g
ij C

g
ab

� �
~ssi5~ssj;

1

2
~RRiaAB~ssA5~ssB ¼ 1

4

a

b2
F

b
ikF a

jk �
1

b
F

g
ij C

g
ab

� �
~ssj5~ssb þ

1

2

a

b3

� �1
2

F a
ij;k~ssj5~ssk;

1

2
~RRijAB~ssa5~ssb ¼ 1

2b
Rijkl ~ssk5~ssl �

a

4b2
ðF a

ij F a
kl þ F a

ikF a
jl Þ~ssk5~ssl

� 1

2

a

b3

� �1
2

F a
ij;k~ssk5~ssa �

1

4

a

b2
F a

ikF
b

jk þ
1

b
F

g
ij C

g
ab

� �
~ssa5~ssb:

Hence, the Riemannian curvature of ~gga;b is given in components by

~RRabdh ¼
1

4a
C

g
abC

g
dh;

~RRabgi ¼ 0;

~RRiajb ¼ � 1

4b
F

g
ij C

g
ab þ

a

4b2
F

b
ikF a

jk;

~RRijab ¼ � 1

2b
F

g
ij C

g
ab �

a

4b2
ðF a

ikF
b

jk � F
b

ikF a
jkÞ;

~RRijka ¼ � 1

2

a

b3

� �1
2

F a
ij;k;

~RRijkl ¼
1

b
Rijkl �

a

4b2
ð2F a

ij F a
kl þ F a

ikF a
jl � F a

il F a
jkÞ;

ð2:3Þ
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and the Ricci curvature of ~gga;b takes the form

~RRab ¼
1

4a
C g

ahC
g
bh þ

a

4b2
F a

ij F
b

ij ;

~RRia ¼
1

2

a

b3

� �1
2

F a
ij; j;

~RRij ¼
1

b
Rij �

a

2b2
F a

ikF a
jk:

ð2:4Þ

The construction of Einstein metrics via the principle bundle were studied before. For ex-
ample it was used in [27]. Our formulae (2.3) and (2.4) above follow from the computations
in [27] with the appropriate modifications (cf. [27], Proposition 5).

2.3. Another formulation needed for our examples is the Riemannian sub-
mersion, which also plays an important role in the construction of Einstein metrics [7].
Let p : ðP; gÞ ! ðM; �ggÞ be a Riemannian submersion with P, M being compact mani-
folds. Let ĝg be the restriction of g to the fibre. Let fea; eig be an orthonormal frame of
tangent vectors of ðP; gÞ, where feag is vertical and feig is horizontal. Recall that [7] the
O’Neill tensors A and T are defined by

Aei
ej ¼ ð‘ei

ejÞ?; Aei
ea ¼ ð‘ei

eaÞ>; Aeaei ¼ 0; Aeaeb ¼ 0;

Teaei ¼ ð‘eaeiÞ?; Teaeb ¼ ð‘eaebÞ
>; Tei

ej ¼ 0; Tei
ea ¼ 0;

where ? and > represent the vertical and horizontal components respectively. The fiber is
totally geodesic if and only if T ¼ 0. In this article, we only consider the Riemannian sub-
mersion with totally geodesic fibre. It is then known that all the fibers are isometric [7].
O’Neill’s formulae (see for example, Chapter 9, [7], Section D) give the Riemannian curva-
ture tensor of g in terms of the curvature tensor of the base manifold, the curvature of the
fiber and the O’Neill’s operator A via the formulae below:

Rabgd ¼ R̂Rabgd; Rabgi ¼ 0;

Riajb ¼ hð‘eaAÞei
ej; ebiþ hAei

ea;Aej
ebi;

Rijab ¼ hð‘eaAÞei
ej; ebi� hð‘ebAÞei

ej; eaiþ hAei
ea;Aej

ebi� hAei
eb;Aej

eai;

Rijka ¼ hð‘ek
AÞei

ej; eai;

Rijkl ¼ �RRijkl � 2hAei
ej;Aek

eli� hAei
ek;Aej

eliþ hAei
el ;Aej

eki;

whereas the Ricci curvature has the expression

Rab ¼ R̂Rab þ
P

i

hAei
ea;Aei

ebi;

Ria ¼
P

j

hð‘ej
AÞej

ei; eai;

Rij ¼ �RRij � 2
P
k

hAei
ek;Aej

eki:

Here R̂R and �RR are the curvature tensors of the fiber and the basis, respectively.
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Now consider the variation ~gga;b ¼ aĝg þ b�gg. Let ~eea ¼
1ffiffiffi
a

p ea, ~eei ¼
1ffiffiffi
b

p ei: Then, f~eea; ~eeig

is an orthonomal basis of ðP; ~gga;bÞ. Modifying the computations in [7], Chapter 9, Sec-
tion G, we obtain the Riemannian curvature tensor of ~gga;b:

~RRabgd ¼
1

a
R̂Rabgd; ~RRabgi ¼ 0;

~RRiajb ¼
1

b
hð‘eaAÞei

ej; ebiþ 1

b
hAei

ea;Aej
ebi� 1

b
1 � a

b

� �
hAei

eb;Aej
eai;

~RRijab ¼
1

b
hð‘eaAÞei

ej; ebi� 1

b
hð‘ebAÞei

ej; eaiþ 1

b
2 � a

b

� �
hAei

ea;Aej
ebi

� 1

b
2 � a

b

� �
hAei

eb;Aej
eai;

~RRijka ¼
a

b3

� �1
2

hð‘ek
AÞei

ej; eai;

~RRijkl ¼
1

b
�RRijkl � 2

a

b2
hAei

ej;Aek
eli� a

b2
hAei

ek;Aej
eliþ a

b2
hAei

el ;Aej
eki:

ð2:5Þ

The Ricci curvature of ~gga;b is given by

~RRab ¼
1

a
R̂Rab þ

a

b2

P
i

hAei
ea;Aei

ebi;

~RRia ¼
a

b3

� �1
2P

j

hð‘ej
AÞej

ei; eai;

~RRij ¼
1

b
�RRij � 2

a

b2

P
k

hAei
ek;Aej

eki:

ð2:6Þ

Hence the Riemannian curvature tensor and the Ricci curvature of ~gga;b and g are related
by

~RRabgd ¼
1

a
Rabgd; ~RRabgi ¼ 0;

~RRiajb ¼
1

b
Riajb �

1

b
1 � a

b

� �
hAei

eb;Aej
eai;

~RRijab ¼
1

b
Rijab þ

1

b
1 � a

b

� �
hAei

ea;Aej
ebi� 1

b
1 � a

b

� �
hAei

eb;Aej
eai;

~RRijka ¼
a

b3

� �1
2

Rijka;

~RRijkl ¼
a

b2
Rijkl þ

1

b
1 � a

b

� �
�RRijkl ;

ð2:7Þ
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and

~RRab ¼
a

b2
Rab þ

1

a
1 � a2

b2

� �
R̂Rab;

~RRia ¼
a

b3

� �1
2

Ria;

~RRij ¼
a

b2
Rij þ

1

b
1 � a

b

� �
�RRij:

ð2:8Þ

Subsequently, in our constructions we shall mainly use formulae (2.7) and (2.8) above. This
consideration will be mainly used for the generalized Hopf fibrations

S2 ! CP2mþ1 ! HPm and S7 ! S15 ! S8.

3. Fateev’s 3-dimensional sausage

We shall give a detailed presentation of Fateev’s examples of ancient solutions on S3

[18] and discuss their properties. First we start with a parametrization of S3. Write the

standard sphere as jz1j2 þ jz2j2 ¼ 1 in C2. Let z1 ¼ x1 þ
ffiffiffiffiffiffiffi
�1

p
x2 and z2 ¼ x3 þ

ffiffiffiffiffiffiffi
�1

p
x4.

Introduce the parameters y A 0;
p

2

� �
, w1 and w2 A ½0; 2p� as follows: For any point ðz1; z2Þ

on S3, there exists a unique y A 0;
p

2

� �
such that

jz1j2 ¼ cos2 y; jz2j2 ¼ sin2 y:

For y A 0;
p

2

� �
the level set of y is a torus, whereas for y ¼ 0 (or

p

2
) is a circle. The generic

level set of y can be parametrized by w1 and w2 via

z1 ¼ jz1j expð
ffiffiffiffiffiffiffi
�1

p
w1Þ; z2 ¼ jz2j expð

ffiffiffiffiffiffiffi
�1

p
w2Þ:ð3:1Þ

Every point on the sphere except the two circles

F1 = fðz1; 0Þ
�� jz1j2 ¼ 1g and F2 = fð0; z2Þ

�� jz2j2 ¼ 1g

can be parametrized uniquely by y and w1; w2 A R=2pZ. With this parametrization in mind,
the standard metric of S3 has the form of a doubly-warped product:

ds2
stan ¼ dy2 þ cos2 y dw2

1 þ sin2 y dw2
2 :

This can be easily seen from

ds2
stan ¼

P4
i¼1

dx2
i

¼ 1

2
ðdz1 n dz1 þ dz1 n dz1 þ dz2 n dz2 þ dz2 n dz2Þ;
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dz1 ¼ �sin ye
ffiffiffiffiffi
�1

p
w1 dyþ

ffiffiffiffiffiffiffi
�1

p
cos ye

ffiffiffiffiffi
�1

p
w1 dw1;

dz2 ¼ cos ye
ffiffiffiffiffi
�1

p
w2 dyþ

ffiffiffiffiffiffiffi
�1

p
sin ye

ffiffiffiffiffi
�1

p
w2 dw2:

From (3.1) it is also easy to see that e2
ffiffiffiffiffi
�1

p
w1 ¼ z1

z1
and e2

ffiffiffiffiffi
�1

p
w2 ¼ z2

z2
. Di¤erentiating them

gives the relations

dw1 ¼ x1 dx2 � x2 dx1

x2
1 þ x2

2

; dw2 ¼ x3 dx4 � x4 dx3

x2
3 þ x2

4

:ð3:2Þ

For convenience in the presentation, we denote f1 = x1 dx2 � x2 dx1, f2 = x3 dx4 � x4 dx3.
Fateev’s ancient solution is a family of metrics gðtÞ defined on ð�y; 0Þ � S3 which solves
the Ricci flow equation

qg

qt
¼ 1

2
RicðgÞ;ð3:3Þ

where t ¼ �t, which is now defined on ð0;yÞ. (We use this nonstandard normalization for
convenience.) The solution has an ansatz of the following form:

ds2
n;kðtÞ ¼

1

wðt; yÞ
�
uðtÞ ds2

stan þ 2dðtÞðf2
1 þ f2

2Þ þ 4cðtÞf1f2

�
;ð3:4Þ

where

wðt; yÞ ¼ a2ðtÞ � b2ðtÞðx2
1 þ x2

2 � x2
3 � x2

4Þ
2 ¼ a2ðtÞ � b2ðtÞ cos2 2yð3:5Þ

and a, b, c, d, u are functions of t, which are given by the formulae

aðtÞ ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2 x� k2 sinh2 x

p
þ 1

sinh x
;

bðtÞ ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2 x� k2 sinh2 x

p
� 1

sinh x
;

cðtÞ ¼ �lk tanh x;

dðtÞ ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2 tanh2 x

p
� cosh x

sinh x
;

uðtÞ ¼ 2l coth x;

ð3:6Þ

where l ¼ n

2ð1 � k2Þ > 0 and n and k are two parameters with n > 0 and k2 < 1. The new

variable x is related to t via the equation

nt ¼ x� k

2
log

1 þ k tanh x

1 � k tanh x

� �
:ð3:7Þ

Theorem 3.1 (Fateev). The metrics described through the equations (3.4), (3.5) and

(3.6) are smooth ancient solutions to the Ricci flow equation (3.3).
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We first check that ds2
t is indeed a family of smooth metrics on S3. It is easy to see

that a > b > 0, hence w > 0. Note that w, which is expressed in terms of x1, x2, x3, x4, can
also be viewed as a positive smooth function defined in a small neighborhood of S3. Note
that u > 0, d < 0, u þ 2d > 0 and u > 2jcj. Observe also that as symmetric tensors,

4cf1f2 e 2jcjðx2
3 dx2

2 þ x2
1 dx2

4 þ x2
1 dx2

3 þ x2
4 dx2

2 þ x2
3 dx2

1 þ x2
2 dx2

4

þ x2
4 dx2

1 þ x2
2 dx2

3Þ;

�2dðf2
1 þ f2

2Þe�2dðx2
1 dx2

2 þ x2
1 dx2

1 þ x2
2 dx2

2 þ x2
2 dx2

1

þ x2
3 dx2

4 þ x2
3 dx2

3 þ x2
4 dx2

4 þ x2
4 dx2

3Þ:

It then follows that

uðtÞ ds2
stan þ 2dðtÞðf2

1 þ f2
2Þ þ 4cðtÞf1f2 f ðu � maxf2jcj;�2dgÞ ds2

stan > 0:

Hence ds2
t is a family of smooth positive definite ð2; 0Þ symmetric tensors, even in a small

neighborhood of S3 HR4. Moreover wðt; x1; x2; x3; x4Þ ds2
t has the form

ðu þ 2dx2
2Þ dx2

1 þ ðu þ 2dx2
1Þ dx2

2 þ ðu þ 2dx2
4Þ dx2

3 þ ðu þ 2dx2
3Þ dx2

4

� 4dx1x2 dx1 dx2 � 4dx3x4 dx3 dx4 � 4cx2x3 dx1 dx4 � 4cx1x4 dx2 dx3

þ 4cx1x3 dx2 dx4 þ 4cx2x4 dx1 dx3:

To compute the curvature tensor of gðtÞ ¼ ds2
t and verify that it is indeed a solution

to the Ricci flow equation (3.3), it su‰ces to work with the coordinate

ðy; w1; w2Þ A 0;
p

2

� �
� ½0; 2pÞ � ½0; 2pÞ;

since this coordinate covers S3 except the two focal sub-manifolds Fi ði ¼ 1; 2Þ of codimen-

sion 2. This coordinate becomes singular as y ! 0 or
p

2
. However, the above discussion

makes it clear that the metric gðtÞ is nevertheless smooth. With respect to the coordinate
ðy; w1; w2Þ, gðtÞ can be rewritten as follows:

gðtÞ ¼ A dy2 þ B dw2
1 þ C dw2

2 þ 2D dw1dw2;

where A, B, C, D are functions of x and y only, given by

Aðt; yÞ ¼ uðtÞ
a2ðtÞ � b2ðtÞ cos2 2y

=
A

wðt; yÞ ;

Bðt; yÞ ¼ cos2 y
uðtÞ þ 2dðtÞ cos2 y

a2ðtÞ � b2ðtÞ cos2 2y
=

B

wðt; yÞ ;

Cðt; yÞ ¼ sin2 y
uðtÞ þ 2dðtÞ sin2 y

a2ðtÞ � b2ðtÞ cos2 2y
=

C

wðt; yÞ ;

Dðt; yÞ ¼ 2cðtÞ sin2 y cos2 y

a2ðtÞ � b2ðtÞ cos2 2y
=

D

wðt; yÞ :

ð3:8Þ
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The right most equalities above define A, B, C, D. Next, we need to demonstrate how to
reduce (3.3) into a set of ODEs, which then yields the explicit formulae (3.6) by solving
them. We leave this computational part to the Appendix.

4. Geometric properties and derived solutions

Hamilton divided the ancient solutions to Ricci flow on M � ð�y; 0Þ into two types,
type-I and type-II, according to the behavior of the curvature. An ancient solution gðtÞ is
called type-I if there exists a constant C ¼ CðMÞ > 0 such that

jRmjðx; tÞe C

t
:

Here, as before, t ¼ �t. If the above estimate fails, the solution is called type-II. Recall
that Fateev’s family of solutions from Section 3 is a family of two parameters n > 0,
�1 < k < 1, given by

ds2
n;kðtÞ ¼ Aðt; yÞ dy2 þ Bðt; yÞ dw2

1 þ Cðt; yÞ dw2
2 þ 2D dw1 dw2ð4:1Þ

where A, B, C, D are given in (3.8) with uðtÞ, cðtÞ, aðtÞ, bðtÞ, dðtÞ satisfying (3.6). The
following is easy to check.

Proposition 4.1. The ancient solutions ds2
n;kðtÞ described via (3.6) in Section 3 are of

type-II.

Proof. We follow the notations and computations made in the Appendix. Direct
computation shows that on the focal manifold F1, the Ricci curvature

Ricðe1; e1Þ ¼ g11ðt; yÞR11ðt; yÞ ! 1 � k2; as t ! y:

Here, we set e1 ¼ 1ffiffiffiffi
A

p q

qy1
. r

The trivial (Einstein) ancient solution on S3, which is type-I, can be obtained from
the family ds2

n;k by scaling of the space time variables. This is a special case of the conver-
gence result of Hamilton in three dimensional manifolds with positive Ricci curvature.

Proposition 4.2. As n ! 0, keeping k fixed, the metric
1

n
ds2

n;kðntÞ ! t ds2
stan, the

family of Einstein metrics on S3.

Proof. This is essentially the well-known theorem of Hamilton, which asserts that as
t ! 0, the rescaled metric converges to the constant curvature metric on S3. Indeed, using
the fact that

lim
x!0

f ðxÞ
x

¼ 1 � k2
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and n2t ¼ f ðxÞ, which implies that lim
n!0

x

n2
¼ t

1 � k2
, we have

lim
n!0

1

n
ds2

n;kðntÞ ¼ lim
n!0

2ð1 � k2Þx
n2

1

x

u

w
ds2

stan þ
2d

w
ðf2

1 þ f2
2Þ þ

4c

w
f1f2

� �� �
¼ t ds2

stan:

Here, u ¼ u

l
, c ¼ c

l
, d ¼ d

l
and w ¼ w

l2
. Note that in the above calculation we fix the

parameter t and let n ! 0 (as well as x ! 0). r

For ancient solutions, the so-called k non-collapsing property is important. Recall
from [32] that the metric g (of M n) is called k-non-collapsed on the scale r, if every metric

ball B of radius r < r, which satisfies jRmjðxÞe r�2 for every x A B, has volume at least

krn. In [32] Perelman proved that every ancient solution arising as a blow-up limit in the
singularity of Ricci flow on compact manifolds is k-non-collapsed on all scales for some
k > 0. We call an ancient solution collapsed if there does not exist k > 0 such that it is
k-non-collapsed on all scales. In contrast to Perelman’s example we have below:

Proposition 4.3. The ancient solutions ds2
n;kðtÞ are collapsed.

Proof. Let x ! y, which is equivalent to t ! y, as lim
x!y

df

dx
! 1.

lim
x!y

ds2
n;kðtÞ ¼

1

n

1

sin2 y cos2 y
dy2 þ dw2

1 þ dw2
2 � 2k dw1 dw2

� �
on 0;

p

2

� �
� S1 � S1, which is a collapsed, complete metric on R� S1 � S1. Hence the

family ds2
n;kðtÞ must be collapsed. r

Corollary 4.1. Not every type-II ancient solution is isometric (up to scaling) to the

rotationally symmetric example of Perelman.

Proof. Since Perelman’s example is non-collapsed in all scales, it can not be isomet-
ric (after scaling) to ds2

n;kðtÞ. r

Next, we show that by re-parametrizing and taking the limit of ds2
n;kðtÞ as x ! y,

one can obtain the product of the cigar metric on R2 [24] with S1. For this, we first describe
a special family of ds2

n;kðtÞ.

A family of ancient solutions ds2
n ðtÞ can be obtained from ds2

n;kðtÞ simply by letting
k ¼ 0 for which

aðtÞ ¼ l coth
x

2
; bðtÞ ¼ l tanh

x

2
;

cðtÞ ¼ 0; dðtÞ ¼ �l tanh
x

2
;

uðtÞ ¼ 2l coth x; x ¼ nt:

ð4:2Þ
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Here, l ¼ n

2
and the coe‰cients A, B, C, D are given by the expressions

Aðt; yÞ ¼ 1

n

cosh x sinh x

ðcos2 yþ sin2 y cosh xÞðsin2 yþ cos2 y cosh xÞ
;

Bðt; yÞ ¼ 1

n

cos2 y sinh x

sin2 yþ cos2 y cosh x
;

Cðt; yÞ ¼ 1

n

sin2 y sinh x

cos2 yþ sin2 y cosh x
;

Dðt; yÞ ¼ 0:

ð4:3Þ

The metric ds2
n ðtÞ ¼ A dy2 þ B dw2 þ C dw2

2 is a doubly warped product metric, which was
first discovered by Fateev in [17]. The regularity of the metric can also be seen from
Proposition 2.1. In terms of the notation of the last section, the metric has the form

ds2
n ðtÞ ¼

1

wðt; yÞ
��

aðtÞ þ bðtÞ
�

ds2
stan � 2bðtÞðf2

1 þ f2
2Þ
�
:

The formulae (4.3) can also be obtained from solving the ODE system:

da

dt
¼ �aða � bÞ;ð4:4Þ

db

dt
¼ bða � bÞð4:5Þ

which is equivalent to the Ricci flow equation. Note that this system has a simple first inte-

gral ab ¼ constant. Letting e1 ¼ 1ffiffiffiffi
A

p q

qy1
, e2 ¼ 1ffiffiffiffi

B
p q

qy2
and e3 ¼ 1ffiffiffiffi

C
p q

qy3
, the curvature

operator of ds2
n ðtÞ is diagonal with respect to e15e2, e15e3 and e25e3:

Rm

¼

� 1

2A

B 0

B

� �0
þ B 0

2B

B 0

B
� A 0

A

� � !
0 0

0 � 1

2A

C 0

C

� �0
þ C 0

2C

C 0

C
� A 0

A

� � !
0

0 0 � 1

4A

B 0

B

C 0

C

0BBBBBBBBBB@

1CCCCCCCCCCA

¼ ða � bÞ

� a � b

a þ b
þ 2

a � b cos 2y

a þ b cos 2y
0 0

0 � a � b

a þ b
þ 2

a þ b cos 2y

a � b cos 2y
0

0 0
a � b

a þ b

0BBBBBBB@

1CCCCCCCA:
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It is worthwhile to mention that this solution has pinched sectional curvature with pinch-
ing constant that tends to zero as t ! y. Since its curvature operator has three di¤erent
eigenvalues generically, it can not be rotationally symmetric. Clearly this metric is not
homogeneous.

An interesting feature of this ancient solution is that one can obtain Hamilton’s cigar
solution by taking a suitable limit of the metric as t ! y. Recall that Hamilton’s cigar is a
metric on R2 which is a gradient steady soliton. Under the cylindrical coordinate, it can be
expressed as

ds2
cigar ¼

1

n

dx2 þ dy2

1 þ e2y
;

where ðx; yÞ A S1 � R. (As before we identify R=2pZ with S1.)

Next, introduce a new variable ~yy such that tanh ~yy ¼ cos2 y� sin2 y. It is easy to see
that ~yy A R and

ds2
n ðtÞ ¼

sinh x

n

cosh x d~yy2

ðe2~yy þ e�2~yyÞ cosh xþ 1 þ cosh2 x
þ dw2

1

e�2~yy þ cosh x
þ dw2

2

e2~yy þ cosh x

 !
:

Letting at this point ~yy ¼ y þ x

2
and taking x ! y, we have finally

ds2
n ðtÞ !

1

n

dy2 þ dw2
2

1 þ 2e2y
þ dw2

1

� �
:

(Another simple translation takes the above into the standard form of Hamilton’s cigar
metric.) Hence, we have the following:

Proposition 4.4. After the change of variables described above, ds2
n ðtÞ converges to the

product of Hamilton’s cigar with S1 as t ! y.

It is a little surprising, but in fact one can obtain a family of type-I ancient solutions
from ds2

n;kðtÞ by a suitable limiting process. By Proposition 4.1, to obtain a type-I solution
one has to let k ! 1. Indeed, let k ! 1 and n ! 0, but in the manner that

2n

1 � k2
¼ W

is a fixed number. Noting that l ¼ n

2ð1 � k2Þ ¼
W

4
, the relation nt ¼ f ðxÞ becomes

Wt ¼ 2 lim
k!1

x� k

2
log

1 þ k tanh x

1 � k tanh x

� �
1 � k2

¼ 2 lim
k!1

1

1 þ k

1

2
log

1 þ k tanh x

1 � k tanh x

� �
þ k

2

2 tanh x

1 � k2 tanh2 x

 !

¼ xþ 2 sinh 2x

2
:
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It is easy to check in this case that

aðtÞ ¼ W

2 sinh x
; bðtÞ ¼ 0;

cðtÞ ¼ dðtÞ ¼ �W

4
tanh x; uðtÞ ¼ W

2
coth x:

Then, the limit metric has the form

ds2
WðtÞ ¼

sinh 2x

W

�
dy2 þ cos2 yð1 � tanh2 x cos2 yÞ dw2

1 þ sin2 yð1 � tanh2 x sin2 yÞ dw2
2

� 2 sin2 y cos2 y tanh2 x dw1 dw2

�
¼ sinh 2x

W

�
ds2

stan � tanh2 xðf2
1 þ f2

2 þ 2f1f2Þ
�
:

Proposition 4.5. The family of metrics ds2
WðtÞ are type-I collapsed ancient solu-

tions.

Proof. Now introduce the following change of variables:

Y ¼ 2y; F ¼ w1 þ w2

2
; C ¼ w1 � w2

2
:

Introduce the 1-forms

c1 ¼ sinF dY� sinY cosF dC;

c2 ¼ �cosF dY� sinY sinF dC;

c3 ¼ �dF� cosY dC:

Direct calculation shows that

ds2
W ¼ sinh 2x

W
ðc2

1 þ c2
2Þ þ

2 tanh x

W
c2

3 :

Viewing S3 as the total space of the Hopf fibration over CP1, it is easy to check that

c2
1 þ c2

2 ¼ dY2 þ sin2 Y dC2

corresponds to the metric on the base manifold CP1. Hence, fc1;c2g form a moving frame
of the base manifold CP1. Also dc3 ¼ �c15c2, which is the �1 multiple of the Kähler
form. Hence c3 can be viewed as a connection 1-form on the total space; in fact, this exam-
ple fits into the generalization considered in the next section. The rest of the proof is a spe-
cial case of Theorem 5.1. r

The type-I example above was also recently studied in Theorem 2.1 of [13].
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5. Type-I ancient solutions on a U(1)-bundle over a Kähler–Einstein manifold

of positive scalar curvature

In this section, we shall construct examples generalizing the metrics ds2
W in Proposi-

tion 4.5. First, recall the computations in Section 2.2 on the general connection metric on
a principle bundle. If we consider a Uð1Þ-bundle P, the Lie group/algebra is trivial and the
Riemannian curvature tensor and Ricci curvature of the variation metric ~gga;b are simply
given by

~RRi0j0 ¼ a

4b2
FikFjk;

~RRijk0 ¼ � 1

2

a

b3

� �1
2

Fij;k;

~RRijkl ¼
1

b
Rijkl �

a

4b2
ð2FijFkl þ FikFjl � FilFjkÞ;

and

~RR00 ¼ a

4b2
FijFij;

~RRia ¼
1

2

a

b3

� �1
2

Fij; j;

~RRij ¼
1

b
Rij �

a

2b2
FikFjk:

We further restrict ourselves to the case that ðM 2m; J; gÞ is a compact Kähler–Einstein
manifold such that RicðgÞ ¼ pg for some p > 0 and P a principle Uð1Þ-bundle with a con-
nection 1-form

ffiffiffiffiffiffiffi
�1

p
y such that its curvature satisfies

dy ¼ qo

for some q3 0, where o is the Kähler form of ðM; gÞ. If we normalize so that o is an inte-
gral class, then p and q can only take rational values (one can even further normalize so
that p ¼ 1). The typical examples include the Uð1Þ-bundle over CPm.

Theorem 5.1. Let ðM; gÞ be a Kähler–Einstein manifold with positive Chern class and

let P be a Uð1Þ principal bundle over M with a connection 1-form y such that its curvature is a

nonzero multiple of the Kähler form. There exist positive functions aLðtÞ and bLðtÞ on ð0;yÞ
(depending on a parameter L) such that ~gga;b ¼ ayð�Þn yð�Þ þ bp�g is an ancient solution

to Ricci flow on the total space Pn ðn ¼ 2m þ 1Þ. Moreover, the solution is of type-I and

collapsed. It has positive curvature operator when ðM; gÞ is ðCPm; cgFSÞ, where gFS is the

Fubini–Study metric and c > 0 is a constant.

Remark 5.2. Since M is algebraic, for any q such that qo A H 1;1ðM;CÞXH 2ðM;ZÞ
by Lefschetz theorem there always exist a Uð1Þ bundle and a connection y such that its
curvature form is qo. Under the assumption of the theorem the existence of Einstein
metrics on P was known first in [29].
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Since the Einstein metrics on spheres are non-collapsed ancient solutions to the Ricci
flow, we have the following immediate consequence.

Corollary 5.3. In the classification result of type-I ancient solutions in [31], the non-

collapsed condition can not be removed.

Proof of Theorem 5.1. For simplicity we write ~gg for ~gga;b. First, observe that Fij ¼ qoij ,

hence Fij;k ¼ 0 and FikFjk ¼ q2dij . The Riemannian curvature tensor can be simplified:

~RRi0j0 ¼ q2

4

a

b2
dij;

~RRijk0 ¼ 0;

~RRijkl ¼
1

b
Rijkl �

q2

4

a

b2
ð2oijokl þ oikojl � oilojkÞ:

Hence, the Ricci curvature is given by

~RR00 ¼ mq2

2

a

b2
;

~RRia ¼ 0;

~RRij ¼
p

b
� q2

2

a

b2

� �
dij:

The Ricci tensor of ~gg is of the form Ricð~ggÞ ¼ mq2

2

a2

b2
yn yþ p � q2

2

a

b

� �
g and the Ricci

flow equation
q~gg

qt
¼ 2 Ricð~ggÞ (with t ¼ t0 � t) is reduced to the following ODE system:

da

dt
¼ mq2 a2

b2
;ð5:1Þ

db

dt
¼ 2p � q2 a

b
:ð5:2Þ

To solve this ODE, observe that there is a first integral of this system,

2p

ðm þ 1Þq2
� a

b

� �
a�mþ1

m ¼ L
mþ1

m

where L is a constant. To see this, let y ¼ a

b
and use (5.1) and (5.2) to obtain the equation

dy

dt
¼ y

�
ðm þ 1Þq2y � 2p

� 1

b
:ð5:3Þ

The first integral is obtained by solving the equation that arises by dividing (5.1) and
(5.3).
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Case 1: L ¼ 0. Then,

a

b
¼ 2p

ðm þ 1Þq2
:

By (5.1) and (5.2), if we require that lim
t!0

aðtÞ ¼ lim
t!0

bðtÞ ¼ 0,

a ¼ 4mp2

ðm þ 1Þ2
q2

t;

b ¼ 2mp

m þ 1
t:

Hence, the metric ~ggðtÞ ¼ 2tge, where

ge ¼
2mp2

ðm þ 1Þ2
q2

yn yþ mp

m þ 1
g

is an Einstein metric such that RicðgeÞ ¼ ge. So, we obtain a trivial solution.

Case 2: L > 0. Then,

a

b
¼ 2p

ðm þ 1Þq2
� ðLaÞ

mþ1
mð5:4Þ

and (5.1) and (5.2) become

da

dt
¼ mq2 2p

ðm þ 1Þq2
� ðLaÞ

mþ1
m

� �2

;ð5:5Þ

db

dt
¼ 2mp

m þ 1
þ q2ðLaÞ

mþ1
m :ð5:6Þ

It is relatively easy to prove the long time existence of the solutions satisfying
lim
t!0

aðtÞ ¼ lim
t!0

bðtÞ ¼ 0. Due to (5.4), one only has to solve (5.5). Since a and b are increas-

ing functions of t, (5.4) implies that a stays bounded from above by a fixed number. Then,
we conclude that (5.5) has global solution on ð0;yÞ by, say [25], Theorem 7. In fact, the
solution is also unique by the same result.

The case L
mþ1

m < 0 is not interesting for our consideration, since the solution to (5.5)
will have finite time blow-up. Next, we check that the solution ~gga;b is of type-I and col-
lapsed. Since

db

dt
f

2mp

m þ 1
;ð5:7Þ

we know that b ! y, as t ! y. It follows from (5.4) that as t ! y,

a ! 1

L

2p

ðm þ 1Þq2

� � m

mþ1

:ð5:8Þ
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By the formula on the curvature, it is not hard to see that there exists C, depending only on
p, q, m, such that

jgRmRmje C

b
:

Since
db

dt

���� ���� is bounded from above, which implies that
b

t
is bounded from above, we have

that

jgRmRmjteC 0:

This shows that the solution ~gga;b is type-I.

Finally, by (5.8), the fibre S1 of the bundle P has length bounded from above as

t ! y, while the curvature goes to zero as t ! y in the rate of
1

t
. Hence, the metric ~gga;b

must be collapsed.

The last claim on the positivity of the curvature operator follows from the proposi-

tion below, (5.4), a > 0, L > 0 and the fact that
2

m þ 1
<

4

2m þ 1
. r

Proposition 5.1. Let g be a multiple of the Fubini–Study metric on CPm with

RicðgÞ ¼ pg. Let o be its Kähler form. Assume that P is a Uð1Þ-bundle with connection y

such that dy ¼ qo, for some q. Then the curvature operator of the metric ~gga;b ¼ ayn yþ bg

on P is positive if and only if

a

b
<

4

2m þ 1

p

q2
:

Proof. Let fe1; . . . ; e2mg be an orthonormal tangent vector of ðCPm; gÞ and
emþk ¼ Jek, 1e k em. Denote oij ¼ oðei; ejÞ. By O’Neill’s formula, the Riemannian cur-
vature of g is given by

Rijkl ¼
p

2m þ 2
ðdikdjl � dildjk þ 2oijokl þ oikojl � oilojkÞ:

Hence,

~RRijkl ¼
p

2m þ 2

1

b
ðdikdjl � dildjkÞ

þ p

2m þ 2

1

b
� q2

4

a

b2

� �
ð2oijokl þ oikojl � oilojkÞ

¼ p

2m þ 2

1

b
ðdikdjl � dildjkÞ

þ p

2m þ 2

1

b
1 � m þ 1

2

q2

p

a

b

� �
ð2oijokl þ oikojl � oilojkÞ:
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As an algebraic curvature operator (namely a symmetric tensor of
V2ðTPÞ), the eigenvalues

of 2oijokl þ oikojl � oilojk are given by the following table:

eigenvalues multiplicities eigenvectors

2m þ 1 1
Pm
i¼1

ei5emþi

1 m2 � 1
ei5emþi �

1

m

�Pm
i¼1

ei5emþi

�
,

ei5ej þ emþi5emþ j,
ei5emþj � emþi5ej

�1 m2 � m
ei5ej � emþi5emþj,
ei5emþj þ emþi5ej

where 1e i3 j em. It follows that the eigenvalues of the curvature operator gRmRm are
given by

p

b
1 � 2m þ 1

4

q2

p

a

b

� �
;

p

m þ 1

1

b
1 � m þ 1

4

q2

p

a

b

� �
;

q2

4

a

b2

with multiplicities 1, m2 � 1 and m2 þ m, respectively. Clearly, all of these eigenvalues are
positive if and only if

a

b
<

4

2m þ 1

p

q2
: r

The convergence theorem of Böhm–Wilking [8] has the following manifestation.

Proposition 5.2. Let ds2
LðtÞ ¼ aLðtÞyn yþ bLðtÞg be the metric as in Theorem 5.1.

Then,
1

L
ds2

LðLtÞ ! 2tge, where ge is the trivial ancient solution (Einstein metric) in the proof

of Theorem 5.1, as L ! 0.

Proof. Observe that by the uniqueness of the ODE,
1

L
aðLtÞ and

1

L
bðLtÞ are equal

to aL2ðtÞ and bL2ðtÞ. Hence, the result follows from the smooth dependence of the solutions
of the ODE system (5.5), (5.6) on the parameter L. r

Remark 5.4. When m ¼ 1, the ODE system can be solved explicitly. First (5.4) and
(5.5) are reduced to

da

dt
¼ q2 p

q2
� ðLaÞ2

� �2

and
a

b
¼ p

q2
� ðLaÞ2:

Let L2 ¼ p

q2
n2. Then,

da

dt
¼ p2

q2
ð1 � n2a2Þ2 and

a

b
¼ p

q2
ð1 � n2a2Þ:
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Set a ¼ 1

n
tanh x. Then, b ¼ 1

n

q2

p
sinh x cosh x and x is the function of t determined by

xþ 1

2
sinhð2xÞ ¼ p2

q2
2nt:

Theorem 5.1, in particular, can be applied to the Hopf fibration S1 ! S2mþ1 ! CPm.
This corresponds to p ¼ 2ðm þ 1Þ, q ¼ �1. Then, ~gga;bðtÞ is an ancient solution on S2mþ1,
which is type-I, has positive curvature operator and it is collapsed.

6. Ancient solutions on principle SU(2)-bundles over quaternion-Kähler manifolds

with positive scalar curvature

In this section we shall generalize the construction of the previous section by allowing
the fiber to be SUð2Þ. However, to make it work, we have to restrict the base manifolds
to the quaternion-Kähler ones. We first recall some basic properties of quaternion-Kähler
manifolds for completeness. These properties were proved by Berger [6] (see also Ishihara
[26] and [7], Chapter 14). A quaternion-Kähler manifold ðM; gÞ is a Riemannian manifold
with a rank 3 vector bundle V HEndðTMÞ satisfying:

(a) In any coordinate neighborhood U of M, there exists a local basis fI ; J;Kg of V

such that

I 2 ¼ J 2 ¼ K 2 ¼ �id; IJ ¼ �JI ¼ K ;

JK ¼ �KJ ¼ I ; KI ¼ �IK ¼ J

and

hIðXÞ; IðYÞi ¼ hJðXÞ; JðYÞi ¼ hKðXÞ;KðYÞi ¼ hX ;Yi

for all X ;Y A TM.

(b) If f A GðVÞ, then ‘Xf A GðVÞ for all X A TM.

It follows from (a) that dim M ¼ 4m. The condition (b) implies that there are local
1-forms s1, s1, s3 such that

ð‘I ;‘J;‘KÞ ¼ ðI ; J;KÞ �
0 �s3 s2

s3 0 �s1

�s2 s1 0

0B@
1CA:

Let o1, o2, o3 be three 2-forms defined by

o1ð� ; �Þ= h�; Ið�Þi; o2ð� ; �Þ= h�; Jð�Þi; o3ð� ; �Þ= h�;Kð�Þi

and let W be a 4-form defined by

W ¼ o15o1 þ o25o2 þ o35o3:

The condition (b) is equivalent to W being parallel, that is ‘XW ¼ 0 for any X A TM.
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The curvature properties of quaternion-Kähler manifold can be summarized in the
following theorem. See [26] or [7], Chapter 14, for a proof.

Theorem 6.1. If ðM 4m; gÞ is a quaternion-Kähler manifold and mf 2, then ðM 4m; gÞ
is Einstein, that is, there is a constant p such that RicðgÞ ¼ pg: Moreover,

ds1 þ s25s3 ¼ p

m þ 2
o1; ds2 þ s35s1 ¼ p

m þ 2
o2; ds3 þ s15s2 ¼ p

m þ 2
o3:

Let P0 be the SUð2Þ-principal bundle associated with the rank 3 bundle V . In the fol-
lowing we assume that p > 0. One can identify the Lie algebra suð2Þ with Rfi; j; kg, where
i, j, k are the canonical quaternionic numbers. Then,

A ¼ 1

2
ðs1i þ s2j þ s3kÞ

defines a connection on P0, and by the above theorem, the curvature FA of A is given by

FA ¼ p

2ðm þ 2Þ ðo1i þ o2j þ o3kÞ:

Now we use the notation and computations of Section 2.2 to vary the connection
metric on a SUð2Þ-principal bundle P over a quaternion-Kähler manifold M 4m with a con-
nection A so that its curvature FA satisfies

FA ¼ qðo1i þ o2j þ o3kÞ:ð6:1Þ

Since the structure constant C a
bg is totally skew-symmetric and C1

23 ¼ 2, we have thatP
g;s

C g
asC

g
bs ¼ 8dab:

Using formulae from Section 2.2, the curvature F a
ij is computed as

F a
ij;k ¼ 0;P

i; j

F a
ij F

b
ij ¼ 4mq2dab;

P
k;a

F a
ikF a

jk ¼ 3q2dij:

Therefore by (2.4) the Ricci curvature of the connection metric ~gga;b (which is defined in
Section 2.2) on the total space of SUð2Þ-principal bundle simplifies to

~RRab ¼
1

a
2 þ mq2 a2

b2

� �
dab;

~RRia ¼ 0;

~RRij ¼
1

b
p � 3q2

2

a

b

� �
dij:
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It follows that the Ricci flow equation
q~gga;bðtÞ

qt
¼ 2 Ric

�
~gga;bðtÞ

�
, where t ¼ t0 � t, is re-

duced to the ODE system

da

dt
¼ 4 þ 2mq2 a2

b2
;ð6:2Þ

db

dt
¼ 2p � 3q2 a

b
:ð6:3Þ

To solve this system, let y ¼ a

b
. Also, let y 0 ¼ dy

dt
(and similarly for b 0). Then,

y 0 ¼ 1

b

�
4 � 2py þ ð2m þ 3Þq2y2

�
ð6:4Þ

and

y 0

b 0 ¼
1

b

4 � 2py þ ð2m þ 3Þq2y2

2p � 3q2y
:

Separating y and b, one gets

2p � 3q2y

4 � 2py þ ð2m þ 3Þq2y2
y 0 ¼ b 0

b
:

Notice that, if p >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð2m þ 3Þq2

p
,

2p � 3q2y

4 � 2py þ ð2m þ 3Þq2y2
¼ a1

y � r1
� a2

y � r2
;

where

r1 ¼ p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 4ð2m þ 3Þq2

p
ð2m þ 3Þq2

; r2 ¼ p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 4ð2m þ 3Þq2

p
ð2m þ 3Þq2

;

a1 ¼ ð4m þ 3Þp � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 4ð2m þ 3Þq2

p
2ð2m þ 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 4ð2m þ 3Þq2

p ; a2 ¼ ð4m þ 3Þp þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 4ð2m þ 3Þq2

p
2ð2m þ 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 4ð2m þ 3Þq2

p :

It follows that the above ODE system of a and b has a complete integral

a

b
� r1

���� ����a1 a

b
� r2

���� �����a2

b�1 ¼ L;ð6:5Þ

where Lf 0 is a constant.

In the special case that the SUð2Þ-principle bundle is just the two-fold lift of the prin-

ciple bundle associated with V (namely P ¼ P0) and A ¼ 1

2
ðs1i þ s2j þ s3kÞ, which implies
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that q ¼ p

2ðm þ 2Þ , the constants r1, r2, a1, a2 take the simple form

r1 ¼ 4ðm þ 2Þ
p

; r2 ¼ 4ðm þ 2Þ
ð2m þ 3Þp ;

a1 ¼ 2m þ 1

2ðm þ 1Þ ; a2 ¼ 4m2 þ 14m þ 9

2ðm þ 1Þð2m þ 3Þ :

When L ¼ 0 we obtain two Einstein metrics on P (cf. [27]), which we denote by ~gge1

and ~gge2
, corresponding to the ‘slope’ y ¼ a

b
being r1 or r2. Notice that r1 > r2 and a2 > a1, if

p >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð2m þ 3Þq2

p
.

Theorem 6.2. Assume that ðM; gÞ is a quaternion-Kähler manifold with Einstein con-

stant p > 0. Let P be the associated SUð2Þ-principal bundle with connection A satisfying

(6.1). Assume that p > 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m þ 3Þq2

p
. Then, there exists a type-I ancient solution ~gga;b to

Ricci flow on the total space P with r2 < yðtÞ < r1, which flows (after re-normalization) the

Einstein metric ~gge2
(which corresponds to y ¼ r2) into the Einstein metric ~gge1

(which corre-

sponds to y ¼ r1) as t increases from �y to some t0.

There also exists a type-I ancient solution ~gg~aa; ~bb to Ricci flow on the total space P with

r2 > yðtÞ > 0 which flows the Einstein metric ~gge2
from t ¼ �y into a singularity at time t0

when it collapses the SUð2Þ fiber.

Proof. The proof of the first part is the same as that of Theorem 7.1 next. We refer
readers to the next section for the detailed argument on the existence of the ODE system
(6.2) and (6.3).

For the second part, choose some t1 and positive aðt1Þ and bðt1Þ satisfying (6.5) and

y ¼ a

b
< r2. Then, the ODE (6.4) on y implies that

dy

dt
> 0. It is also easy to see that both

aðtÞ and bðtÞ are increasing in t. The ODEs (6.2) and (6.3) can be solved for all t > t1 since
yðtÞ < r2 for all t > t1. By L’Hôpital’s rule, it is easy to see from the ODEs (6.2) and
(6.3) that

lim
t!y

yðtÞ ¼ lim
t!y

4 þ 2mq2y2

2p � 3q2y
:

In view of yðtÞ < r2, this further implies that lim
t!y

yðtÞ ¼ r2. Hence, the re-scaled limit is

~gge2
. As t decreases, yðtÞ decreases. Also, from the ODEs (6.2) and (6.3), either aðtÞ or bðtÞ

will decrease to zero at t0, for some t0. Again by L’Hôpital’s rule, one can rule out the pos-
sibility that both aðtÞ and bðtÞ decrease to zero at t0 simultaneously, since that would im-
ply yðt0Þ equals either to r2 or r1 (which is impossible). Also by the fact that 0 < y < r2

for t A ðt0; t1Þ, we rule out the possibility of bðt0Þ ¼ 0 and aðt0Þ > 0. Hence, we conclude
that at t0, aðt0Þ ¼ 0 and bðt0Þ > 0.

The type-I claim can be checked by the curvature formulae (2.3). r
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Remark 6.3. The existence of a SUð2Þ-principle bundle over a quaternion-Kähler
manifold with a connection satisfying (6.1) is not completely understood as in Uð1Þ-bundle
case. Beyond the canonical associated one we do not know how to obtain other SUð2Þ-
principal bundles satisfying (6.1) in general.

Besides HPm, there are other quaternion-Kähler manifolds. There are infinitely many
symmetric examples which can be found in [7], Table 14.52. They were classified by Wolf
[46]. Hence there are many examples to which the above theorem can be applied.

7. Ancient solutions via the Riemannian submersion

Now we use the formulae and setting in Section 2.3 to construct the ancient solu-
tions via the Riemannian submersion. We need this more general formulation particularly
for constructing an ancient solution on the total space of the generalized Hopf fibration:
S7 ! S15 ! S8, since this does not fit into the formulation via principal bundles. Even
though the formulation is quite general, in view of the rigidity result of Gromoll–Grove
[21] and Wilking [45], it is not as flexible as it appears if one insists that the fiber is a round
sphere. The following proposition is the key step for our construction.

Proposition 7.1. Let p : ðP; gÞ ! ðM; �ggÞ be a Riemannian submersion with totally

geodesic fiber. Let g ¼ ĝg þ �gg be the metric decomposition. Suppose that the metrics on P, M

and on the fibers are all Einstein with

RicðgÞ ¼ lg; Ricð�ggÞ ¼ �ll�gg; RicðĝgÞ ¼ l̂lĝg:ð7:1Þ

Let ~gga;bðtÞ ¼ aðtÞĝg þ bðtÞ�gg. Then, ~gga;b solving the Ricci flow equation is equivalent to

da

dt
¼ 2l̂lþ 2ðl� l̂lÞ a2

b2
;ð7:2Þ

db

dt
¼ 2�ll� 2ð�ll� lÞ a

b
ð7:3Þ

whose first integral is given by

1 � a

b

���� ���� l
�ll�2l̂l l̂l

�ll� l̂l
� a

b

�����
�����
� �ll2�2l̂l�llþl̂ll

ð�ll�2l̂lÞð�ll�l̂lÞ

b�1 ¼ L;ð7:4Þ

where Lf 0 is a constant.

Proof. By (2.8) and the assumption (7.1), the Ricci tensor of ~gga;b ¼ aĝg þ b�gg is given
by

Ricð~ggÞ ¼ l̂lþ ðl� l̂lÞ a2

b2

� �
ĝg þ �ll� ð�ll� lÞ a

b

� �
�gg:

Let y ¼ a

b
. Also, denote y 0 ¼ dy

dt
and likewise for the derivatives a 0 and b 0. Then, y satisfies
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y 0 ¼ 1

b
a 0 � a

b
b 0

� �
¼ 1

b
ða 0 � yb 0Þ

¼ 2

b

�
l̂lþ ðl� l̂lÞy2 � y

�
�ll� ð�ll� lÞy

��
¼ 2

b

�
l̂l� �lly þ ð�ll� l̂lÞy2

�
:

Dividing the above by (7.3) we have that

y 0

b 0 ¼
1

b

l̂l� �lly þ ð�ll� l̂lÞy2

�ll� ð�ll� lÞy
:

One can separate y and b such that

�ll� ð�ll� lÞy

l̂l� �lly þ ð�ll� l̂lÞy2
y 0 ¼ b 0

b
:

Notice that

�ll� ð�ll� lÞy

l̂l� �lly þ ð�ll� l̂lÞy2
¼ l

�ll� 2l̂l

1

y � 1
�

�ll2 � 2l̂l�llþ l̂ll

ð�ll� 2l̂lÞð�ll� l̂lÞ
1

y � l̂l

�ll� l̂l

:

The first integral claimed in the proposition follows by integration of the separable equa-
tion on y and b. r

By the equations found in Section 2.3, it is also easy to see that �llf lf l̂l. When
L ¼ 0, we observe that if l̂l > 0 and 2l̂l3 �ll, there are two trivial solutions (Einstein met-

rics). (This is known. See for example, [7], Theorem 9.37.) They correspond to
a

b
¼ 1 and

a

b
¼ L1 =

l̂l

�ll� l̂l
, which are given by

ds2
e1
ðtÞ ¼ 2ltg;ð7:5Þ

ds2
e2
ðtÞ ¼ 2L2tðL1ĝg þ �ggÞ;ð7:6Þ

where L2 ¼
�ll2 � 2l̂l�llþ l̂ll

�ll� l̂l
. The first is the Einstein metric we started with. The second is a

di¤erent Einstein metric on the space.

Theorem 7.1. Assume that L1 3 1 and l̂l > 0. There exists an ancient solution ds2ðtÞ
to Ricci flow on the total space P with the slope y between L1 and 1. If L1 < 1, it flows (after

re-normalization) the Einstein metric ds2
e2

1

2L1

� �
into the Einstein metric ds2

e1

1

2l

� �
as t in-

creases from �y to some t0. If L1 > 1, it flows ds2
e1

1

2l

� �
into ds2

e2

1

2L1

� �
as t increases from

�y to some t 00. Both solutions are of type-I.
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Proof. We divide into two cases, L1 < 1 and L1 > 1. Since for the application we
always have L1 < 1 we shall prove this case and omit the details to the other (dual) case,
whose proof is similar.

For L1 < y < 1, let

FðyÞ= ð1 � yÞ
l

�ll�2l̂l y � l̂l

�ll� l̂l

 !� �ll2�2l̂l�llþl̂ll

ð�ll�2l̂lÞð�ll�l̂lÞ

¼ ð1 � yÞ
l

�ll�2l̂lðy �L1Þ�
L2
�ll�2l̂l:

Under the assumption that L1 < 1, it is easy to check that L1l < L2 < l. Hence,
dF

dy
< 0

for y A ðL1; 1Þ. Pick t ¼ 1 and að1Þ > 0 and bð1Þ > 0 such that they satisfy y ¼ a

b
A ðL1; 1Þ

and

FðyÞ ¼ bL

for some L. By the previous proposition, we know that this condition will be preserved for
solutions aðtÞ and bðtÞ of the Ricci flow equations (7.2) and (7.3). It is easy to infer from
the Ricci flow equations that

da

dt
f 2l̂l;

db

dt
f 2l:

Hence, aðtÞ and bðtÞ are increasing in t, and, by the short time existence, one can solve
(7.2) and (7.3) for some interval ð1 � d; 1 þ dÞ. On the other hand

dy

dt
¼ 2ð�ll� l̂lÞ

b
ðy �L1Þðy � 1Þ:

Hence, for y A ðL1; 1Þ it is decreasing in t. This implies that as t increase, the right-hand
side of (7.2) and (7.3) stay bounded above by a fixed number. This implies, by the existence
theorem of ODE, say [25], Theorem 7, that one can solve (7.2) and (7.3) for all t > 1. As t
decreases, one can solve the equations as long as a and b stay positive and y < 1. By the
uniqueness, it is not possible for y to reach 1 while aðtÞ and bðtÞ remain positive. Assume
that as t ! t0, aðtÞ ! 0. Since yðtÞfL1, it also implies that bðtÞ ! 0. Using (7.2) and
(7.3) we can compute that yðtÞ ! 1 as t ! t0. Hence, if we blow up the metric ds2ðtÞ by

1

t� t0
, it will approach to ds2

e1

1

2l

� �
. Similarly, we can argue that as t ! y, yðtÞ ! L1.

Hence, if we blow down the metric by
1

t
as t ! y, ds2ðtÞ will approach to ds2

e2

1

2L2

� �
.

The type-I claim follows from the formulae in Section 2.3, the fact that
C1te bðtÞeC2t for some positive constants C1, C2 and that y stays bounded. r

Applying the same argument in the above theorem we have the following result.

Corollary 7.2. Assume that l̂l > 0. If L1 < 1, there exists an ancient solution ds2ðtÞ to

Ricci flow on the total space P, such that it exists for t A ð�y; t0Þ and with yðtÞ < L1. More-

over, it is of type-I and as t ! t0, ds2ðtÞ collapses into b�gg.
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If L1 > 1 and yðtÞ starts with some amount bigger than L1 at, say t ¼ 1, it is not
hard to see that the solution becomes singular for some t1 > 1. So in this case, there exists
no ancient solution.

Remark 7.3. When l̂l ¼ 0, there also exists an ancient solution on the total space P

such that as t ! some singular time, it converges (after re-scaling) to the original Einstein
metric on P. The proof is similar to Theorem 5.1. Similarly, the ancient solution of this case
is of type-I and collapsed.

A good set of examples to which Theorem 7.1 can be applied may be obtained by the
fibration

H=K ! G=K ! G=H : gK ! gH

via Lie groups, K HH HG, with K and H being compact subgroups of a compact Lie G.
Some concrete examples are listed below.

Example 1. The Hopf fibration: S3 ! S4mþ3 ! HPm. This is given by

p : ðq1; . . . ; qmþ1Þ ! ½q1; . . . ; qmþ1�;

where ðq1; . . . ; qmþ1Þ A Hmþ1 with
P

jqij2 ¼ 1. Endow S4mþ3 with the constant curvature 1
metric, and the symmetric metric �gg on HPm with sectional curvature between 1 and 4. Now
l ¼ 4m þ 2, l̂l ¼ 2 and �ll ¼ 4m þ 8 with L1 < 1. The non-canonical Einstein metric was

found first in [27]. Its sectional curvature is positive and has pinching constant
1

ð2m þ 3Þ2
.

Theorem 7.1 concludes that there exists an ancient solution which ‘connects’ it with
the canonical round Einstein metric. However, due to the result of Tachibana [42] and
Wolf [47], the non-canonical Einstein metric can not have nonnegative curvature operator.
Note that Theorem 7.1 also concludes that the non-canonical Einstein metric from [27] is
an unstable fixed point of Ricci flow.

Remark 7.4. The above case can also be derived from Theorem 6.2. Due to the
ample examples of quaternion-Kähler manifolds, one expects that the cases in Theorem
6.2 are not completely contained by Theorem 7.1. For the overlapping cases, note that the
‘slope’ function y in Section 6 and Section 7 are di¤erent by a factor.

Example 2. Consider p : CP2mþ1 ! HPm defined by

½z1; z2; . . . ; z2mþ1; z2mþ2� ! ½z1 þ z2j; . . . ; z2mþ1 þ z2mþ2j�:

This is a fibre bundle with totally geodesic fibre S2 ¼ Spð1Þ=Uð1Þ. The Fubini–Study met-
ric on CP2mþ1 (with curvature between 1 and 4) induces a metric of Fubini–Study type on
HPm with curvature ranging between 1 and 4. Both metrics are Einstein and l ¼ 4m þ 4,
�ll ¼ 4m þ 8. The metric on the fibre is of constant curvature 4, so l̂l ¼ 4. Clearly L1 < 1.
The existence of the non-canonical Einstein metric on CP2mþ1 was found by Ziller [48].

Its sectional curvature is positive with pinching constant
1

4ðm þ 1Þ2
. It is Hermitian (with

respect to the usual complex structure) [48]. Theorem 7.1 concludes that there exists an
ancient solution which ‘connects’ it with the canonical Fubini–Study metric and Ziller’s
Einstein metric on CP2mþ1 is an unstable fixed point of Ricci flow equation.
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Example 3. Let O be octonion numbers. One can identify R16 with O2, and R9 with
RlO. The octonionic Hopf bundle is an S7-bundle over S8 defined by

p : ðo1; o2Þ ! ðjo1j2 � jo2j2; 2o1o2Þ;

where ðo1; o2Þ A O2 with jo1j2 þ jo2j2 ¼ 1. Consider on S15 the canonical metric with con-
stant curvature 1, hence l ¼ 14. The fibre S7 is totally geodesic with constant curvature 1,
so l̂l ¼ 6. This metric induces a metric on S8 with constant curvature 4, thus �ll ¼ 28. Again
L1 < 1. The third non-canonical Einstein metric on S15 (besides the one in the Example 1
above) was found in [10] by Bourguignon and Karcher (see also [7]). It has pinching con-

stant
9

121
. Theorem 7.1 concludes that there exists another ancient solution on S15 ‘con-

necting’ it with the canonical Einstein metric and implies that the non-canonical Einstein
metric of Bourguignon–Karcher is an unstable fixed point. This together with results from
Section 5, Example 1 and Corollary 7.2 proves the theorem stated in the introduction.

Example 4. Let P be the twistor space over a compact quaternion-Kähler mani-
fold M 4m (mf 2) with positive scalar curvature. By a result of Salamon [39] and Bérard-
Bergery [3] (see also [7], Theorem 14.9), one can endow P with a Kähler–Einstein metric
such that the projection to M is a Riemannian submersion with totally geodesic fibers.
Since the Riemannian submersion does not decrease the curvature, one can see that
L1 < 1 for this case too. One can check for the resulting Kähler–Einstein metric that l, �ll
and l̂l have the same values as in Example 2. Hence, this can be viewed as a generalization
of Example 2. Note that the other Einstein metric on the twistor space is a Hermitian
non-Kähler manifold (cf. [7], Corollary 14.84). Similarly, Theorem 7.1 concludes that this
Einstein metric is also unstable.

Example 5. In dimensions 6, 7, 12, 13, 24, Berger [5], Wallach [43], Alo¤–Wallach
[1] constructed homogeneous spaces of positive sectional curvature. It turns out that on
these spaces, one can endow the Riemannian submersion structure satisfying Theorem
7.1. We refer to [30], a forthcoming article of the second author for the details. Hence, there
exist ancient solutions on these spaces too.

The ancient solutions obtained from Theorem 7.1 are all non-collapsed. It is also easy
to check that the standard Einstein metric has greater entropy (in the sense of Perelman
[32]) than the noncanonical Einstein metrics. Example 1 shows that in the classification re-
sult of [31], the condition on the curvature can not be weaken to the positivity of the sec-
tional curvature. Examples 1 and 3 also show that one can not expect that non-collapsed
ancient solutions are rotationally symmetric even assuming the nonnegativity of the sec-
tional curvature.

8. Appendix-derivation of ODEs on Fateev’s ansatz

Here we follow the definitions, notations and computations made in Section 3. The
main goal is to reduce the Ricci flow equation into a system of ODEs, namely Proposition
8.1, under the ansatz in Section 3.

8.1. Let D=BC � D2. If we introduce y1 ¼ y, y2 ¼ w1, y3 ¼ w2, the Christo¤el
symbols are given by
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ðG1
ijÞ ¼

1

2

A 0

A
0 0

0 � 1

2

B 0

A
� 1

2

D 0

A

0 � 1

2

D 0

A
� 1

2

C 0

A

0BBBBBBB@

1CCCCCCCA; ðG2
ijÞ ¼

1

A
0 0

0
C

D
�D

D

0 �D

D

B

D

0BBBBBBB@

1CCCCCCCA;

ðG3
ijÞ ¼

0
1

2D
ðCB 0 � DD 0Þ 1

2D
ðCD 0 � DC 0Þ

1

2D
ðCB 0 � DD 0Þ 0 0

1

2D
ðCD 0 � DC 0Þ 0 0

0BBBBBBB@

1CCCCCCCA:

Here, A 0 ¼ qA

qy
and the same definition applies to B 0, C 0, D 0. Using the formula

Rij ¼
qG t

ij

qyt

� qG t
it

qyj

þ Gs
ijG

t
st � Gs

itG
t
sj

and the above expressions for the Christo¤el symbols, direct computation yields

R11 ¼ �ðG2
12 þ G3

13Þ
0 þ G1

11G
2
12 þ G1

11G
3
13 � ðG2

12Þ
2 � 2G2

13G
3
12 � ðG3

13Þ
2ð8:1Þ

¼ A 0

4A

CB 0 þ BC 0 � 2DD 0

D
� CB 00 þ BC 00 � 2DD 00

2D

þ 1

4D2
½C 02B2 þ C2B 02 þ 2D2D 02

� 4C 0BDD 0 � 4CB 0DD 0 þ 2C 0B 0D2 þ 2D 02BC�;

R22 ¼ ðG1
22Þ

0 þ G1
22G

1
11 þ G1

22G
3
13 � G1

23G
3
12 � G2

21G
1
22ð8:2Þ

¼ A 0B 0

4A2
� B 00

2A
þ 1

4AD
½B 0ðCB 0 � BC 0Þ þ 2D 0ðD 0B � DB 0Þ�;

R23 ¼ ðG1
23Þ

0 þ G1
23G

1
11 � G1

22G
2
13 � G3

21G
1
33ð8:3Þ

¼ A 0D 0

4A2
� D 00

2A
þ 1

4AD
½B 0ðCD 0 � DC 0Þ þ C 0ðBD 0 � DB 0Þ�;

R33 ¼ ðG1
33Þ

0 þ G1
33G

1
11 þ G1

33G
2
12 þ G1

33G
3
13 � G1

32G
2
13 � 2G1

33G
3
13ð8:4Þ

¼ A 0C 0

4A2
� C 00

2A
þ 1

4AD
½C 0ðC 0B � CB 0Þ þ 2D 0ðCD 0 � DC 0Þ�

and the Ricci curvature has the form

ðRijÞ ¼
R11 0 0

0 R22 R23

0 R32 R33

0B@
1CA:
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Note that Rij can also be written in a more convenient form:

R11 ¼ 1

4
ðlog AÞ0ðlogDÞ0 � 1

2
ðlogDÞ00 � 1

4
½ðlogDÞ0�2 þ B 0C 0 � D 02

2D
;ð8:5Þ

¼ D0

4D

A 0

A
þ D0

D

� �
� D00

2D
þ B 0C 0 � D 02

2D
;

R22 ¼ B 0

4A

A 0

A
þ D0

D

� �
� B 00

2A
� B

A

B 0C 0 � D 02

2D
;ð8:6Þ

R23 ¼ D 0

4A

A 0

A
þ D0

D

� �
� D 00

2A
� D

A

B 0C 0 � D 02

2D
;ð8:7Þ

R33 ¼ C 0

4A

A 0

A
þ D0

D

� �
� C 00

2A
� C

A

B 0C 0 � D 02

2D
:ð8:8Þ

Introducing the integrability conditions

ðu þ dÞ2 ¼ a2 þ c2; d 2 ¼ b2 þ c2ð8:9Þ

the expressions for D and D simplify to

D ¼ BC � D2 ¼ 1

4
sin2 2ywðt; yÞ; hence D ¼ 1

4

sin2 2y

wðt; yÞ :ð8:10Þ

Straightforward computation also shows that

B 0C 0 � D 02

2D
¼ B 0C 0 � D 02

2D
þ 1

2

w 0

w

� �2

� 1

2

w 0

w

D
0

D

¼ B 0C 0 � D 02

2D
� 2

cos 2y

sin 2y

w 0

w
;

B 0C 0 � D 02

2D
¼ � 2

w

�
ðu þ 2dÞ2 � 4b2 cos2 2y

�
¼ � 2

w
ðu þ 2dÞ2 þ 2

cos 2y

sin 2y

w 0

w
;

ð8:11Þ

since

ðlog AÞ0 ¼ �w 0

w
;

ðlogDÞ0 ¼ 4
cos 2y

sin 2y
� w 0

w
;

ðlogDÞ00 ¼ � 8

sin2 2y
� w 00

w
þ w 0

w

� �2

:

Note that (8.11) also implies that

B 0C 0 � D 02

2D
¼ � 2ðu þ 2dÞ2

w
:ð8:12Þ
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Putting all together we have that

R11 ¼ 4 þ 1

2

w 00

w
� 1

2

w 0

w

� �2

� w 0

w

cos 2y

sin 2y
þ B 0C 0 � D 02

2D
ð8:13Þ

¼ � 2ðu þ 2dÞ2

w
þ 4ða2 � b2Þ � a2 þ b2 cos2 2y

w2
:

The first equation
qA

qt
¼ 1

2
R11 gives rise to the following system of three equations:

du

dt
¼ �ðu þ 2dÞ2;ð8:14Þ

u
da

dt
¼ �aða2 � b2Þ;ð8:15Þ

u
db

dt
¼ bða2 � b2Þ:ð8:16Þ

8.2. Next, we check the other three equations in the Ricci flow equation. Using the
equations (8.9), (8.10), as before, R22, R23, R33 can be written in a more symmetric manner:

u

B
R22 ¼ �B 00

2B
þ B 0

B

cos 2y

sin 2y
þ w 0

2w

� �
þ 1

2

w 00

w
� 1

2

w 0

w

� �2

ð8:17Þ

� w 0

w

cos 2y

sin 2y
� B 0C 0 � D 02

2D

¼ R11 � 4 � 2
cos 2y

sin 2y

w 0

w
þ 4

ðu þ 2dÞ2

w
� B 00

2B
þ B 0

B

cos 2y

sin 2y
þ w 0

2w

� �
;

u

D
R23 ¼ �D 00

2D
þ D 0

D

cos 2y

sin 2y
þ w 0

2w

� �
þ 1

2

w 00

w
� 1

2

w 0

w

� �2

ð8:18Þ

� w 0

w

cos 2y

sin 2y
� B 0C 0 � D 02

2D

¼ R11 � 4 � 2
cos 2y

sin 2y

w 0

w
þ 4

ðu þ 2dÞ2

w
� D 00

2D
þ D 0

D

cos 2y

sin 2y
þ w 0

2w

� �
;

u

C
R33 ¼ �C 00

2C
þ C 0

C

cos 2y

sin 2y
þ w 0

2w

� �
þ 1

2

w 00

w
� 1

2

w 0

w

� �2

ð8:19Þ

� w 0

w

cos 2y

sin 2y
� B 0C 0 � D 02

2D

¼ R11 � 4 � 2
cos 2y

sin 2y

w 0

w
þ 4

ðu þ 2dÞ2

w
� C 00

2C
þ C 0

C

cos 2y

sin 2y
þ w 0

2w

� �
:

Using (8.12), straightforward computation shows that the equation
qD

qt
¼ 1

2
R23 is

equivalent to
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2
u

w

� �
t

D

u
þ 2

u

w

D

u

� �
t

¼ �D 00

2u
þ D 0

4u
4

cos 2y

sin 2y
þ 2

w 0

w

� �

þ D

u
R11 � 4 � 2

cos 2yw 0

sin 2yw
þ 4

ðu þ 2dÞ2

w

 !
:

Here ð�Þt means the derivative with respect to t. Using 2
qA

qt
¼ R11, and multiplying both

sides of the equation by u � w, this is further reduced to

2ðDtu � utDÞ ¼ �D 00w

2
þ D 0w

4
4

cos 2y

sin 2y
þ 2

w 0

w

� �
� Dð4a2 þ 4b2 cos2 2yÞ þ 4Dðu þ 2dÞ2:

Since the first three terms on the right-hand side add up to 0, we have

ðctu � utcÞ sin2 2y ¼ 2cðu þ 2dÞ2 sin2 2y;

which by (8.14) reduces to

dc

dt
¼ � du

dt

c

u
ð8:20Þ

or simply put
d

dt
ðucÞ ¼ 0, which is equivalent to uðtÞ ¼ L1

cðtÞ .

Before going further, it is helpful to note that 2
qA

qt
¼ R11 and 2

qD

qt
¼ R23 are equiv-

alent to the equations (8.14), (8.15), (8.16) and (8.20). However, these four equations can be
put into an even simpler form:

du

dt
¼ �ðu þ 2dÞ2;

dðucÞ
dt

¼ 0;
dðabÞ

dt
¼ 0ð8:21Þ

which, as we shall show, are equivalent to the Ricci flow equation (3.3). Indeed, assuming
the relations (8.21), if we introduce a new function v= u þ 2d, and write uc ¼ L1, ab ¼ L2,
a simple calculation, making use of the integrability conditions (8.9), shows that

ðv � uÞ2

4
�L2

1

u2

" #
ðv þ uÞ2

4
�L2

1

u2

" #
¼ L2

2 :

This, in turn, implies that

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 � 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

1 þL2
2

q
u2 þ 4L2

1

u2

vuut
:

Taking the derivative with respect to t on both sides of the equation a2 �L2
2

a2
¼ a2 � b2 ¼ uv

and substituting the expression for v just computed, we obtain

2
at

a
ða2 þ b2Þ ¼ �vð2u2 � 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

1 þL2
2

q
Þ:
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On the other hand, since a2 ¼ ðv � uÞ2

4
�L2

1

u2
and b2 ¼ ðv þ uÞ2

4
�L2

1

u2
, the right-hand side

above is just �vða2 þ b2Þ. Hence, we arrive at

at

a
¼ �v ¼ � a2 � b2

u
;

which is (8.15). From this (8.16) follows easily.

Finally, we verify that 2
qB

qt
¼ R22 and 2

qC

qt
¼ R33. We only check the first one, since

the second is exactly the same. From (8.17), making use of equation 2
qA

qt
¼ R11 in the same

way as above, 2
qB

qt
¼ R22 reduces to

2ðBtu � utBÞ ¼ �B 00w

2
þ B 0w

4
4

cos 2y

sin 2y
þ 2

w 0

w

� �
� Bð4a2 þ 4b2 cos2 2yÞ þ 4Bðu þ 2dÞ2:

By (8.14) it can be further reduced to

2Btu ¼ �B 00w

2
þ B 0w

4
4

cos 2y

sin 2y
þ 2

w 0

w

� �
� Bð4a2 þ 4b2 cos2 2yÞ þ 2Bv2:

Recall that v ¼ u þ 2d and observe that

B ¼ 1

2

�
vðcos 2yþ 1Þ � 2 sin2 y

�
; B 0 ¼ �sin 2yðv þ 2d cos 2yÞ,

B 00 ¼ �2 cos 2yðv þ 2d cos 2yÞ þ 4d sin2 2y.

Straightforward computation shows that the right-hand side of the equation above
becomes

v3 � 2vða2 þ b2Þ þ
�
v3 � 2vða2 þ b2Þ

�
cos 2yþ ð2vb2 � v2dÞ sin2 2y:

Hence 2
qB

qt
¼ R22 gives rise to a system of two equations:

uvt ¼ v3 � 2vða2 þ b2Þ;ð8:22Þ

udt ¼ v2d � 2vb2:ð8:23Þ

Similar calculation shows that the equation 2
qC

qt
¼ R33 can also be reduced to the above set

of equations. It is now a simple matter of direct checking to show that (8.22) and (8.23)
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follow from the equations (8.21). For example

uvt ¼ u
a2 � b2

u

� �
t

¼ ða2 � b2Þt �
a2 � b2

u
ut

¼ �2ða2 þ b2Þv þ v3:

Here, we make use of (8.14)–(8.16), which are consequences of (8.21), to go from the
second to the third line. Similarly, (8.23) also follows from (8.21).

Summarizing the above, we showed the following.

Proposition 8.1. Under the ansatz (3.8), the Ricci flow equation (3.3) is equivalent to

the three equations in (8.21).

8.3. Finally, solving (8.21) in order to obtain the explicit formulae (3.6) requires a
skillful maneuver of change of variables. This was done on pages 522–523 of [18]. We
include the details below for completeness of our presentation. Let u2

1 and u2
2 be given by

u2
1 ¼ 2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

1 þL2
2

q
þL2Þ; u2

2 ¼ 2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

1 þL2
2

q
�L2Þ:

Then, v2 ¼ ðu2 � u2
1Þðu2 � u2

2Þ
u2

and therefore

du

dt
¼ �ðu2 � u2

1Þðu2 � u2
2Þ

u2
:

The parameters n and k are introduced by writing

u1 ¼ n

1 � k2
; u2 ¼ nk

1 � k2
;

which also amount to

4L2 ¼ n2

1 � k2
; 2L1 ¼ n2k

ð1 � k2Þ2
:

The ODE for u is separable and can be solved by writing

� n

1 � k2

Ð 1

u2 � u2
1

du þ nk2

1 � k2

Ð 1

u2 � u2
2

du ¼ tnð8:24Þ

and letting

x ¼ coth�1 ð1 � k2Þu
n

� �
¼ � n

1 � k2

Ð 1

u2 � u2
1

du:
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Hence, one arrives at (3.7) by integrating the second term in (8.24), namely

nt ¼ f ðxÞ= x� k

2
log

1 þ k tanh x

1 � k tanh x

� �
:

Note that

df

dx
¼ ð1 � k2Þ cosh2 x

cosh2 x� k2 sinh2 x
;

which approaches to 1 � k2 as x ! 0 and approaches to 1 as x ! y. Now

u ¼ n

1 � k2
coth x. The explicit formulae for the functions a, b, d, c can be derived from the

expression for u.

Finally we remark on another computation leading to Proposition 8.1. First note that
(8.6)–(8.8) can be written as

A

B
R22 ¼ B 0

4B

A 0

A
þ D0

D
� 2

B 0

B

� �
� 1

2

B 0

B

� �0
� B 0C 0 � D 02

2D
;ð8:25Þ

A

D
R23 ¼ D 0

4D

A 0

A
þ D0

D
� 2

D 0

D

� �
� 1

2

D 0

D

� �0
� B 0C 0 � D 02

2D
;ð8:26Þ

A

C
R33 ¼ C 0

4C

A 0

A
þ D0

D
� 2

C 0

C

� �
� 1

2

C 0

C

� �0
�B 0C 0 � D 02

2D
:ð8:27Þ

Then direct computation shows that

u

B
R22 ¼ 2ðu þ 2dÞ2 þ 4ða2 � b2Þ a2 þ b2 cos2 2y

w
� 4ðu þ 2dÞ a2 þ b2 cos 2y

u þ d þ d cos 2y
;

u

D
R23 ¼ 2ðu þ 2dÞ2 þ 4ða2 � b2Þ a2 þ b2 cos2 2y

w
;

u

C
R33 ¼ 2ðu þ 2dÞ2 þ 4ða2 � b2Þ a2 þ b2 cos2 2y

w
� 4ðu þ 2dÞ a2 � b2 cos 2y

u þ d � d cos 2y
:

From this together with (8.13), one can also derive Proposition 8.1.
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