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In this note, due to several requests after the the publication of [N2], as well as new potential
applications emerging, we supply the details of the computation on the asymptotics of the
entropy stated in [N1], Corollary 4.3, and Proposition 1.1 of [N2]. It is my pleasure to
contribute this paper to the birthday of Professor Rothschild.

In this note we assume that (M, g) is a complete Riemannian manifold of dimension n with
nonnegative Ricci curvature. We also further assume that it has maximum volume growth.
Namely

lim
r→∞

Vx(r)
rn

> 0,

where Vx(r) is the volume of the ball of radius r centered at x. Let H(x, y, t) be the heat
kernel, or equivalently the minimum positive fundamental solution to the heat operator
∂
∂t −∆. For this note we fix x and write simply abbreviate H(x, y, t) as H(y, t), and Vx(r)
as V (r). Also we simply denote the distance between x and y by r(y). Recall the definition
of the Perelman’s entropy

W(H, t) :=
∫

M

(
t|∇f |2 + f − n

)
H dµ

where f = − log H − n
2 log(4πt). Also recall the Nash entropy

N (H, t) = −
∫

M

H log H dµ− n

2
log(4πt)− n

2
.

Let ν∞ be the cone angle at infinity which can be defined by

ν∞ := lim
r→∞

θ(r)
ωn

where θ(r) := V (r)
rn , V (r) is the volume of the ball Bx(r) centered at x and ωn is the volume

of the unit ball in Rn.

Recall that in [N2], page 331, there we have proved that

lim
t→∞

W(H, t) = lim
t→∞

N (H, t).

Moreover, it was also proved in [N1] that M is of maximum volume growth if and only if
limt→∞W(H, t) > −∞. The main purpose here is to supply the detail of the following
claim.
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Theorem 1 For any x ∈ M ,

lim
t→∞

W(H, t) = lim
t→∞

N (H, t) = log ν∞.

Besides that it is interesting to be able to detect the geometric information such as the vol-
ume ratio ν∞ from the large time behavior of the entropy, there appeared an extra indication
of possible uses of such a result. In an very interesting paper [Ka], Kaimanovich defined an
entropy h(M̃) on the space of so-called minimal Martin boundary of the positive harmonic
functions on the universal/a regular covering space M̃ of a compact Riemannian manifold.
More precisely, let H(M̃) be the vector space with the seminorms ‖u‖K = supK |u|, where
K is a compact subset. Let Kp = {u |u ∈ H(M̃), u(p) = 1, u > 0}. This is a convex compact
subset. Define the minimal Martin boundary of M̃ by ∂∗M̃ = {u ∈ Kp, and u minimal}.
Here u > 0 is called minimal if for any nonnegative harmonic function h ≤ u, h must
be a multiple of u. This immediately implies the representation formula: for any positive
harmonic function f , there exists a Borel measure µf on ∂∗M̃ such that

f(x) =
∫

∂∗M̃

u(x) dµf (u).

In particular, there exists a measure ν corresponding to f ≡ 1. Now u(x)dν(u) is also a prob-
ability measure. The points x ∈ M̃ can be identified with the probability measure u(x)dν(u)
on ∂∗M̃ . The so-called relative entropy is defined to be φ(x, y) = − ∫

∂∗M̃
log

(
u(x)
u(y)

)
u(y) dν(u).

By Jensen’s inequality it is easy to see that φ(x, y) ≥ 0. The Kaimanovich’s entropy is de-
fined by averaging φ(x, y) as following: First check that

1
τ

∫

M̃

φ(x, y)H(τ, x, y) dµ
M̃

(y)

is a function independent of τ and also descends to M . Here H(τ, x, y) is the heat kernel of
M̃ . Then define

h(M̃) +
∫

M

(
1
τ

∫

M̃

φ(x, y)H(τ, x, y) dµ
M̃

(y)
)

dµM (x).

Here we normalize so that µM (x) is a probability measure on M . From the above definition
it was proved by Kaimanovich [Ka] (see also [W]) that

h(M̃) =
∫

M

∫

M̃

u(x)|∇ log u(x)|2dν(u) dµ(x).

Hence the positivity of h(M̃) implies the existence (in fact ampleness) of nonconstant posi-
tive harmonic functions on M̃ . Most interestingly, the Theorem 2 of [Ka] asserts that

h(M̃) = − lim
t→∞

1
t

∫

M̃

H(t, x, y) log H(t, x, y) dµ(y)

for any x. This is sensational since it is not hard to check for instance that when λ(M̃), the
bottom of the L2-spectrum of the Laplace operator on M̃ is positive, h(M̃) ≥ 4λ(M̃) [L]. In
fact the above result of Kaimanovich plays a crucial role in [W], where Xiaodong Wang solves
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a conjecture of Jiaping Wang on characterizing the universal cover of a compact Riemannian
manifolds being the hyperbolic space by the information on λ(M̃) and the lower bound of
Ricci curvature of M . (See also [Mu] for the related work on Kähler manifolds.) Motivated
by the above discussions, mainly the entropy of Kaimanovich [Ka] and its above mentioned
connection with the large time behaviors of the heat kernel and its direct implications on
the existence of harmonic functions, we propose the following problem.

Problem 1 Let M be a complete Riemannian manifold of positive sectional curvature.
When does M admit non-constant harmonic functions of polynomial growth?

Here a harmonic function u(x) is of polynomial growth if there exist positive constants d,Cu

such that
|u(y)| ≤ Cu(1 + r(y))d.

We conjecture that the necessary and sufficient condition is that limt→∞N (H, t) > −∞,
namely M is of maximum volume growth. Note that for the corresponding problem on
holomorphic functions of polynomial growth, the sufficient part has been solved by the au-
thor provided that the manifold is Kähler with bounded non-negative bisectional curvature
(cf.[N4]).

Now we devote the rest of the paper to the detailed proof of Theorem 1. Under the above
notation, let us first recall a result of Li, Tam and Wang [LTW]. A computation similar as
below appeared in the earlier paper [N3], pages 935–936.

Theorem 2 [Li-Tam-Wang] Let (Mn, g) be a complete Riemannian manifold with non-
negative Ricci curvature and maximum volume growth. For any δ > 0, the heat kernel of
(Mn, g) satisfies

ωn

θ(δr(y))
(4πt)−

n
2 exp

(
−1 + 9δ

4t
r2(y)

)
≤ H(y, t)

≤ (1 + C(n, θ∞)(δ + β))
ωn

θ∞
(4πt)−

n
2 exp

(
−1− δ

4t
r2(y)

)
,

where θ∞ = limr→∞ θ(r),

β := δ−2n max
r≥(1−δ)r(y)

(
1− θx(r)

θx(δ2n+1r)

)
.

Note that β is a function of r(y) and

lim
r(y)→∞

β = 0.

Therefore, for any ε > 0, there exists a B sufficiently large such that if r(y) ≥ B we have

ωn

θ∞
(1− ε)(4πt)−

n
2 exp

(− 1+9δ
4t r2(y)

) ≤ H(y, t)

≤ (1 + C(n, θ∞)(δ + ε)) ωn

θ∞
(4πt)−

n
2 exp

(− 1−δ
4t r2(y)

)
.(1)

We can also require that θ(δ2n+1r) ≤ (1 + ε)θ∞.

3



The upper estimates: First by the lower estimate of Li-Tam-Wang,

N (H, t) ≤ −
∫

M

H log
(

ωn

θ(δr(y))

)
dµ +

∫

M

H

(
1 + 9δ

4t
r2(y)

)
dµ− n

2

= I + II − n

2
.

We shall estimate I and II below as in [N3]. Split

I = −
∫ B

0

−
∫ ∞

B

(∫

∂B(s)

H log
(

ωn

θ(δr(y))

)
dA

)
ds = I1 + I2.

It is easy to see that
lim

t→∞
I1 ≤ 0.

To compute II2 we now make use of the lower estimate in (1) to have that

I2 ≤ −(1− ε)
ωn

θ∞
(4πt)−

n
2

∫ ∞

B

∫

∂B(s)

exp
(
−1 + 9δ

4t
s2

)
log

(
ωn

θ(δs)

)
dAds

≤ log
(

(1 + ε)θ∞
ωn

)
(1− ε)nωn(4πt)−

n
2

∫ ∞

B

exp
(
−1 + 9δ

4t
s2

)
sn−1 ds.

Here we have used that θ(δr(y)) ≤ θ∞(1 + ε) and the surface area of ∂B(s) satisfies A(s) ≥
nθ∞sn−1. Computing the integral via the change of variable τ = 1+9δ

4t s2 and taking t →∞
we have that

lim
t→∞

I2 ≤ log
(

(1 + ε)θ∞
ωn

)
(1− ε) (1 + 9δ)−n/2

.

The estimate of II is very similar. Using the Gamma function identity

Γ(
n

2
+ 1) = Γ(

n

2
)
n

2
we can have that

lim
t→∞

II ≤ (1 + ε)(1 + C(n, θ∞)(δ + ε))(1 + 9δ)(1− δ)n/2+1 n

2
.

Summarizing we have that

lim
t→∞

N (H, t) ≤ log
(

(1 + ε)θ∞
ωn

)
(1− ε) (1 + 9δ)−n/2

+(1 + ε)(1 + C(n, θ∞)(δ + ε))(1 + 9δ)(1− δ)n/2+1 n

2
− n

2
.

Letting ε → 0, then δ → 0 we have what

lim
t→∞

N (H, t) ≤ log ν∞.

For the lower estimate, we use the other inequality provided by Theorem 2, mainly (1).
First write

N (H, t) ≥
∫

M

H

(
1− δ

4t

)
r2(y) dµ− log

[
(1 + C(n, θ∞)(δ + ε))

ωn

θ∞

]
− n

2

=
∫

r≤B

+
∫

r≥B

H

(
1− δ

4t

)
r2(y) dµ− log

[
(1 + C(n, θ∞)(δ + ε))

ωn

θ∞

]
− n

2
.
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Similarly

lim
t→∞

∫

r≤B

H

(
1− δ

4t

)
r2(y) dµ → 0

as t →∞. On the other hand, using that A(r) ≥ nθ∞rn−1,

lim
t→∞

I3 +
∫

r≥B

H

(
1− δ

4t

)
r2(y) dµ

≥ lim
t→∞

nωn(1− ε)(1− δ)
1

(4πt)n/2

∫ ∞

B

exp
(
− (1 + 9δ)r2

4t

)
r2

4t
rn−1 dr.

The direct calculation shows that

lim
t→∞

1
(4πt)n/2

∫ ∞

B

exp
(
− (1 + 9δ)r2

4t

)
r2

4t
rn−1 dr =

1
2
Γ(

n

2
+ 1)(1 + 9δ)−

n
2−1.

Using ωn = 2πn/2

Γ( n
2 )n = πn/2

Γ( n
2 +1) , we finally have that

lim
t→∞

I3 ≥ n

2
(1− ε)(1− δ)(1 + 9δ)−

n
2−1.

The lower estimate
lim

t→∞
N (H, t) ≥ log ν∞

follows after we taking ε → 0 and then δ → 0.
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