COMPUTATION ON THE LARGE TIME ASYMPTOTICS OF THE ENTROPY

Lei Ni

In this note, due to various requests, we supply the details of the computation on the asymptotics of the entropy stated in [N1], Corollary 4.3, and Proposition 1.1 of [N2]. The similar computation has already appeared in my earlier paper [N3], page 935-936, which is the main reason we skipped the details in the original paper.

In this note we assume that (M, g) is a complete Riemannian manifold with nonnegative Ricci curvature. We also further assume that it has maximum volume growth. Let H(x, y, t) be the heat kernel. For this note we fix x and write simply H(y, t). Also we simply denote the distance between x and y by r(y). Recall the definition of the entropy

$$\mathcal{W}(H,t) := \int_M \left(t |\nabla f|^2 + f - n \right) H \, d\mu$$

where $f = -\log H - \frac{n}{2}\log(4\pi t)$. Also recall the Nash entropy

$$\mathcal{N}(H,t) = -\int_M H \log H \, d\mu - \frac{n}{2} \log(4\pi t) - \frac{n}{2}.$$

Let ν_{∞} be the cone angle at infinity which can be defined by

$$\nu_{\infty} := \lim_{r \to \infty} \theta(r) \omega_n$$

where $\theta(r) := \frac{V(r)}{r^n}$, V(r) is the volume of the ball $B_x(r)$ centered at x and ω_n is the volume of the unit ball in \mathbb{R}^n .

Recall that in [N2], page 331, we have proved that

$$\lim_{t \to \infty} \mathcal{W}(H, t) = \lim_{t \to \infty} \mathcal{N}(H, t)$$

The main purpose here is to supply the detail of the claim that

$$\lim_{t \to \infty} \mathcal{N}(H, t) = \log \nu_{\infty}.$$

Under the above notation, let us recall a result of Li, Tam and Wang [LTW].

Theorem 0.1 (Li-Tam-Wang). Let (\mathcal{M}^n, g) be a complete Riemannian manifold with nonnegative Ricci curvature and maximum volume growth. For any $\delta > 0$, the heat kernel of (\mathcal{M}^n, g) satisfies

$$\frac{\omega_n}{\theta(\delta r(y))} (4\pi t)^{-\frac{n}{2}} \exp\left(-\frac{1+9\delta}{4t}r^2(y)\right) \le H(y,t)$$
$$\le (1+C(n,\theta_\infty)(\delta+\beta))\frac{\omega_n}{\theta_\infty}(4\pi t)^{-\frac{n}{2}} \exp\left(-\frac{1-\delta}{4t}r^2(y)\right),$$

where $\theta_{\infty} = \lim_{r \to \infty} \theta(r)$,

$$\beta := \delta^{-2n} \max_{r \ge (1-\delta)r(y)} \left(1 - \frac{\theta_x(r)}{\theta_x(\delta^{2n+1}r)} \right).$$

Note that β is a function of r(y) and

$$\lim_{r(y)\to\infty}\beta=0.$$

Therefore, for any $\epsilon>0,$ there exists a B sufficiently large such that if $r(y)\geq B$ we have

(0.1)
$$\frac{\frac{\omega_n}{\theta_{\infty}}(1-\epsilon)(4\pi t)^{-\frac{n}{2}}\exp\left(-\frac{1+9\delta}{4t}r^2(y)\right) \leq H(y,t)}{\leq (1+C(n,\theta_{\infty})(\delta+\epsilon))\frac{\omega_n}{\theta_{\infty}}(4\pi t)^{-\frac{n}{2}}\exp\left(-\frac{1-\delta}{4t}r^2(y)\right).$$

We can also require that $\theta(\delta^{2n+1}r) \leq (1+\epsilon)\theta_{\infty}$.

The upper estimates:

First by the lower estimate of Li-Tam-Wang,

$$\mathcal{N}(H,t) \leq -\int_{M} H \log\left(\frac{\omega_{n}}{\theta(\delta r(y))}\right) d\mu + \int_{M} H\left(\frac{1+9\delta}{4t}r^{2}(y)\right) d\mu - \frac{n}{2}$$
$$= I + II - \frac{n}{2}.$$

We shall estimate I and II below as in [N3]. Split

$$I = \int_0^B + \int_B^\infty \left(\int_{\partial B(s)} H \log \left(\frac{\omega_n}{\theta(\delta r(y))} \right) \, dA \right) \, ds = I_1 + I_2.$$

It is easy to see that

$$\lim_{t \to \infty} I_1 \le 0.$$

To compute II_2 we now make use of the lower estimate in (0.1) to have that

$$I_{2} \leq (1-\epsilon)\frac{\omega_{n}}{\theta_{\infty}}(4\pi t)^{-\frac{n}{2}}\int_{B}^{\infty}\int_{\partial B(s)}\exp\left(-\frac{1+9\delta}{4t}s^{2}\right)\log\left(\frac{\omega_{n}}{\theta(\delta s)}\right)\,dA\,ds$$
$$\leq \log\left(\frac{(1+\epsilon)\theta_{\infty}}{\omega_{n}}\right)(1-\epsilon)n\omega_{n}(4\pi t)^{-\frac{n}{2}}\int_{B}^{\infty}\exp\left(-\frac{1+9\delta}{4t}s^{2}\right)s^{n-1}\,ds.$$

Here we have used that $\delta(\delta r(y)) \leq \theta_{\infty}(1+\epsilon)$ and the surface area of $\partial B(s)$ satisfies $A(s) \geq n\theta_{\infty}s^{n-1}$. Computing the integral via the change of variable $\tau = \frac{1+9\delta}{4t}s^2$ and taking $t \to \infty$ we have that

$$\lim_{t \to \infty} I_2 \le \log\left(\frac{(1+\epsilon)\theta_{\infty}}{\omega_n}\right) (1-\epsilon) (1+9\delta)^{-n/2}.$$

The estimate of II is very similar. Using the Gamma function identity

$$\Gamma(\frac{n}{2}+1) = \Gamma(\frac{n}{2})\frac{n}{2}$$

we can have that

$$\lim_{t \to \infty} II \le (1+\epsilon)(1+C(n,\theta_{\infty})(\delta+\epsilon))(1+9\delta)(1-\delta)^{n/2+1}\frac{n}{2}.$$

Summarizing we have that

$$\lim_{t \to \infty} \mathcal{N}(H, t) \leq \log \left(\frac{(1+\epsilon)\theta_{\infty}}{\omega_n} \right) (1-\epsilon) (1+9\delta)^{-n/2} + (1+\epsilon)(1+C(n,\theta_{\infty})(\delta+\epsilon))(1+9\delta)(1-\delta)^{n/2+1}\frac{n}{2} - \frac{n}{2}.$$

Letting $\epsilon \to 0$, then $\delta \to 0$ we have what

$$\lim_{t \to \infty} \mathcal{N}(H, t) \le \log \nu_{\infty}.$$

The lower estimate works very similarly.

References

- [LTW] P. Li, L.-F. Tam and J. Wang, Sharp bounds for the Green's function and the heat kernel, Math. Res. Lett. 4 (1997), no. 4, 589–602.
- [N1] L. Ni, The entropy formula for linear heat equation, J. Geom. Anal. 14(2004), 87–100.
- [N2] L. Ni, Addenda to "The entropy formula for linear heat equation", J. Geom. Anal. 14(2004), 369–374.
- [N3] L. Ni, A monotonicity formula on complete Kaehler manifolds with nonnegative bisectional curvature, J. Amer. Math. Soc. 17 (2004), 909–946.

Department of Mathematics, University of California at San Diego, La Jolla, CA 92093\$E-mail\$ address:lni@math.ucsd.edu