The large time asymptotics of the entropy
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In this note, due to several requests after the the publication of [N2], as well as new potential
applications emerging, we supply the details of the computation on the asymptotics of the
entropy stated in [N1], Corollary 4.3, and Proposition 1.1 of [N2]. It is my pleasure to
contribute this paper to the birthday of Professor Rothschild.

In this note we assume that (M, g) is a complete Riemannian manifold of dimension n with
nonnegative Ricci curvature. We also further assume that it has maximum volume growth.
Namely

r—oo T

where V;(r) is the volume of the ball of radius r centered at x. Let H(x,y,t) be the heat
kernel, or equivalently the minimum positive fundamental solution to the heat operator
% — A. For this note we fix  and write simply abbreviate H(x,y,t) as H(y,t), and V,(r)
as V(r). Also we simply denote the distance between z and y by r(y). Recall the definition

of the Perelman’s entropy
W(H,t) ::/ (tVf>+ f—n)Hdp
M
where f = —log H — % log(4nt). Also recall the Nash entropy
n n
N(H,t)=— [ HlogH du — — log(4rt) — —.
Let v, be the cone angle at infinity which can be defined by

0

where 6(r) := Vr(,f), V(r) is the volume of the ball B, (r) centered at = and w, is the volume
of the unit ball in R”.

Recall that in [N2], page 331, there we have proved that

tlim W(H,t) = tlirn N(H,t).

Moreover, it was also proved in [N1] that M is of maximum volume growth if and only if
limy oo W(H,t) > —o0. The main purpose here is to supply the detail of the following
claim.



Theorem 1 For any x € M,

lim W(H,t) = tlim N(H,t) =log veo.

t—o0

Besides that it is interesting to be able to detect the geometric information such as the vol-
ume ratio v, from the large time behavior of the entropy, there appeared an extra indication
of possible uses of such a result. In an very interesting paper [Ka], Kaimanovich defined an
entropy h(1\7 ) on the space of so-called minimal Martin boundary of the positive harmonic
functions on the universal/a regular covering space M of a compact Riemannian manifold.
More precisely, let H(M) be the vector space with the seminorms ||u||x = supg |u|, where
K is a compact subset. Let IC,, = {u|u € H(M), u(p) = 1,u > 0}. This is a convex compact
subset. Define the minimal Martin boundary of M by 9*M = {u € K,, and v minimal}.
Here u > 0 is called minimal if for any nonnegative harmonic function h < u, h must
be a multiple of u. This immediately implies the representation formula: for any positive
harmonic function f, there exists a Borel measure p/ on 9* M such that

1@ = [ @) w.

In particular, there exists a measure v corresponding to f = 1. Now u(x)dv(u) is also a prob-
ability measure. The points z € M can be identified with the probability measure u(x)dv(u)

on &* M. The so-called relative entropy is defined to be ¢(z,y) = — fa*M log (ZE‘:;) u(y) dv(u).

By Jensen’s inequality it is easy to see that ¢(z,y) > 0. The Kaimanovich’s entropy is de-
fined by averaging ¢(z,y) as following: First check that

%/M oz, y)H(T,2,y) dug; (y)

is a function independent of 7 and also descends to M. Here H(7,x,y) is the heat kernel of
M. Then define

w0 = [ (3 [ o) dugg o) ) dua).

Here we normalize so that pps(z) is a probability measure on M. From the above definition
it was proved by Kaimanovich [Ka] (see also [W]) that

h(M) = /M /M w(@)|V log (@) [2dv(u) du(z).

Hence the positivity of h(M) implies the existence (in fact ampleness) of nonconstant posi-

tive harmonic functions on M. Most interestingly, the Theorem 2 of [Ka| asserts that

1

h(M) = thm I H(tv z, y) IOg H(tv z, y) dlu’(y)
— 00 M

for any x. This is sensational since it is not hard to check for instance that when )\(M ), the

bottom of the L2-spectrum of the Laplace operator on M is positive, h(M) > 4X(M) [L]. In
fact the above result of Kaimanovich plays a crucial role in [W], where Xiaodong Wang solves



a conjecture of Jiaping Wang on characterizing the universal cover of a compact Riemannian
manifolds being the hyperbolic space by the information on A(M) and the lower bound of
Ricci curvature of M. (See also [Mu] for the related work on Kéhler manifolds.) Motivated
by the above discussions, mainly the entropy of Kaimanovich [Ka] and its above mentioned
connection with the large time behaviors of the heat kernel and its direct implications on
the existence of harmonic functions, we propose the following problem.

Problem 1 Let M be a complete Riemannian manifold of positive sectional curvature.
When does M admit non-constant harmonic functions of polynomial growth?

Here a harmonic function u(x) is of polynomial growth if there exist positive constants d, C,,
such that

u(y)l < Cu(l+1(y))".

We conjecture that the necessary and sufficient condition is that lim; .. N'(H,t) > —oo,
namely M is of maximum volume growth. Note that for the corresponding problem on
holomorphic functions of polynomial growth, the sufficient part has been solved by the au-
thor provided that the manifold is Kahler with bounded non-negative bisectional curvature
(cf.[N4]).

Now we devote the rest of the paper to the detailed proof of Theorem 1. Under the above
notation, let us first recall a result of Li, Tam and Wang [LTW]. A computation similar as
below appeared in the earlier paper [N3], pages 935-936.

Theorem 2 [Li-Tam-Wang] Let (M™,g) be a complete Riemannian manifold with non-
negative Ricci curvature and mazximum volume growth. For any § > 0, the heat kernel of

(M™, g) satisfies

Wn, _n 1+96 ,
W(Zlm‘) 2 exp (—4tr (y)) < H(y,t)
< (14 C(n,0:)(5 + 9)) (%(m)—% exp (—E‘Sﬂ(y)) ,

where 0o = lim,_,» 6(r),

B:=6"2" max (1 — W) )

r>(1—8)r(y) (62ntlr)

Note that § is a function of r(y) and

lim g=0.

r(y)—o0

Therefore, for any € > 0, there exists a B sufficiently large such that if r(y) > B we have

gu (1 —e)(dmt) ™% exp (=122 (y)) < H(y,1)
(1) < (14 C(n,0x0)(0 +€)) ;%:(47#)_% exp (—%TQ(y)) )

We can also require that (62" 1r) < (1 + €)0s.



The upper estimates: First by the lower estimate of Li-Tam-Wang,

— I+4II— %

We shall estimate I and IT below as in [N3]. Split

I/OB/: (/QB(S)Hlog<e<;f(ly))> dA) ds =1, + I.

It is easy to see that
t—o0

To compute 11, we now make use of the lower estimate in (1) to have that

w n [ 1+90 w
—(1 — €)== (4rmt) 2 / / exp (— 52) log ( e ) dAds
( )900 (4t B JoB(s) 4t 0(0s)
1 . L[ 1 -
log <(+6)9> (1 — €)nwy, (4nt) ™2 / exp <—+9552> s" 1 ds.

I

IN

IN

Here we have used that 6(6r(y)) < 0.(1 + €) and the surface area of 0B(s) satisfies A(s) >
nfsos"~!. Computing the integral via the change of variable 7 = 12252 and taking t — oo

we have that
(1+ €)oo

n

tlim I, <log < ) (1—¢) (1—}—9(5)_n/2.
The estimate of I1 is very similar. Using the Gamma function identity
n n.n
F(§ +1) = F(§)§

we can have that
Jim 17 < (14 €)(1+ C(n, 000) (6 + €))(1 4 99)(1 5)"/2“%.

Summarizing we have that

(1+€)f

n

Jlim N(H,t) < log( )(1—6) (1+95)" "/

F(1 4+ €)1+ C(1,050)(6 + €)) (1 + 96)(1 — 5)"/2“% - g
Letting € — 0, then 6 — 0 we have what

Jim N(H,t) <logVs.

For the lower estimate, we use the other inequality provided by Theorem 2, mainly (1).
First write
1-6 Wn,

N(H,t) /N H (4}5) r(y) dp — log [(1 +C(n,05) (0 +€)) GJ - g

Y

+/,.23H (14_756) () du —log [“ +C(n,000)(6 + ) ;‘J _

1
r<B



Similarly

lim H <15) r2(y) dp — 0
<B At

t—oo

as t — oo. On the other hand, using that A(r) > nfr" 1,

1-6
lim I3 = H 2
gt = [ ()

) 1 e (14+98)r2\ r2
Z t1l>1£10 nwn(l — E)(l — 5)WL exp (4t It'l" dr.

The direct calculation shows that

. 1 0 (1+98)r2\ 2 , 1_.n _n_y
lim ——— SN et g = 22 1) (1495 .
i (47rt)"/2/B eXp( At )4#" r=otG FD+9)7

271,71/2 7[,71/2

Using w,, = T(Dn = Tzsn» We finally have that
2 2

lim I > g(

t—o0

1—e)(1—8)(1+95)" 2L

The lower estimate

lim N'(H,t) > log veo
t—o0

follows after we taking ¢ — 0 and then § — 0.
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