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In this note, due to various requests, we supply the details of the computation on
the asymptotics of the entropy stated in [N1], Corollary 4.3, and Proposition 1.1 of
[N2]. The similar computation has already appeared in my earlier paper [N3], page
935-936, which is the main reason we skipped the details in the original paper.

In this note we assume that (M, g) is a complete Riemannian manifold with non-
negative Ricci curvature. We also further assume that it has maximum volume
growth. Let H(x, y, t) be the heat kernel. For this note we fix x and write simply
H(y, t). Also we simply denote the distance between x and y by r(y). Recall the
definition of the entropy

W(H, t) :=

∫

M

(
t|∇f |2 + f − n

)
H dµ

where f = − log H − n
2

log(4πt). Also recall the Nash entropy

N (H, t) = −
∫

M

H log H dµ− n

2
log(4πt)− n

2
.

Let ν∞ be the cone angle at infinity which can be defined by

ν∞ := lim
r→∞

θ(r)ωn

where θ(r) := V (r)
rn , V (r) is the volume of the ball Bx(r) centered at x and ωn is the

volume of the unit ball in Rn.
Recall that in [N2], page 331, we have proved that

lim
t→∞

W(H, t) = lim
t→∞

N (H, t).

The main purpose here is to supply the detail of the claim that

lim
t→∞

N (H, t) = log ν∞.

Under the above notation, let us recall a result of Li, Tam and Wang [LTW].

Theorem 0.1 (Li-Tam-Wang). Let (Mn, g) be a complete Riemannian manifold
with nonnegative Ricci curvature and maximum volume growth. For any δ > 0, the
heat kernel of (Mn, g) satisfies

ωn

θ(δr(y))
(4πt)−

n
2 exp

(
−1 + 9δ

4t
r2(y)

)
≤ H(y, t)

≤ (1 + C(n, θ∞)(δ + β))
ωn

θ∞
(4πt)−

n
2 exp

(
−1− δ

4t
r2(y)

)
,

where θ∞ = limr→∞ θ(r),

β := δ−2n max
r≥(1−δ)r(y)

(
1− θx(r)

θx(δ2n+1r)

)
.
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Note that β is a function of r(y) and

lim
r(y)→∞

β = 0.

Therefore, for any ε > 0, there exists a B sufficiently large such that if r(y) ≥ B
we have

ωn
θ∞ (1− ε)(4πt)−

n
2 exp

(− 1+9δ
4t

r2(y)
) ≤ H(y, t)

≤ (1 + C(n, θ∞)(δ + ε)) ωn
θ∞ (4πt)−

n
2 exp

(− 1−δ
4t

r2(y)
)
.(0.1)

We can also require that θ(δ2n+1r) ≤ (1 + ε)θ∞.
The upper estimates:
First by the lower estimate of Li-Tam-Wang,

N (H, t) ≤ −
∫

M

H log

(
ωn

θ(δr(y))

)
dµ +

∫

M

H

(
1 + 9δ

4t
r2(y)

)
dµ− n

2

= I + II − n

2
.

We shall estimate I and II below as in [N3].
Split

I =

∫ B

0

+

∫ ∞

B

(∫

∂B(s)

H log

(
ωn

θ(δr(y))

)
dA

)
ds = I1 + I2.

It is easy to see that

lim
t→∞

I1 ≤ 0.

To compute II2 we now make use of the lower estimate in (0.1) to have that

I2 ≤ (1− ε)
ωn

θ∞
(4πt)−

n
2

∫ ∞

B

∫

∂B(s)

exp

(
−1 + 9δ

4t
s2

)
log

(
ωn

θ(δs)

)
dA ds

≤ log

(
(1 + ε)θ∞

ωn

)
(1− ε)nωn(4πt)−

n
2

∫ ∞

B

exp

(
−1 + 9δ

4t
s2

)
sn−1 ds.

Here we have used that δ(δr(y)) ≤ θ∞(1 + ε) and the surface area of ∂B(s) satisfies
A(s) ≥ nθ∞sn−1. Computing the integral via the change of variable τ = 1+9δ

4t
s2 and

taking t →∞ we have that

lim
t→∞

I2 ≤ log

(
(1 + ε)θ∞

ωn

)
(1− ε) (1 + 9δ)−n/2 .

The estimate of II is very similar. Using the Gamma function identity

Γ(
n

2
+ 1) = Γ(

n

2
)
n

2

we can have that

lim
t→∞

II ≤ (1 + ε)(1 + C(n, θ∞)(δ + ε))(1 + 9δ)(1− δ)n/2+1 n

2
.

Summarizing we have that

lim
t→∞

N (H, t) ≤ log

(
(1 + ε)θ∞

ωn

)
(1− ε) (1 + 9δ)−n/2

+(1 + ε)(1 + C(n, θ∞)(δ + ε))(1 + 9δ)(1− δ)n/2+1 n

2
− n

2
.

Letting ε → 0, then δ → 0 we have what

lim
t→∞

N (H, t) ≤ log ν∞.

The lower estimate works very similarly.
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