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Abstract. We apply the algebraic consideration of holonomy systems to study Hermitian manifolds

whose Chern connection is Ambrose-Singer and prove structure theorems for such manifolds. The main

result (Theorem 1.2) asserts that the universal cover of such a Hermitian manifold must be the product
of a complex Lie group and Hermitian symmetric spaces. Previously this is known for dimensions up

to 4. We also obtain partial results on Hermitian manifolds whose Bismut/Gauduchon connection is

Ambrose-Singer, and discuss how do these results fit into a project of classifying such manifolds.

Contents

1. Introduction and main results 1
2. Preliminaries 4
3. Symmetric holonomy systems 5
4. Hermitian manifolds with a CAS structure 7
5. Generalized symmetric holonomy systems 9
6. The Bismut/Gauduchon Ambrose-Singer manifolds 11
References 17

1. Introduction and main results

In [5] Ambrose and Singer gave a necessary and sufficient condition for a simply-connected complete
Riemannian manifold to admit a transitive group of isometric motions. These conditions were recognized
later ([24]) as the existence of an affine connection which is invariant under parallelism, that is, the
connection has parallel torsion and curvature with respect to itself. Namely

Theorem 1.1 (Ambrose-Singer, Kostant). Let (M, g) be a complete, simply-connected Riemannian
manifold, and ∇g the Levi-Civita connection. Then M admits a transitive action of an isometric group
(namely M is a Riemannian homogeneous space) if and only if there exists a metric connection D such
that its torsion and curvature are parallel with respect to D.

The conditions were originally expressed in terms of more convoluted PDEs involving the curvature
tensor of the Levi-Civita connection ∇g and the torsion of the metric connection D as a characterization
of simply-connected complete Riemannian homogeneous spaces (cf. [5]). It provides a generalization of
Cartan’s theorem on the symmetric (or locally symmetric) spaces.1 Without the simply-connectedness
the result holds locally. The metric connection D is called an Ambrose-Singer connection (abbreviated
as an AS connection).

In this paper we study complete Hermitian manifolds that are locally Chern homogeneous, namely,
its Chern connection ∇ satisfies the condition ∇T = 0 and ∇R = 0, where T and R are respectively
the torsion and curvature of ∇. This notion is motivated by the above work of Ambrose-Singer [5] and
others such as [21, 31, 24] (see also [9]). In particular, there is a corresponding result of Sekigawa [34] for
Hermitian manifolds which asserts that a complete simply-connected Hermitian manifold is Hermitian
homogeneous (namely Hermitian manifolds whose biholomorphic isometries act transitively) if and only
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if there exists a Hermitian Ambrose-Singer connection, namely in addition to the assumptions of having
parallel torsion and curvature, the metric connection also preserves the almost complex structure.

We refer the readers to [23, 36, 42, 44, 45] for other related studies on homogeneous complex manifolds
(namely complex manifolds whose biholomorphism groups act transitively), and other homogeneous
spaces. One should also consult [6] for some recent developments on local Hermitian homogeneous
spaces and the flows on such spaces. Locally Chern homogeneous Hermitian manifolds forms a special
class of homogenous complex manifolds as shown by the theorem below.

It is well known that on a Hermitian manifold there exists a unique canonical connection, namely
the Chern connection [14] (in fact the existence, as well as the uniqueness, extends to any holomorphic
vector bundle). For locally Chern homogeneous manifolds, namely when the Chern connection of a
Hermitian manifold (Mn, g) is Ambrose-Singer, we will also say that the complex manifold M admits a
CAS structure. In [30, Theorem 3.6] conditions are given when the universal cover of such a manifold
admits some Kähler (hence Hermitian symmetric due to ∇R = 0) de Rham factors. Classification
theorems were obtained in complex dimension 3 and 4. The examples of manifolds with CAS structure
include complex Lie groups endowed with compatible left-invariant metrics and Hermitian symmetric
spaces, their products and quotients of products. In this paper, we prove essentially the reverse holds by
the following classification result for locally Chern homogeneous manifolds in general dimensions, which
is the main result of this article:

Theorem 1.2. Let (Mn, g) be a complete Hermitian manifold with a CAS structure, namely a locally

Chern homogeneous Hermitian manifold. Then its universal cover M̃ splits into M1 ×M2, where M1 is
a Chern flat Hermitian manifold with a complex Lie group structure, and M2 is the product of irreducible
Hermitian symmetric spaces of dimension k with 0 ≤ k ≤ n.

In [30], it was shown that the above theorem holds when n ≤ 4 for the case that M is compact. The
proof of the above theorem consists of three parts. The first part is to split off the Kähler de Rham
factors (if any) in the universal cover of M , which correspond to the kernel distribution of the Chern
torsion. Note that since the connection is not Levi-Civita (when the metric is not Kähler), the de Rham
decomposition theorem no longer holds to its full generality, but the CAS assumption will enable us to get
the desired splitting. The second part is to show that a CAS manifold without Kähler de Rham factors
must be (first) Chern Ricci flat. This is achieved by constructing a holomorphic symplectic form on the
manifold. These two parts were obtained in [30], and we will recall and give their outline in the next

section. The third part is an algebraic analogue to the classic theorem of Alekseevskĭi and Kimeĺ feĺ d
[4], where we show that for an abstract holonomy system tailored to our CAS situation, if it is Ricci flat
the it will be flat. This is in the spirit of Simons’ proof [35] of Berger’s holonomy theorem, except here
the holonomy system needs to be expanded since the connection considered here has a non-vanishing
torsion.

Recall that Alekseevskĭi and Kimeĺ feĺ d proved in [4] that any Ricci flat complete Riemannian ho-

mogeneous manifold Mn must be flat, and in fact it is isometric to Tk × Rn−k, where Tk is a flat
torus. They proved this result by the consideration of a volume entropy. It can also be derived from
Cheeger-Gromoll’s splitting theorem and the consideration of Clifford translation [47]. Since any Ricci
flat Hermitian symmetric space must be flat, our Theorem 1.2 has the following immediate consequence
which can be viewed as a Hermitian analogue to the aforementioned AK theorem:

Corollary 1.3. Let (Mn, g) be a complete Hermitian manifold with a CAS structure. Assume that the
Chern curvature is Ricci flat. Then it is Chern flat. In particular, M is covered by a complex Lie group.

Note that one no longer has the Cheeger-Gromoll splitting theorem for Hermitian manifolds with
Chern connection. Our proof here is mainly algebraic. The result answers in the case of CAS manifolds
a question raised by Yau [49, Problem 87] where he asked if one can say something nontrivial about the
compact Hermitian manifolds whose holonomy is a proper subgroup of U(n).

Recall that for any given metric connection D on a Riemannian manifold, its curvature tensor RD is
a covariant 4-tensor which is skew-symmetric with respect to its first two or last two positions. Its Ricci
curvature RicD is the 2-tensor obtained by contracting the first and fourth (or equivalently, its second
and third) positions of RD. When the manifold is Hermitian and D is also a Hermitian connection, then
there are three ways to contract its curvature tensor RD, resulting in the first, second, and third Ricci
of D, with RicD being the third Ricci.

In general, these three Ricci curvatures may not be equal, even for the Chern connection. But for
CAS manifolds, the Chern curvature tensor obeys all Kähler symmetries (namely, CAS manifolds are
Chern Kähler-like) hence all three Chern Ricci curvatures coincide.
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Remark 1.4. We remark that the naive way of extending AK theorem from Levi-Civita connection
to Chern connection fails, namely, there are (locally) Hermitian homogeneous manifolds with vanishing
(third) Chern Ricci curvature but are not Chern flat.

For instance, some (compact quotients of) almost abelian Lie groups will be (third) Chern Ricci flat
but not Chern flat. There are also example of compact locally homogeneous Hermitian manifolds with
vanishing first and third Chern Ricci yet is not Chern flat. Such examples are given at the end of §4.
From this, we see that the CAS assumption in Corollary 1.3 is stronger than just assuming the manifold
to be (locally) Hermitian homogeneous, and that seems to be the proper way to generalize the AK
theorem to the Chern connection case.

Besides Chern connection ∇, another important canonical connection of a Hermitian manifold (Mn, g)
is the Bismut connection ∇b, which is the unique Hermitian connection (meaning a metric connection
which makes the almost complex structure J parallel) whose torsion is totally skew-symmetric. The
Bismut connection is extensively studied by physicists in string theory, and is an essential component in
the Hull-Strominger system which suggests that the hidden space is a non-Kähler Calabi-Yau manifold
(cf. [19], [41]). In mathematics, Bismut [11] established the existence and uniqueness of this connection
and used it in his study of local index theory. It is also related to the Hermitian Ricci flow theory (cf. [38],
[39], [40] and references therein). While the geometric and complex analytic meaning of Chern curvature
is relatively clear, the curvature of Bismut connection does not seem to enjoy the nice properties satisfied
by the Chern connection. There is an interesting geometric explanation in the frame work of generalized
Ricci flow developed by Garcia-Fernández and Streets [18] (see also the references therein).

Analogous to the Chern connection case, one could consider Bismut Ambrose-Singer manifolds (BAS
for brevity): Hermitian manifolds whose Bismut connection has parallel torsion and curvature.

Unlike the Chern connection case, there are plenty of examples of BAS manifolds that are ‘non-
trivial’, in the sense that they are neither Hermitian symmetric nor Bismut flat, so Theorem 1.2 fails
completely when the Chern connection is replaced by the Bismut connection. The simplest such example
is perhaps the Hopf manifold Mn = (Cn \{0})/〈f〉 with n ≥ 3, where f(z) = 2z. z = (z1, . . . , zn). Write

|z|2 = |z1|2+· · ·+|zn|2. Then direct calculation shows that the metric g with Kähler form ω =
√
−1∂∂|z|

2

|z|2
is BAS, non-balanced, and is NOT Bismut flat. There are plenty of other examples of BAS manifolds
starting in dimension 3, and there are also examples of balanced (but non-Kähler) BAS manifolds.

Note that BAS manifolds form a subset of (locally) naturally reductive homogeneous spaces, which
means homogeneous Riemannian manifolds with a metric connection which has parallel (with respect
to itself) and totally skew-symmetric torsion. Such spaces were systematically studied by Agricola,
Friedrich and others (see [1], [2], and the references therein). Classification of real dimensions up to 8
were obtained (see [3], [25], [37] and the references therein).

While it might not be feasible to classify naturally reductive spaces in general dimensions, it seems
to be an interesting problem to classify or characterize all BAS manifolds. Hence we ask whether or not
the analogue to Corollary 1.3 would hold for Bismut connection, namely, if a compact BAS manifold
has vanishing (third) Bismut Ricci, then must it be Bismut flat? We suspect that the answer would be
negative when n ≥ 3, although we have not been able to construct a concrete counterexample yet. On
the positive side, we would like to propose the following:

Conjecture 1.5. Let (Mn, g) be a compact (or complete) Hermitian manifold such that its Bismut
connection ∇b is Ambrose-Singer. If the first and third Bismut Ricci both vanish, then the Bismut
curvature vanishes.

Note that for BAS manifolds, the first and second Bismut Ricci are equal, and the Bismut flat
manifolds have been fully classified [46] as being quotients of Samelson spaces. Hence the conjecture, if
confirmed, would provide a classification for Ricci flat BAS manifolds. As a supporting evidence to the
above conjecture, we show that it holds when n ≤ 4:

Proposition 1.6. Let (Mn, g) be a complete, non-Kähler BAS manifold with vanishing first and third
Bismut Ricci. Then it is not balanced. Furthermore, it is Bismut flat if n ≤ 4.

Another partial result is to restrict to the case of Bismut Kähler-like metrics, which means that the
Bismut curvature tensor obeys all Kähler symmetries. In this case all three Bismut Ricci coincides. The
following is a weaker version of [54, Theorem 3], and we give an alternative proof here as an application
of our algebraic result on holonomy system in §3 and §5:

Proposition 1.7. Let (Mn, g) be a complete BAS manifold with vanishing first Bismut Ricci. Assume
that it is Bismut Kähler-like. Then it must be Bismut flat.
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Besides Chern and Bismut connections, the family of Gauduchon connections, which is the line joining
Chern and Bismut, have also been studied in the literature. For any real number t, the t-Gauduchon
connection is defined by ∇(t) = (1 − t

2 )∇ + t
2∇

b. So in particular, ∇(0) = ∇ is the Chern connection,

∇(2) = ∇b is the Bismut connection, while ∇(1) is the Hermitian projection of the Levi-Civita connection,
which is called the Lichnerowicz connection in some literature. Note that when the metric g is Kähler,
all ∇(t) coincide with the Levi-Civita connection ∇g. But when g is not Kähler, ∇(t) 6= ∇(t′) whenever
t 6= t′, and they can never be equal to ∇g as the latter is not a Hermitian connection in this case.
Lafuente and Stanfield [26] proved the following beautiful theorem about Gauduchon flat manifolds:

Theorem 1.8 (Lafuente and Stanfield [26]). For any t 6= 0, 2, if a compact Hermitian manifold has flat
t-Gauduchon connection ∇(t), then it must be Kähler.

In fact what they proved is much stronger: the result holds when the flatness is replaced by the
Kähler-like condition, namely, when the curvature of ∇(t) obeys all Kähler symmetries (see for example
[52] and references therein for more discussion on t-Gauduchon Kähler-like manifolds). Lafuente and
Stanfield also showed that the metric must be Kähler when the compactness assumption is dropped but
when t is not in { 2

3 ,
4
5}.

For any t 6= 0, 2, similar to the Chern or Bismut case, one could ask the question about t-GAS
manifolds, namely those with ∇(t) being Ambrose-Singer. It turns out that there are examples of
compact t-GAS manifolds that are ‘non-trivial’, in the sense that they are non-Kähler (thus can be
neither Hermitian symmetric nor t-Gauduchon flat). For instance, take any compact quotient of a semi-
simple complex Lie group, then it is t-GAS for any t ∈ R. It seems that t-GAS manifolds form a highly
restrictive class, so a full classification of them constitutes an interesting project for future study.

As a reduction one could also ask the AK type question for t-GAS manifolds when t 6= 0, 2, namely,
if ∇(t) has vanishing (third) Ricci curvature, then must ∇(t) be flat? We suspect that the answer would
be a YES but we are unable to prove it at this point. Instead, we have the following weaker statement:

Proposition 1.9. Let t 6= 0, 2 and (Mn, g) be a compact Hermitian manifold such that its t-Gauduchon
connection ∇(t) is Ambrose-Singer. Then g must be balanced. Furthermore, if ∇(t) has vanishing first
and third Ricci curvatures, then ∇(t) must be Kähler and flat, hence a complex torus.

Note that in the aforementioned AK type question for t-GAS manifolds, one can not replace third
Ricci by first Ricci along, as there are examples of non-Kähler t-GAS manifolds which has vanishing first
t-Gauduchon Ricci, as pointed out by Lafuente and Stanfield in [26, page 2] (see also [43]), on a balanced
Hermitian nimanifold M with vanishing first Chern Ricci form. On such a manifold, ∇(t) has vanishing
first Ricci for all t, since the difference of the first Ricci form between two Gauduchon connections is
given by the differential of Gauduchon’s torsion 1-form η, while the balanced condition means η = 0.

2. Preliminaries

In this section we will collect some results from [30] which will be used in the proof of our main result,
Theorem 1.2 stated in the introduction.

Let (Mn, g) be a complete Hermitian manifold. Denote by ∇ the Chern connection, by T and R its
torsion and curvature. The following was proved in [30] (cf. also [48]):

Proposition 2.1. Suppose that (Mn, g) is a Hermitian manifold with a CAS structure. Then the Chern
curvature is Kähler-like. In particular, the Chern curvature satisfies the first Bianchi identity.

In [30], we denoted by Wp the subspace of T 1,0
p spanned by the image of T :

W := 〈{T (X,Y ) |X,Y ∈ T 1,0M}〉.

Let N := {Z ∈ T 1,0M | 〈T (X,Y ), Z〉 = 0 ∀ X,Y ∈ T 1,0M}. The following was proved in [30].

Proposition 2.2. The subbundles W and N of T 1,0M (also denoted as T ′M) are invariant under the
parallel transport with respect to the Chern connection ∇, and T ′M = W⊕N orthogonally. The curvature
restriction R|W = 0. In particular, when M is not a locally Hermitian symmetric space, the action of
the holonomy group G on T ′M is reducible.

The next result extends the construction, mainly Theorem 1.4 and its proof in Section 6 of [30]. Note
that there was a typo in the statement of [30, Theorem 1.4], namely, the word “with k ≥ 2” at the end
should be deleted. We will recap the proof here for the sake of completeness.
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Theorem 2.3. Let (Mn, g) be a complete simply-connected Hermitian manifold with a CAS structure.
Assume that it does not admit any Kähler de Rham factor. Then N decomposes into N1 ⊕ N2 with
R|W+N2

= 0 and N1 decomposes further into ⊕kj=1Kj, with each of Kj being invariant and irreducible
under the action of the holonomy group G. On each Kj there exists a parallel (2, 0)-symplectic form which
can be identified with the standard holomorphic symplectic (2, 0) form on C2kj with 2kj = dimC(Kj).

Proof. We first recap the constructions in the proof of Theorem 1.4 in [30]. By the simply-connectedness
assumption and the Ambrose-Singer holonomy theorem, namely Theorem 3.1 stated in the next section,
W is a trivial bundle which admits parallel (holomorphic) sections Z1, · · · , Z`1 where `1 = dim(Wp). Let

ξi = 〈·, Zi〉 be the dual 1-forms correspondingly. Then let τi(·, ·) = dξi = ∂ξi. It was proved in Lemma
6.2 of [30] that τi(·, ·) = 〈T (·, ·), Zi〉, which also equals to −ιZi

∂ω. It was proved there, also can be seen

by direct calculation, that τi(·, ·) = ∂ξi and ∂̄ξi = 0, that {τi} are parallel, holomorphic (2, 0)-forms.
The next key step in the proof of Theorem 1.4 of [30] is to pick one τ in span{τi} such that τ |N

is of maximum rank. Without the loss of generality we denote this one by τ1. It then derived from
the assumption that M has no Kähler factor and τ1 is of maximum rank, there exists a orthogonal
decomposition of N into N1 ⊕N2 such that N2 is generated by parallel global sections, hence R|N2 = 0.
Moreover N1 is of even dimension and τ1|N1

is non-degenerate. Let `2 = dimC(N2). Then dimC(N1) = 2k
and 2k+`1 +`2 = n. Since W and N2 are generated by parallel (holomorphic) sections/vector fields, both
K0 := W⊕N2 and N1 are invariant under the parallel transport with respect to the Chern connection. Fix
a point p ∈M the holonomy action of any element h ∈ G splits as h̃⊕id : (N1)p⊕(K0)p → (N1)p⊕(K0)p.

Now consider τ |N1
, a parallel (2, 0) form on this sub-bundle of T ′M , which we shall still denote by τ .

With respect to a chosen unitary frame of N1 at the point p, τ has the following matrix form:

A =

 a1E
. . .

akE

 , E =

[
0 1
−1 0

]
, a1 ≥ · · · ≥ ak > 0.

We may collect the ai into distinct numbers of bj . Namely we write

b1Ẽ =

 a1E
. . .

a1E

 , A =

 b1Ẽ
. . .

b`3Ẽ

 , b1 > · · · > b`3 > 0.

Namely −b2j are distinct eigenvalues of AA if A is the matrix representation of τ at p. Let 2nj denote

the dimension of the corresponding eigenspaces Vj . Clearly
∑`3
j=1 nj = k. Since τ is parallel, h̃∗τ = τ

for any h ∈ G. In terms of matrix we have that h̃trAh̃ = A. Here h̃tr denotes the transpose of h̃. Note

that h̃ ∈ U(2k), Ah̃ =
¯̃
hA. Since A is real we have h̃A = A

¯̃
h. From this we have that h̃A2 = A2h̃, which

implies that h̃ also keeps each eigenspace Vj invariant. This then implies that N1 further decomposes
into orthogonal holonomy-invariant subbundles. The next statement follows from Weyl’s completely
reducibility theorem. Thus τ is a constant multiple of the standard holomorphic symplectic (2, 0)-form
on each Vj . �

Corollary 2.4. For any x, y ∈ TpM , (Rx,y)|Kj
has vanishing trace. In particular, the Ricci curvature

of R|Kj vanishes.

Proof. Since τ |Kj
is a holomorphic parallel (2, 0)-form, the restriction of the holonomy action on Kj

satisfies h ∈ SU(2kj) with 2kj = dimC(Kj). On the other hand, Rx,y|Kj
can be obtained as the

derivative of one parameter family h(t) (cf. Lemma 2.2 in [29] and its proof), thus with zero trace. The

final statement is due to that RicR|Kj
(v, v̄) =

∑
`R(v, v̄, Ej` , Ē

j
` ) for v ∈ Γ(Kj) where {Ej`} is a unitary

base of Kj . �

3. Symmetric holonomy systems

Here we work with real numbers and vector bundles over real numbers. To apply the discussion here
to the previous section one can consider the realification of complex bundles. Note that the real part
of a Hermitian metric on a complex bundle is a Riemannian metric on the realification of the complex
bundle.

The concept of holonomy systems was introduced by J. Simons [35] in his intrinsic proof of Berger’s
holonomy theorem for the Riemannian holonomy groups with respect to the Levi-Civita connection.
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The Riemannian holonomy system is a triple S = {V,R, G}, which consists of, a Euclidean space V of
dimension ` (we call it the degree of S) endowed with an inner product 〈·, ·〉 (also denoted by a bilinear
form H), a connected compact subgroup G of SO(`), and an algebraic curvature operator R (defined on
V ) satisfying the 1st Bianchi identity and that Rx,y ∈ g, ∀x, y ∈ V with g ⊂ so(`) being the Lie algebra
of G. To see the relevance we first recall the Ambrose-Singer’s holonomy theorem [22] (see also [29] for
a simple proof of half of the result).

Theorem 3.1 (Ambrose-Singer). For any connection ∇ on a Riemannian vector bundle (E, h), let R
be its curvature. Given any path γ from q to p, let γ also denote the parallel transport along it. Then
{γ(Rq)} generates the holonomy algebra, where γ(Rq) ∈ so(Ep) is defined γ ·

(
Rx,y |Eq

)
· γ−1. Here

x, y ∈ TqM .

In the case that (M, g) is a Hermitian manifold with a CAS structure, with respect to the Chern
connection, which preserves the inner product of the underlying real tangent bundle, for any parallel
invariant subbundle K ⊂ T ′M , one can apply the above to the bundle V = K⊕K. Since ∇R = 0, it is
easy to see that γ(Rq) = R |Vp

. Consequently we have

Proposition 3.2. Let (M, g) be a Hermitian manifold whose Chern connection is Ambrose-Singer. Let
V be as above. Let G be the restricted holonomy group. Then S = (Vp,R, G) is a holonomy system. In
fact it is symmetric.

Proof. The first part is a direct consequence of Theorem 3.1 and the observation that the curvature R
satisfying the first Bianchi identity. The second statement follows from the fact that ∇R = 0. Recall
that a holonomy system is called symmetric if γ(R) = R for any γ ∈ G. �

The following result holds the key of the algebraic aspect of the proof.

Proposition 3.3. Assume that S = {V,R, G} is an irreducible symmetric holonomy system. Then the
Ricci flatness of R implies that R is flat.

Proof. Here we follow the argument in Theorem 3.1 of [29]. First we set up the notations and conventions.
Identify so(n) with ∧2V . Here S2(∧2V ) denotes the symmetric transformations of ∧2V . The S2

B(·)
denotes the subspace satisfying the 1st Bianchi identity.

Define the metric on gl(V ) by

〈A,B〉 + 1

2

∑
i

〈A(ei), B(ei)〉 =
1

2
trace(BtrA)

In particular for A,B ∈ g the above inner product applies. Let P be the projection from ∧2(V ) onto g,
and let T : g→ g be the symmetric isomorphism corresponding to the negative definite bilinear form on
g

(3.1) B(A,A′) + K(A,A′)− 2〈A,A′〉
with K being the Killing form of g (defined as K(A,A′) = trace(adA · adA′)). Namely T is defined by
B(A,A′) = 〈T(A), A′〉. Let J = g⊕ V (orthogonal sum with the inner product of V and 〈A,B〉 on g as
elements in so(n)) and define a Lie algebra structure on J by letting

[A,A′] + [A,A′]; [x, y] + −Rx,y; [A, x] + A(x),∀A,A′ ∈ g, x, y ∈ V.
Since A(R) = 0,∀A ∈ g, together with the first Bianchi identity, it is easy to check that the bracket so
defined satisfies the Jacobi identity, namely J is a Lie algebra. Let B′ be the Killing form of J . It is a
basic result of Lie algebra that B′ is adJ -invariant.

Claim 1: B′|g is given by B defined by (3.1), hence is negative definite. By the definition B′(A,B) =
trace(adA · adB) =

∑n
i=1〈adA · adB(ei), ei〉+

∑
α〈adA · adB(Aα), Aα〉 where {ei} ({Aα}) is an orthonor-

mal frame of V (g respectively). The second summand is K(A,B). By the definition of the Lie bracket
the first summand is −〈B(ei), A(ei)〉 = −2〈A,B〉. We first need the following computational results.

Claim 2: B′(A, x) = 0 for A ∈ g and x ∈ V . Similarly

B′(A, x) = trace(adA · adx) =

n∑
i=1

〈adA · adx(ei), ei〉+
∑
α

〈adA · adx(Aα), Aα〉

where {ei} ({Aα}) is an orthonormal frame of V (g respectively). The first term vanishes since

〈adA · adx(ei), ei〉 = 〈[A,Rx,ei ]g, ei〉 = 0.

For the second term, 〈adA · adx(Aα), Aα〉 = 〈−A(Aα(x)), Aα〉 = 0.
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Claim 3: B′|V = λH, where H(x, y) := 〈x, y〉, and λ 6= 0 if R 6= 0. Since B′|V is adg-invariant, hence
G-invariant. By the irreducibility of G-action on V , it implies that B′(x, y) = λ〈x, y〉 for some λ.

If λ = 0, B′([x, y], [x, y]) = B′(x, [y, [x, y]]) = 0 since [y, [x, y]] ∈ V . Now by Claim 1, which asserts
that B′|g is negative definite, we have that [x, y] = −Rx,y = 0,∀x, y ∈ V . Hence R = 0.

Below we assume that λ 6= 0, otherwise we have proved the result by the above argument. By
Claim 3 we have that 〈[[x, y], z], w〉 = 1

λB
′([[x, y], z], w) = 1

λB
′([x, y], [z, w]), which in turn equals to

1
λB([x, y], [z, w]) by Claim 1. Putting them together we have the equation for x, y, z, w ∈ V

(3.2) − 〈Rx,y z, w〉 = 〈[[x, y], z], w〉 =
1

λ
B([x, y], [z, w]〉 =

1

λ
〈[x, y],T([z, w])〉.

Now by (3.2) the Ricci curvature can be expressed as

RicR(x, x) =

n∑
i=1

〈Rx,ei ei, x〉 =
1

λ

∑
B([x, ei], [x, ei]).

Hence if RicR = 0 it implies that [x, ei] = −Rx,ei = 0 for any ei, x, namely R = 0.
Note that a calculation shows that 〈[[x, y], z], w〉 = −〈Rx,y(z), w〉 = 〈[x, y], (z ∧ w)〉. Hence by the

above (3.2) we have that

〈[x, y], (z ∧ w)〉 =
1

λ
〈[x, y],T([z, w])〉 = − 1

λ
〈[x, y],T(Rz,w)〉.

This proves that Rz,w = −λT−1 · P (z ∧ w), an expression of curvature (due to Kostant) in terms of the
Lie algebraic structure. �

The above proposition is the algebraic counter part of Theorem 8.6 of Vol II of [22].

4. Hermitian manifolds with a CAS structure

Recall that the subbundle N0, which is defined as

N0 := {X ∈ N | T (X,Y ) = 0, ∀ Y ∈ T 1,0M},

was introduced in [30] to capture any Kähler de Rham factor in the universal cover M̃ of a Hermitian

manifold M with a CAS structure. It is easy to see that if there are de Rham Kähler factors in M̃ ,

then the corresponding holomorphic tangent subbundle must be N0. Applying it to the M̃ we have the
following result.

Proposition 4.1. Let (M, g) be a Hermitian manifold with a CAS structure. Let M̃ be its universal

cover. Let N0 be the subbundle of T ′M̃ defined above. Then M̃ splits as M1×M2 with M2 being Kähler
and T ′M2 = N0. Moreover M1 does not admit any Kähler factor.

Proof. This is essentially Theorem 3.6 of [30]. �

By combining Corollary 2.4, Propositions 3.2, 3.3, we get the proof of our main result, Theorem 1.2:

Proof of Theorem 1.2. First split the manifold M̃ into two factors as in the statement. By the proof
of Lemma 2.2 in [29], the splitting of the holonomy action implies that splitting of Rx,y. Applying
Corollary 2.4, Propositions 3.2, 3.3 to the irreducible G-invariant subbundle of T ′M1 we conclude that
the Chern curvature is flat on each irreducible summand, hence is totally flat. Now since M1 has zero
curvature and parallel torsion, we may find global parallel vector fields X1, · · · , Xk with k = dimC(M1)
(which are holomorphic) such that

[Xi, Xj ] = T (Xi, Xj) = T kijXk.

The fact that the torsion is parallel implies that {T kij} are constants. By Lemma 3.1 of [30], they also
satisfy the Jacobi identity in general. Now we can appeal the result of Cartan [13] (pp. 188-192) to
assert that there is a complex Lie group structure on M1. For a modern treatment of the existence of
a complex Lie group structure one can see [15] pages 20-25, Section 3.1 of Ch1 for the existence of Lie
group structure and [28], Theorem on page 212 of Section 11 of Ch IV for details on the existence of
complex Lie group structure. �
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Proof of Corollary 1.3. By Theorem 1.2, the universal cover of M is the product of a complex Lie
groupM1 withM2 which is products of irreducible simply-connected Hermitian symmetric spaces, namely
M2 = Cn1 ×N2 × · · · ×N` with Ni being a non-flat irreducible simply-connected Hermitian symmetric
space. However, the non-flat factor must be of semi-simple type hence have its Ricci curvature being

a nonzero factor of the Kähler metric. Then the assumption implies that M̃ = M1 × Cn1 , which is a
complex Lie group itself. �

The corollary shows that T ′M1 may miss some complex Lie group factors. To capture it let Fp =
{Z ∈ T 1,0

p M |h(Z) = Z,∀h ∈ Gp}, where G is the holonomy group of the Chern connection at p. Recall
the following result from [30].

Proposition 4.2. Let (M, g) be a Hermitian manifold with a CAS structure. Let F = ∪xFx be the
sub-bundle of T 1,0M . Then F is a holomorphic integrable foliation. Moreover, if Z1, · · · , Zr is a parallel
frame of F, then

[Zi, Zj ] = ckijZk

for some constant ckij. In particular, when M is simply-connected, there exists a complex Lie group F

acting almost freely, holomorphically on M such that T 1,0
x (F · x) = Fx.

Theorem 1.2 implies that on M̃ , F = T ′M1 ⊕ Cn1 . The main reason that our argument works is
that for a manifold with CAS structure, at the curvature level, algebraically it is the same as a locally
symmetric space.

We conclude this section by a discussion on Remark 1.4, which says that the naive way of generalizing
AK type theorem from Levi-Civita conneciton to Chern connection would fail, namely, there are examples
of compact locally homogeneous Hermitian manifold whose Chern connection has vanishing (third) Ricci
curvature but is not Chern flat. This illustrates that the CAS assumption in Corollary 1.3 is necessary.
We will give two such examples below.

The first example is some special type of almost abelian manifolds, namely, compact quotients of
(G, J, g), where G is an even-dimensional, connected and simply-connected, unimodular Lie group, J a
left-invariant (integrable) complex structure on G and g a left-invariant metric on G compatible with
J . Let g denote the Lie algebra of G. G is said to be almost abelian if g contains an abelian ideal a of
codimension 1. The Hermitian structures on almost abelian Lie algebras were studied by a number of
authors, and we refer the readers to [8, 12, 16, 17, 27] and the references therein for more information
on this. We will follow the computation in §3 of [20] to serve our purpose here.

A unitary basis {e1, . . . , en} of g1,0 = {x− iJx | x ∈ g} is called admissible if a is spanned by ej + ej ,
i(ej − ej) for 2 ≤ j ≤ n and i(e1 − e1). The structural constants C and D are defined by

[ei, ej ] =
∑
k

Ckijek, [ei, ej ] =
∑
k

(
Di
kj ek −D

j
ki ek

)
.

When e is admissible, the only possibly non-zero components of C and D are

D1
11 = λ ∈ R, D1

i1 = vi ∈ C, Dj
i1 = Aij , Cj1i = −Aji, ∀ 2 ≤ i, j ≤ n.

From the calculation in §3 of [20], we know that for the almost abelian Lie group (G, J, g),

• G is unimodular ⇐⇒ λ+ tr(A) + tr(A) = 0;
• g is Chern flat ⇐⇒ λ = 0, v = 0, and [A,A∗] = 0;

• g has vanishing third Chern Ricci ⇐⇒ λ = 0, v = 0, and tr(A) + tr(A) = 0.

Here A∗ stands for the conjugate transpose of A. With these notations and set-ups, our first example
goes like the following:

For any n ≥ 3, if we choose the (n− 1)× (n− 1) matrix A so that tr(A) + tr(A) = 0 but [A,A∗] 6= 0,
then the metric g would have vanishing third Chern Ricci but is not Chern flat. (Note that the first
Chern Ricci vanishes here, but the second Ricci does not vanish).

Another (simpler) example is the (compact quotients of) nilpotent Lie groups with a left-invariant
Hermitian structure that is balanced and with parallel Bismut torsion. Denote by G the Lie group and
g its Lie algebra. Under some unitary basis e of g1,0 the structure equation takes the form:

(4.1)


dϕi = 0, ∀ 1 ≤ i ≤ r;

dϕα =

r∑
i=1

Yαi ϕi ∧ ϕi, ∀ r + 1 ≤ α ≤ n,

8



where 2n is the real dimension of G, 1 ≤ r < n, ϕ is the coframe dual to e, and Yαi are arbitrary complex
constants such that

∑r
i=1 Yαi = 0 for each α.

When these Yαi are not all zero, the Chern connection is not flat. On the other hand, the metric is
balanced, the first and third Chern Ricci both vanish (but the second Chern Ricci is not identically zero).

To conclude the discussion of this section, let us remark that we do not know any example which will
serve as an negative answer to the following question:

Question 4.3. Let (M, g) be a compact locally homogeneous Hermitian manifold. If the first, second,
and third Chern Ricci all vanish, then must it be Chern flat?

We do not even know the answer to this question for Lie-Hermitian manifolds, namely when the
universal cover of M is a Lie group (not necessarily a complex Lie group) equipped with left-invariant
complex structure and left-invariant metric.

5. Generalized symmetric holonomy systems

In this section we consider the symmetric holonomy system for an affine connection with a torsion.
Suppose now that we have a metric connection ∇ with torsion. For Hermitian manifold we also require
that it satisfies ∇J = 0, where J is the almost complex structure. For the situation that ∇ is Ambrose-
Singer (or invariant under the parallelism), we have that g(R) = R and g(T ) = T for any element g
belonging to the restricted holonomy. Not that T : ∧2TpM → TpM for any given p ∈M .

A generalized symmetric holonomy system is S = {V,R, T,G}, which consists of, a Euclidean space V
of dimension n (we call it the degree of S) endowed with an inner product 〈·, ·〉 (also denoted by a bilinear
form H), a connected compact subgroup G of SO(`), an algebraic curvature operator R : ∧2V → ∧2V
as a linear map, and a linear map T : ∧2V → V , together satisfying

Rx,y ∈ g;(5.1)

S{Rx,y z − T (x, T (y, z))} = 0;(5.2)

S{Rx,T (y,z)} = 0;(5.3)

g(R) = R, g(T ) = T, ∀ g ∈ G, or equivalently A(T ) = A(R) = 0,∀A ∈ g.(5.4)

Here g is the Lie algebra of G, S is the cyclic permutation operation on the positions of x, y, z, the actions
of A on T and R are the ones induced as derivations. Namely, A(T )(x, y) = AT (x, y)−T (Ax, y)−T (x,Ay)
and (A(R))x,y = A · Rx,y −RAx,y −Rx,Ay −Rx,y ·A.

The following result, which is an immediate consequence of (5.2), (5.3) and (5.4), is due to Nomizu
[31].

Theorem 5.1 (Nomizu). Let J = V ⊕ g. Define a Lie algebra structure on J by letting

[A,A′] + [A,A′]; [x, y] + −Rx,y ⊕(−T (x, y)); [A, x] + A(x),∀A,A′ ∈ g, x, y ∈ V.
Then J is a Lie algebra.

From the definitions in the theorem one can easily compute the Lie bracket of [x⊕A, y⊕A′]. Let B′

still denote the Killing form of the Lie algebra J, which is a bilinear form. We also denote the bilinear
form −2〈·, ·〉 + K(·, ·) on g by B(·, ·), which is negative definite. Here K is the Killing form of g which
is nonnegative due to the compactness of G. The results in Section 3 mostly no longer hold for the
generalized symmetric holonomy system. Recall that we endow J with metrics from g ⊂ so(n) and V .
However we still have the following result.

Lemma 5.2. The B′|g is the same as B, namely B′|g = B. In particular B′|g is negative definite. If
we assume additionally that V is irreducible (namely as a G-module), then B′|V (·, ·) = λH(·, ·).

Proof. Direct calculation shows, for an orthonormal frame {ei}ni=1 of V and an orthonormal frame

{Aα}dim(g)
α=1 of g, that

B′(C1, C2) = trace(adC1
· adC2

)

=

n∑
i=1

〈adC1
· adC2

(ei), ei〉+
∑
α

〈adC1
· adC2

(Aα), Aα〉

= −
n∑
i=1

〈C2(ei), C1(ei)〉+K(C1, C2)

= B(C1, C2).
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Here C1, C2 ∈ g are two arbitrary elements. This proves the claimed identity. The last claimed follows
from Schur’s lemma. �

For C ∈ g, x ∈ V , B′(C, x) only vanishes under additional conditions.

Lemma 5.3. B′(C, x) = 2〈T (x, ·), C〉. Here we view T (x, ·) as an endomorphism of V . In particular,
for a Ambrose-Singer connection it vanishes if Rx,y ·T = 0.

Proof. By Ambrose-Singer theorem and its specialization, Lemma 4 of [24] we have that the holonomy
algebra g is generated by

∑
j Rxj ,yj for some xj , yj ∈ V . Assume that we have B′(C, x) = 2〈T (x, ·), C〉.

Writing C =
∑
j Rxj ,yj we have that

B′(C, x) =

n∑
i=1

∑
j

〈T (x, ei),Rxj ,yj ei〉

= −
n∑
i=1

∑
j

〈Rxj ,yj T (x, ei), ei〉

= 0.

This proves the second statement assuming the first. Now we prove the first part, namely the claimed
identity in the lemma. Direct calculation shows that

B′(C, x) =
∑
i

〈adC adx(ei), ei〉+
∑
α

〈adC adx(Aα), Aα〉

= −
∑
i

〈C(T (x, ei)), ei〉 − 〈[C,Rx,ei ], ei〉 −
∑
α

〈C(Aα(x)), Aα〉

=
∑
i

〈T (x, ei), C(ei)〉.

This proves the claimed equation. �

We say R |image(T ) = 0 if Rx,y ·T = 0 and Rx,T (y,z) = 0. Now we prove the following generalization of
Proposition 3.3.

Theorem 5.4. Let S = {V,R, T,G} be a generalized symmetric holonomy system. Assume that it is
irreducible. Assume further that R |image(T ) = 0, and either (i) T (x, ·) is skew-symmetric , or (ii) V is

Hermitian with almost complex structure J and T splits as T : V 1,0×V 1,0 → V 1,0 and T : V 0,1×V 0,1 →
V 0,1 with all other components being zero. Then RicR(x, x) = 0 implies that R = 0.

Proof. Note that B′|V (·, ·) = λH(·, ·). If λ = 0, then B′|V ≡ 0. Observe, by the assumption R |image(T ) =
0, that

[y, [x, y]] = [y,−Rx,y ⊕(−T (x, y))]

= Ry,T (x,y)⊕(Rx,y y + T (y, T (x, y)))

= Rx,y y + T (y, T (x, y)) ∈ V.

Hence from B′([x, y], [x, y]) = B′(x, [y, [x, y]]) = B′(x,Rx,y y + T (y, T (x, y)) = 0 we have that

B′([x, y], [x, y]) = 0.

On the other hand by Lemma 5.3 we also have that

B′([x, y], [x, y]) = B′(Rx,y ⊕T (x, y),Rx,y ⊕T (x, y))

= B′(Rx,y,Rx,y) < 0

unless Rx,y = 0. Here we have used that Lemma 5.3 implies B′((Rx,y, T (x, y)) = 0. This proves the
theorem for the case λ = 0.

Now we assume that λ 6= 0. The first part argument above then shows that

(5.5) 〈Rx,y y, x〉+ 〈T (y, T (x, y)), x〉 =
1

λ
B′(x, [y, [x, y]]) =

1

λ
B′([x, y], [x, y]).
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Now using RicR(x, x) =
∑
〈Rx,ei ei, x〉 we have that

〈T (x, ei), T (x, ei)〉+ RicR(x, x) = 〈T (ei, T (x, ei)), x〉+ RicR(x, x)

=
1

λ

n∑
i=1

B′([x, ei], [x, ei])

=
1

λ

n∑
i=1

B′(Rx,ei ⊕T (x, ei),Rx,ei ⊕T (x, ei))

=
1

λ

n∑
i=1

B(Rx,ei ,Rx,ei) +

n∑
i=1

〈T (x, ei), T (x, ei)〉.

Canceling the same term on the both sides we have RicR(x, x) = 1
λ

∑n
i=1B(Rx,ei ,Rx,ei), which implies

that 1
λ

∑n
i=1B

′(Rx,ei ,Rx,ei) = 0 if RicR = 0. The result then follows from Lemma 5.2, namely that B′|g
is negatively definite. This proves the result for case (i). Case (ii) is similar. This completes the proof
of the theorem. �

6. The Bismut/Gauduchon Ambrose-Singer manifolds

From the discussion in the previous sections, we obtained a complete classification of compact Her-
mitian manifolds that is CAS, namely, whose Chern connection is Ambrose-Singer. Furthermore, we also
know that Chern connection satisfies the Alekseevskĭi-Kimeĺ feĺ d type theorem, namely, a CAS metric
will be flat if it is Ricci flat. It is natural to wonder what happens if we replace the Chern connection
∇ by the Bismut connection ∇b, or more generally by the t-Gauduchon connection ∇(t), which is the
linear combination (1− t

2 )∇+ t
2∇

b where t ∈ R.

Recall that in §1 we called a Hermitian metric BAS if its ∇b is Ambrose-Singer, namely, both the
torsion and curvature of ∇b are parallel with respect to ∇b itself. Similarly, we called a Hermitian metric
t-GAS if its t-Gauduchon connection ∇(t) has parallel torsion and curvature with respect to ∇(t) itself.
We would like to understand the set of all BAS (or more generally, all t-GAS) manifolds, and know in

particular whether or not the Alekseevskĭi-Kimeĺ feĺ d type theorem will hold for ∇b (or ∇(t)).
First let us clarify the meaning of Ricci curvature since we are dealing with general metric connections

now. Recall that the Ricci curvature tensor of a metric connection D on a Riemannian manifold (M, g)
is defined by

(6.1) RicD(x, y) =

m∑
i=1

RD(εi, x, y, εi)

where RD(x, y, z, w) = 〈DxDyz−DyDxz−D[x,y]z, w〉 is the curvature of D, {εi} is a local orthonormal

frame of M , while x, y, z, w are tangent vectors. In general RicD might not be symmetric as D may have
torsion. When (Mn, g) is Hermitian, we may choose the orthonormal frame {ε1, . . . ε2n} so that

√
2εi = ei + ei,

√
2εn+i =

√
−1(ei − ei); i = 1, . . . , n,

where {e1, . . . , en} is a local unitary frame. Plugging into (6.1), we get

(6.2) RicD(x, y) =

n∑
i=1

{RD(ei, x, y, ei) +RD(ei, x, y, ei)}.

Now suppose D is Hermitian, namely, Dg = 0 and DJ = 0. Then RD(∗, ∗, ei, ej) = 0. So for any type
(1, 0) tangent vectors X, Y we have

(6.3) RicD(X,Y ) =

n∑
i=1

RD(ei, X, Y, ei), RicD(X,Y ) =

n∑
i=1

RD(ei, X, Y, ei).

This is often called the third Ricci curvature of the Hermitian connection D, also denoted as RicD(3),
while the first and second Ricci are defined respectively by

RicD(1)(x, y) =

n∑
i=1

RD(x, y, ei, ei), RicD(2)(X,Y ) =

n∑
i=1

RD(ei, ei, X, Y ).

For the Bismut connection ∇b we will denote them as Ricb(i), i = 1, 2, 3. In §1, we raised the following
(= Conjecture 1.5):
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Conjecture 6.1. Suppose (Mn, g) is a compact Hermitian manifold that is BAS. Assume that the first
and third Bismut Ricci both vanish. Then it must be Bismut flat.

In complex dimension 2, the answer to Conjecture 6.1 is positive. As a direct consequence of [51,
Theorem 2], we have the following

Proposition 6.2. A compact, non-Kähler Hermitian surface (M2, g) is BAS if and only if it is Vaisman
with constant scalar curvature.

Recall that a Hermitian manifold is said to be Vaisman if it is locally conformally Kähler and its
Lee form is parallel under the Levi-Civita connection. Compact non-Kähler Vaisman surfaces are fully
classified by Belgun in the beautiful work [10]. They are either non-Kähler properly elliptic surfaces, or
Kodaira surfaces, or Class 1 or elliptic Hopf surfaces.

We remark that for a non-Kähler Vaisman surface, the scalar curvature of Levi-Civita or Chern or
Bismut connection (or the trace of first or second Ricci of Chern or Bismut connection) all differ by
constants. So the word ‘constant scalar curvature’ here simply means any one of them (hence all of
them) is constant. Also, such a surface always admits local unitary frame {e1, e2} under which the only
possibly non-zero component of the Bismut curvature tensor is Rb11̄11̄. So clearly if it is Bismut Ricci flat
(or equivalently Bismut scalar flat) then it will be Bismut flat:

Corollary 6.3. If a compact BAS surface is Bismut Ricci flat, then it is Bismut flat.

Here we could drop the adjective ‘non-Kähler’ since any locally Hermitian symmetric space would be
flat if Ricci flat. Note that the only compact, non-Kähler Bismut flat surfaces are the isosceles Hopf
surfaces ([46]). The above statement confirms Conjecture 6.1 in the 2-dimensional case.

Now let us move on to higher dimensions. Recall that Bismut torsion-parallel (or BTP for short)
manifolds are Hermitian manifolds whose Bismut connection has parallel torsion. Such manifolds form
a rather interesting class, and contains both our BAS manifolds and the BKL (Bismut Kähler-like)
manifolds. Compact, non-Kähler BTP manifolds in dimension 3 were characterized in [53], from which
we could pick out those with vanishing first and third Bismut Ricci, and they all turn out to be Bismut
flat, proving Conjecture 6.1 in the n = 3 case.

Recall that the B-tensor of a Hermitian manifold (Mn, g) is defined by Bij̄ =
∑n
r,s=1 T

j
rsT

i
rs under

any unitary frame e, where T jik are components of the Chern torsion. Then σB =
√
−1
∑n
i,j=1Bij̄ϕi∧ϕj

is a globally defined non-negative (1, 1)-form on M . Here ϕ is the coframe dual to e. Also recall that
the (first) Chern Ricci form is the global (1, 1)-form given by

ρ =
√
−1

n∑
i,j=1

Ric
(1)

ij̄
ϕi ∧ ϕj =

√
−1∂∂ logωn,

where ω is the Kähler form of g. The following technical lemma is useful in picking out Bismut Ricci
flat BAS metrics:

Lemma 6.4. Suppose (Mn, g) is a BTP manifold that is (third) Bismut Ricci flat. Then the (first)
Chern Ricci form is equal to σB.

Proof. Under any local unitary frame e, let us denote by T jik, Rij̄k ¯̀, and Rb
ij̄k ¯̀ the components of the

Chern torsion, Chern curvature, and Bismut curvature. Here we used the convention T (ei, ek) =
∑
j T

j
ikej

so our T jik equals twice of that in [53]. Under the BTP assumption, we have ∇bT = 0, so by formula
(3.2) and (3.4) in Lemma 3.1 of [53], we get the following

Rbij̄k ¯̀−Rbkj̄i¯̀ = −T rikT rj` − T
j
irT

k
`r − T

`
krT

i
jr + T `irT

k
jr + T jkrT

i
`r(6.4)

Rbij̄k ¯̀−Rij̄k ¯̀ = −T rikT rj` − T
j
irT

k
`r − T

`
krT

i
jr + T `irT

k
jr(6.5)

for any 1 ≤ i, j, k, ` ≤ n, where r is summed from 1 to n on the right hand side of the above two

equations. Taking the difference, we get Rij̄k ¯̀− Rbkj̄i¯̀ = T jkrT
i
`r. Letting k = ` and sum it up, we get

Ric(1) − Ricb(3) = B. So ρ = σB when Ricb(3) = 0. This proves the lemma. �

In particular, we have dσB = 0 since dρ = 0, which gives us the following:

Lemma 6.5. Let (Mn, g) be a (third) Bismut Ricci flat BTP manifold. Then under any local unitary
frame it holds that

(6.6)
∑
r

(
T jrkBir̄ + T jirBkr̄ − T

r
ikBrj̄

)
= 0, ∀ 1 ≤ i, j, k,≤ n.
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In particular, M has non-negative first Chern class but is not Fano.

Proof. Equation (6.6) is a direct consequence of the structure equations and the fact that dσB = 0, so
we just need to prove the ‘not Fano’ part. Denote by b1 ≥ · · · ≥ bn ≥ 0 the eigenvalues of B. Under the
BTP assumption, we have ∇bB = 0, so each bi is a global constant. If we choose e so that B is diagonal,
then (6.6) becomes

(6.7)
(
bi + bk − bj

)
T jik = 0, ∀ 1 ≤ i, j, k,≤ n.

We claim that bn must be zero. Assume otherwise, by letting j = n in (6.7), we get Tnik = 0 for any i, k,
which leads to bn = Bnn̄ =

∑
r,s |Tnrs|2 = 0, a contradiction. So B 6> 0 thus M is not Fano. �

Now let us prove the following statement (= Proposition 1.6):

Proposition 6.6. Any complete, non-Kähler BAS manifold with vanishing first and third Bismut Ricci
must be non-balanced. Moreover, if n ≤ 4 it must be Bismut flat.

Proof. Let (Mn, g) be a complete BAS manifold with vanishing first and third Bismut Ricci. Any
Kähler de Rham factor will be Hermitian symmetric and Ricci flat hence flat, so we may assume that
M is without any Kähler de Rham factor. Recall that the φ-tensor is defined by φji =

∑
r T

j
irηr under

any unitary frame, where η is the Gauduchon torsion 1-form. By formula (6.4), (6.5) in the proof of

Lemma 6.4, we see that vanishing of first and third Bismut Ricci imply that Ric(1) = B and B = φ+φ∗.
Since the trace of the B tensor is equal to the square norm of the Chern torsion, which does not vanish
identically as g is not Kähler, so we know that φ 6≡ 0 hence η 6≡ 0, namely, g is not balanced.

By [53, Proposition 5.2], around any given point in M there always exists an admissible frame, which
is a local unitary frame e under which

η1 = · · · = ηn−1 = 0, ηn = λ > 0, T jin = δijai, ∀ 1 ≤ i, j ≤ n,
where an = 0 and a1 + · · ·+ an−1 = λ. Since η, B, φ are all parallel under ∇b, the number λ = |η| > 0
and each ai are global constants on M , as these λai are eigenvalues of φ. Denote by θb, Θb the matrix
of connection and curvature of the Bismut connection ∇b under an admissible frame e. Since en is lined
up with η, we know that ∇ben = 0 thus θbn∗ = 0 and Θb

n∗ = 0. By ∇bT = 0, we get

(6.8) 0 = d(δijai) = dT jin =
∑
r

(
T jrnθ

b
ir + T jirθ

b
nr − T rinθbrj

)
= (aj − ai) θbij .

Write bi = Bīi =
∑
r,s |T irs|2, we have

(6.9) bi = λ(ai + ai) = 2|ai|2 + 2
∑

1≤j<k<n

|T ijk|2 = 2|ai|2 + 2δi.

The second part follows from the following claim and establishment of the assumption in the claim
afterwards.

Claim: If there exists an admissible frame under which θb is diagonal, and n ≤ 4, then Rb = 0.
To prove the claim, note that by [53, Theorem 1.1] any BTP manifold always satisfies the symmetry

condition Rb
ij̄k ¯̀ = Rb

k ¯̀ij̄
, so the only possibly non-trivial Bismut curvature components are given by

Θb
ii =

∑
k<n

Sik ϕk ∧ ϕk, ∀ i < n,

where S is a symmetric real (n− 1)× (n− 1) matrix. The vanishing of the first and third Bismut Ricci
implies that the diagonal entries of S vanish, also the sum of each row vanishes. When n ≤ 4, this will
force S = 0, hence Rb = 0. This establishes the Claim.

Now we prove the assumption of the Claim holds when n ≤ 4. Let us assume n = 4 (the n = 3 case
is analogous but much easier). When {a1, a2, a3} are all distinct, by (6.8) we know that θb is diagonal,
so by Claim 1 we get Rb = 0. If a1 = a2 = a3, then a1 = λ

3 as their sum needs to be λ, hence

b1 = b2 = b3 = 2
3λ

2. On the other hand, by (6.7) we know that T jik = 0 for any 1 ≤ i, j, k ≤ 3, thus

(6.9) would yield 2
3λ

2 = 2
9λ

2 + 0, which is a contradiction. We are therefore left with the case when

a1 = a2 6= a3. By (6.8), we know that θb is block-diagonal, with a 2× 2 block on the upper left corner.
Let us write a1 = a and b1 = b, then by (6.9) we get

b = 2λRe(a) = 2|a|2 + 2δ;

b3 = 2λRe(a3) = 2|a3|2 + 2δ3;

δ = |T 1
12|2 + |T 1

13|2 + |T 1
23|2 = |T 2

12|2 + |T 2
13|2 + |T 2

23|2;

δ3 = |T 3
12|2 + |T 3

13|2 + |T 3
23|2.
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Since a3 = λ− 2a and b3 = 2λ2 − 2b, the first two equations above give

(6.10) b = 2λRe(a) = 2|a|2 + 2δ = 4|a|2 + δ3.

If a = 0, then b = 0 and δ = δ3 = 0, so T i∗∗ = T ∗i∗ = 0 for i = 1, 2. This means that E = span{e1, e2} is
contained in the kernel of T , thus is parallel under the Levi-Civita connection. So E gives us a Kähler
de Rham factor, contradicting with our assumption at the beginning of the proof. Therefore we may
assume that a 6= 0, or equivalently, b > 0.

If b < λ2, or equivalently, if b3 > 0, then by (6.7) we know that the only possibly non-zero T jik for
1 ≤ i, j, k ≤ 3 is T 3

12. In particular, δ = 0 and δ3 = |T 3
12|2. By (6.10), δ3 = −2|a|2 < 0 which is impossible.

Now assume that b = λ2. The three eigenvalues of the B tensors (we always ignore the direction

en = e4 here) are {λ2, λ2, 0}. In this case b3 = 0, hence a3 = 0 and a = λ
2 , δ3 = 0, δ = λ2

4 . By (6.7) we

know that the only possibly non-zero T jik for 1 ≤ i, j, k ≤ 3 are T ji3 = Pij̄ , where 1 ≤ i, j ≤ 2. The trace

of the 2 × 2 matrix P is zero, as T 1
13 + T 2

23 = η3 = 0. Also, by (6.10) we know that the sum of norm

square of each column of P is equal to δ = λ2

4 . In particular, the two off diagonal elements of P have
equal norm. Let us write

P =

[
x y
ρy −x

]
,

where |ρ| = 1 and |x|2 + |y|2 = λ2

4 . Note that for any unitary change of {e1, e2}, the new frame

{ẽ1, ẽ2, e3, e4} is still admissible, and P is changed to P̃ = UPU∗ where U is the U(2)-valued function
changing {e1, e2} to {ẽ1, ẽ2}. If y 6= 0, then in a small neighborhood we may chose U so that the upper

right entry ỹ of P̃ is zero. The lower left entry of P̃ is then zero as P̃ is again tracefree and with equal sum
of norm squre for each column. In other words, by performing a unitary change of {e1, e2} if necessary,
then under the new admissble frame we may assume that P is diagonal, with |T 1

13| = |x| = λ
2 being a

global constant. Replace e3 by ρ3e3 for a suitable function with |ρ3| = 1, we may further assume that
T 1

13 = |T 1
13|, hence is a global positive constant. In summary, we may choose admissble frame so that the

only non-zero torsion components are

T 1
14 = T 2

24 = a, T 1
13 = −T 2

23 = a, a =
λ

2
.

We already know that θb is block diagonal, with blacks of size 2, 1, 1, and θb44 = 0. Since ∇bT = 0, we
have

0 = dT 1
13 =

∑
r

(
T 1
r3θ

b
1r + T 1

1rθ
b
3r − T r13θ

b
r1

)
= T 1

13θ
b
33,

hence θb33 = 0. In other words, the fixing of the gauge T 1
13 = |T 1

13| > 0 made our admissible frame e to
satisfy ∇be3 = 0. Similarly, by T 2

13 = 0, we have

0 = dT 2
13 =

∑
r

(
T 2
r3θ

b
1r + T 2

1rθ
b
3r − T r13θ

b
r2

)
= (T 2

23 − T 1
13)θb12 = −2T 1

13θ
b
12,

which implies that θb12 = 0, therefore θb is diagonal. Hence by the Claim we get Rb = 0. This completes
the proof of Proposition 6.6, which is Proposition 1.6. �

The above proof of the n = 4 case of Conjecture 6.1 is basically by brute force, which relies heavily
on the relatively small dimension.

Recall that a Hermitian manifold is said to be Bismut Kähler-like (or BKL for short, see [7] and [48]),
if the Bismut curvature tensor Rb obeys all the Kähler symmetries: Rbxyzw̄ = 0 and Rbxȳzw̄ = Rbzȳxw̄ for
any type (1, 0) tangent vectors x, y, z, w. When n ≥ 2, there are examples of non-Kähler manifolds which
are Bismut Kähler-like, and such metrics were classified in complex dimensions n ≤ 5 ([50, 51, 54]). By
the main result of [51], the BKL condition is equivalent to BTP plus pluriclosedness. (On the other
hand, BKL and BAS are two sets that neither one is contained in the other, although they are both
contained in the BTP set).

Now let us prove the following proposition stated in the introduction (= Proposition 1.7), which is a
special case of [54, Theorem 3]. Here we give an alternative proof as an application of Proposition 3.3
(or the more general version Theorem 5.4):

Proposition 6.7. Let (Mn, g) be a complete Hermitian manifold whose Bismut connection is Ambrose-
Singer (BAS) and with vanishing first Bismut Ricci curvature. If g is BKL, then g is Bismut flat.
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Proof. Fix any p ∈ M and let V be the tangent space of M at p. Note that the Bismut Kähler-like
assumption guarantees that Rb obeys the first Bianchi identity, so the Bismut connection ∇b gives a
holonomy system, which is clearly a symmetric one. In order to apply Proposition 3.3, we need to verify
that that the Ricci curvature vanishes for each irreducible component. Decompose the tangent bundle
into subbundles where the Bismut holonomy group acts irreducibly. Writing in complex frames, say
T 1,0M = ⊕rj=1Ej , then the Bismut curvature form Θb is block-diagonal:

Θb =

 Θb
1

. . .

Θb
r

 , Θb
j = (Θb

ik), ei, ek ∈ Ej .

Since ∇b is assumed to be Kähler-like, the entries of Θb
j are all combinations of ϕiϕk for e1, ek ∈ Ej only.

In particular, tr(Θb) = 0 if and only if tr(Θb
j) = 0 for each j. So if we assume that the Bismut curvature

has vanishing Ricci, then each irreducible component will also have vanishing Ricci, thus one can apply
Proposition 3.3 to conclude that the curvature vanishes. This completes the proof. Note that since the
curvature is assumed to be parallel, so any Kähler de Rham factor will be locally Hermitian symmetric,
hence it will be flat if it is Ricci flat. �

Recall that Bismut flat manifolds were fully classified [46]. They are quotients of Samelson spaces,
namely, Lie groups with bi-invariant metrics and compatible left-invariant complex structures. Hermitian
metrics with vanishing first Bismut Ricci are said to be Calabi-Yau with torsion (or CYT in short) in
the literature. It is equivalent to the condition when the restricted holonomy group of ∇b is contained
in SU(n).

An interesting question closely related to Conjecture 6.1 is the following one raised by Garcia-
Fernández and Streets [18, Question 3.58]:

Question 6.8 (Garcia-Fernández and Streets). Given a homogeneous Riemannian manifold (M, g) with
an invariant 3-form H, denote by ∇H the metric connection with totally skew-symmetric torsion H. If
∇H has vanishing Ricci, then must it be flat?

Such a (g,H) is called a Bismut Ricci Flat pair, or a BRF pair in short. This happens when and only
when H is harmonic and the Ricci curvature Ricg of the Levi-Civita connection ∇g is given by

Ricg(x, y) =
1

4
〈ιxH, ιyH〉

for any tangent vector x, y, where ιx stands for contraction. This concept is important in generalized
Riemannian geometry which corresponds to special types of generalized Einstein structures.

Garcia-Fernández and Streets answered the question positively for real dimension 3 in (a special case
of) [18, Proposition 3.55]. In [32] and [33], Podestà and Raffero investigated the question and answered
it positively in (real) dimension 4, but in dimension 5 or higher, they constructed counterexamples. To
be more precise, in [32] they constructed an explicit sequence Mp,q of compact homogeneous 5-manifolds
with invariant closed 3-form H so that ∇H is Ricci flat but not flat. Here p and q are any positive
integers that are relatively prime.

Note that Question 6.8 is closely related to Conjecture 6.1 but different. The latter assumes the
manifold to be Hermitian and the Bismut connection to be Ambrose-Singer, but it does not require the
torsion 3-form to be closed. It would be interesting to understand all BRF pairs, and in particular all
BRF pairs where ∇H is also Ambrose-Singer.

Next we consider t-GAS manifolds: compact Hermitian manifolds whose t-Gauduchon connection ∇(t)

is Ambrose-Singer (i.e., having parallel torsion and curvature). Assume t 6= 0, 2. Let us give a couple of
quick remarks. The first is that there are non-Kähler (hence not ∇(t)-flat by the theorem of Lafuente
and Stanfield [26]) such manifolds. The simplest example would be any compact quotient of a complex
semi-simple Lie group. Such a manifold is actually t-GAS for any t ∈ R. The second remark is that, for
any t 6= 2, a compact t-GAS manifold is always balanced:

Lemma 6.9. Let (Mn, g) be a compact Hermitian manifold that is t-GAS for some t 6= 2. Then g is
balanced.

Proof. Under any local unitary frame e, let us denote by θ(t) the matrix of the t-Gauduchon connection
∇(t), and write θ(0) = θ for the Chern connection. Then θ(t) = θ + t

2γ where γ′ij =
∑
k T

j
ikϕk and

γ = γ′ − tγ′. Here as before we denoted by ϕ the coframe dual to e, and by T jik the components of the

Chern torsion under e, namely, T (ei, ek) =
∑
j T

j
ikej . Denote by η =

∑
i ηiϕi the Gauduchon torsion
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1-form, defined by ηi =
∑
k T

k
ki. Then one has ∂(ωn−1) = −η ∧ωn−1, where ω =

√
−1
∑
k ϕk ∧ϕk is the

Kähler form of g.
The structure equation is dϕ = − tθ∧ϕ+ τ , where τ = 1

2
tγ′∧ϕ is the column vector of Chern torsion.

For any fixed p ∈ M , let us choose our local unitary frame e so that θ(t) vanishes at p. Then at p we

have θ = − t
2γ, thus by the structure equation we know that ∂ϕr = t

2

∑
i,j T

j
ri ϕi ∧ϕj at p. We compute

that

∂η =
∑
i,j

{−ηi,j +
t

2

∑
r

ηrT irj}ϕi ∧ ϕj ,

where the index after comma stands for covariant derivative with respect to ∇(t). From this we get

n
√
−1 ∂η ∧ ωn−1 = −

(∑
i

ηi,i +
t

2
|η|2
)
ωn,

where |η|2 =
∑
i |ηi|2. Similarly, n

√
−1 η ∧ η ∧ ωn−1 = |η|2ωn. On the other hand,

∂∂(ωn−1) = ∂(η ∧ ωn−1) = (∂η + η ∧ η) ∧ ωn−1 =

√
−1

n
{
∑
i

ηi,i + (
t

2
− 1)|η|2}ωn.

When the metric is t-GAS, we have ∇(t)T = 0 hence ηi,j = 0. Integrating the last equation above over

the compact manifold M , we get ( t2 − 1)
∫
M
|η|2ωn = 0. Hence for any t 6= 2 we would have η = 0, which

means that g is balanced. �

Denote by T , R the torsion and curvature of the Chern connection ∇, and the components of T under
a unitary frame e are given by T (ei, ek) =

∑
j T

j
ikej . Denote by R(t) the curvature of the t-Gauduchon

connection ∇(t). We have the following

Lemma 6.10. Let (Mn, g) be a Hermitian manifold. Then under any local unitary frame e it holds:

T `ik,j̄ +Rij̄k ¯̀−Rkj̄i¯̀ +
t

2

∑
r

{T `irT kjr − T
`
krT

i
jr − T

r
ikT

r
j`} = 0(6.11)

R
(t)

ij̄k ¯̀−Rij̄k ¯̀−
t

2
{T `ik,j̄ + T k

j`,̄i
}+

t2

4

∑
r

{T jirT k`r + T `krT
i
jr + T rikT

r
j` − T

`
irT

k
jr} = 0(6.12)

for any 1 ≤ i, j, k, ` ≤ n, where index after comma stands for covariant derivative with respect to ∇(t).

Proof. Let θ, θ(t), γ , τ be as in the proof of Lemma 6.9. Denote by Θ, Θ(t) the matrix of Chern curvature
and t-Gauduchon curvature, respectively. We have θ(t) = θ + t

2γ, and tγ′ ∧ ϕ = 2τ . Take the exterior
differential on the structure equation dϕ = − tθ ∧ ϕ+ τ , we get the first Bianchi identity:

(6.13) dτ = − tθ ∧ τ + tΘ ∧ ϕ.
Fix any pointp ∈ M . Choose the local unitary frame e near p so that θ(t)|p = 0. Then at p we have
θ = − t

2γ, hence

∂ϕ = (1− t)τ =
1

2
(1− t) tγ′ ∧ ϕ and ∂ϕ = − t

2
γ′ ∧ ϕ at p.

Now take the (2, 1)-part in (6.13), at p we have∑
k

{∂γ′k` +
t

2

∑
r

(
γ′`r ∧ γ′kr + γ′r` ∧ γ′rk

)
+ 2Θk`} ∧ ϕk = 0

for any 1 ≤ ` ≤ n. This leads us to the identity (6.11). On the other hand, by definition we have
Θ = dθ − θ ∧ θ and Θ(t) = dθ(t) − θ(t) ∧ θ(t). So at p we get

(Θ(t))1,1 −Θ =
t

2
{∂γ′ − ∂ tγ′} − t2

4
{γ′ ∧ tγ′ + tγ′ ∧ γ′}.

This leads to the identity (6.12), and the lemma is proved. �

Proof of Proposition 1.9. Suppose t 6= 0, 2 and (Mn, g) is a compact t-GAS manifold with vanishing
first and third t-Gauduchon Ricci. By Lemma 6.9 we know that g is balanced. For 1 ≤ i ≤ 3, denote
by Ric(t)(i) the i-th Ricci of ∇(t), and by Ric(i) the i-th Chern Ricci. Since η = 0 and Ric(t)(1) = 0, by
letting k = ` and sum up in (6.12), we get Ric(1) = 0. Similarly, since η = 0 and Ric(t)(3) = 0, by letting

i = ` and sum up in (6.12), we get Ric(3) = t2

4 B, where Bkj̄ =
∑
r,s T

j
rsT

k
rs. Now if we let k = ` and sum

up in (6.11), we get Ric(1) −Ric(3) = 0. Putting these together, we get B = 0, hence tr(B) = |T |2 = 0.
Therefore T = 0 and g is Kähler. This completes the proof of Proposition 1.9. �
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Note that if we drop the assumption of Ric(t)(1) = 0 in Proposition 1.9, then we only get Ric(1) = t2

4 B.

This implies that the global (1, 1)-form σB =
√
−1
∑
i,j Bij̄ϕi∧ϕj is equal to a positive constant multiple

of the first Chern Ricci form, hence is d-closed. Since ∇(t)B = 0, the eigenvalues of B are all constants.
Choose e so that B is diagonal, then by dσB = 0 we get

(Bīi +Bkk̄ −Bjj̄)T
j
ik = 0 ∀ 1 ≤ i, j, k ≤ n.

While this is certainly highly restrictive, we do not know how to proceed from here to prove that g
must be Kähler, so we added the assumption that the first t-Gauduchon Ricci also vanishes. One could
certainly replace that by the vanishing of the second t-Gauduchon Ricci, or simply the vanishing of the
trace of either of them, namely, the vanishing of the first (= second) t-Gauduchon scalar curvature.
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