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Abstract

In this short note, as a simple application of the strong result proved
recently by Böhm and Wilking, we give a classification on closed manifolds
with 2-nonnegative curvature operator. Moreover, by the new invariant cone
constructions of Böhm and Wilking, we show that any complete Riemannian
manifold (with dimension ≥ 3) whose curvature operator is bounded and

satisfies the pinching condition R ≥ δ
tr(R)

2n(n−1)
I > 0, for some δ > 0, must

be compact. This provides an intrinsic analogue of a result of Hamilton on
convex hypersurfaces.

1. Introduction

Let (M, g) be a Riemannian manifold. The curvature operator of (M, g) lies
in the subspace S2

B(∧2TM) of S2(∧2TM) cut out by the Bianchi identity. The
decomposition S2

B(∧2TM) = 〈I〉⊕〈Ric0〉⊕〈W〉 splits the space of algebraic curvature
operators into O(n)-invariant orthogonal irreducible subspaces. For an orthonormal
basis φα (say φα = ei ∧ ej) of ∧2TM (which can be identified with so(n)), the Lie
bracket is given in terms of

[φα, φβ ] = cαβγφγ .

It is easy to check, by simple linear algebra, that 〈[φ, ψ], ω〉 = −〈[ω, ψ], φ〉. Here
〈A, B〉 = − 1

2
tr(AB). This immediately implies that cαβγ is anti-symmetric. If

A, B ∈ S2(∧2TM) one can define

(A#B)αβ =
1

2
cαγηcβδθAγδBηθ.

It is easy to see that A#B is symmetric too. Also from the anti-symmetry of cαβγ

A#B = B#A.
In [BW], a remarkable algebraic identity was proved on how a linear transforma-

tion of S2
B(∧2TM) changes the quadratic form Q(R) = R2 +R#. Böhm and Wilking

then constructed a continuous pinching family of invariant closed convex cones. Using
this construction they confirmed a conjecture of Hamilton stating that on a compact
manifold the normalized Ricci flow evolves a Riemannian metric with 2-positive cur-
vature operator to a limit metric with constant sectional curvature. Hence it gives a
complete topological classification of compact manifolds with positive 2-positive cur-
vature operator. In this short notes, based on the strong result and the techniques
of [BW], we give the classification for manifolds with 2-nonnegative curvature oper-
ators and an application of their invariant cone constructions to the compactness of
Riemannian manifolds with pinching curvature operator.
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2. A strong maximum principle

Let (M, g(t)) be a complete solution to Ricci flow such that there exists a constant
A and the curvature tensor of g(t) satisfies |Rijkl|2(x, t) ≤ A, for all (x, t) ∈ M×[0, T ].
In [H1], Hamilton proved that under the evolving normal frame the curvature tensor
satisfies the following evolution equation.

Proposition 2.1 (Hamilton).

(2.1)

„
∂

∂t
−∆

«
R = 2

“
R2 + R#

”

where R# = R#R.

The following was observed for compact manifolds in [Chen, H3]. We spell out
the argument for the noncompact case for the sake of the completeness.

Proposition 2.2. The convex cone of 2-nonnegative curvature operator is pre-
served under the Ricci flow.

Proof. Let I be the identity of S2
B(∧2TM), which can be identified with the in-

duced metric on ∧2TM (as a section of ∧2TM⊗∧2TM). We also denote the identity
map of TM by id. With respect to the evolving normal frame we have that ∇ I = 0
and ∂

∂t
I = 0. Let ψ(x, t) > 0 be the fast growth function constructed in Lemma

1.1 of [NT1] satisfying ∂
∂t

ψ − ∆ψ ≥ C1ψ. Here C1 can be chosen as arbitrarily

large as we wish. We shall consider R̃ = R + εψ I and show that R̃ is 2-positive
for every (sufficiently small) ε. If not by the boundedness of R and growth of ψ we

know that it can only fail somewhere finite. Assume that t0 is the first time R̃ fails
to be 2-positive and it happens at some point x0. If we choose orthonormal basis
ωα (it may not be in the form of ei ∧ ej as φα) such that R̃ is diagonal (so is R)

with eigenvalue µ1 ≤ µ2 ≤ · · · ≤ µN , where N = n(n−1)
2

. Parallel translate ωα to a

neighborhood of (x0, t0), and let R̃αα = 〈R(ωα), ωα〉 then at (x0, t0) we have, by the
maximum principle, that

0 ≥
„

∂

∂t
−∆

«“
R̃11 + R̃22

”

≥ (R2 + R#)11 + (R2 + R#)22 + 2εC1ψ

= (R̃2 + R̃#)11 + (R̃2 + R̃#)22 + 2εC1ψ

+
“
R2 + R# − R̃2 − R̃#

”
11

+
“
R2 + R# − R̃2 − R̃#

”
22

= µ2
1 + µ2

2 +
X

(c2
1βγ + c2

2βγ)µβµγ + 2εC1ψ

−εψ
`
(2Ric∧ id+(n− 1)εψ I)11 + (2Ric∧ id+(n− 1)εψ I)22

´
.

Here in the last equation above we have used Lemma 2.1 of [BW], which asserts that
R + R#I = Ric∧ id (the use is not really necessary). Since µ1 + µ2 ≥ 0 and µγ ≥ 0
for all γ ≥ 2,X

(c2
1βγ + c2

2βγ)µβµγ = 2
X

γ≥3

(c2
12γ + c2

21γ)(µ1 + µ2)µγ +
X

β,γ≥3

(c2
1βγ + c2

2βγ)µβµγ ≥ 0.

Notice also that at (x0, t0) we have that µ11+µ22 = 0, which implies that R11+R22 =
−2εψ, then 2εψ(x0, t0) ≤ 2A. Hence at (x0, t0) we have that

0 ≥
„

∂

∂t
−∆

«“
R̃11 + R̃22

”

≥ µ2
1 + µ2

2 + 2εC1ψ − 200nAεψ.(2.2)

This is a contradiction if we choose C1 > 100nA. q.e.d.
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By choosing the barrier function more carefully as in [NT2, N1] (see for example
Theorem 2.1 of [N1]), we can have the following strong maximum principle.

Corollary 2.3. Assume that R(g(0)) is 2-nonnegative and 2-positive somewhere.
Then there exists f(x, 0) ≥ 1

2
(µ1 + µ2)(x, 0), satisfies f(x, t) > 0 for t > 0 and

(µ1 + µ2) (x, t) ≥ f(x, t).

In particular, if R(g(0)) is 2-nonnegative and (µ1 + µ2)(x0, t0) = 0 for some t0 ≥ 0,
then (µ1 + µ2)(x, t) ≡ 0 for all (x, t) with t ≤ t0. Moreover, µ1(x, t) = µ2(x, t) = 0
for all (x, t) with t ≤ t0 and

N2(x, t) = span{ω1, ω2}
is a distribution on M which is invariant under the parallel translation. In particular,
(M, g(t)), for t ≤ t0, has nonnegative curvature operator.

Proof. For the existence of f and the lower estimate of µ1 + µ2 please see [NT2],
Theorem 2.1. If µ1 + µ2 achieves its minimum at (x0, t0), we can deduce from the
lower estimate that (µ1 + µ2)(x, t) ≡ 0 for all (x, t) with t < t0, (which implies that
the equality also holds at t = t0 by the continuity). Apply (2.2) with ε = 0, we can
conclude that µi(x, t) ≡ 0 for i = 1, 2. Hence the curvature operator R ≥ 0. Please
see Corollary 2.1 of [NT2] for the details on the part that N2(x, t) is parallel. q.e.d.

The above result implies the following classification of closed 2-nonnegative man-
ifolds.

Corollary 2.4. Assume that R(g(0)) is 2-nonnegative. Then for t > 0, either
the curvature operator R(g(t)) is 2-positive, or R(g(t)) ≥ 0. Hence Suppose (Mn, g0)
is a closed Riemannian manifold with 2-nonnegative curvature operator. Let g̃ (t) be

the lift to the universal cover M̃ of the solution g (t) to the Ricci flow with g (0) = g0.

Then for any t > 0 we have either
“
M̃n, g̃ (t)

”
is a closed manifold with 2-positive

curvature operator or it is isometric to the product of the following:

1) Euclidean space,
2) closed symmetric space,
3) closed Riemannian manifold with positive curvature operator,
4) closed Kähler manifold with positive curvature operator on real (1, 1)-forms.

Proof. It follows from the above corollary and Hamilton’s classification result on
the solutions with nonnegative curvature operator. See for example [CLN], Theorem
7.34. q.e.d.

Topologically, it is now known, by [BW], that simply-connected 2-positive man-
ifolds is sphere, and the Kähler manifold in the last case is biholomorphic to the
complex projective space by the earlier result of Mori-Siu-Yau [Zh]. The fact that
the curvature operator of the evolving metrics becomes either 2-positive or nonneg-
ative has been observed in [Chen]. However, in [Chen] there is no clear statement
of the strong maximum principle, namely Corollary 2.3, on which the observation
relies. If evoking Theorem 2.3 of [N1], the splitting result on solutions of Ricci flow
on complete Riemannian manifold with nonnegative curvature operator, we can write
a similar statement even when M is not assume to be compact. However, in this case
the Euclidean factor is only topological (not isometric). Also we do not know if a
complete noncompact 2-positive Riemannian manifold is diffeomorphic to Rn or not.



4 LEI NI & BAOQIANG WU

3. Manifolds with pinched curvature

In [H2] Hamilton proved that any convex hypersurface (with dimension ≥ 3) in

Euclidean space with second fundamental form hij ≥ δ tr(h)
n

id must be compact. In
[CZ], using the pre-established estimates of [Hu] and [Sh2], Chen and Zhu proved
the following weak version of above-mentioned Hamilton’s result in terms of curvature
operators. Namely, they proved that if a complete Riemannian manifold (Mn, g) with
bounded and (ε, δn)- pinched curvature operator (with n ≥ 3) in the sense that

|RW|2 + |RRic0 |2 ≤ δn(1− ε)2|RI |2 = δn(1− ε)2
2

n(n− 1)
Scal(R)2

for ε > 0, δ3 > 0, δ4 = 1
5
, δ5 = 1

10
and δn = 2

(n−2)(n+1)
, where RW, RRic0 and RI

denote the Weyl curvature tensor, traceless Ricci part and the scalar curvature part.
Then M must be compact. The strong pinching condition was the one originally
assumed in [Hu] to obtain various estimates and the smooth convergence result. It
was also shown in [Hu] that it implies that R ≥ εRI . In [N3] the first author showed
that the above result of Chen-Zhu can be shown by the blow-up analysis of [H3]
and some non-existence results on gradient steady and expanding solitons obtained
in [N3]. (The detailed proof on these non-existence results were submitted to 2004
ICCM proceedings a while ago. See also forthcoming book [CLN].) With the help
of a family of invariant cones constructed in [BW], we can now prove the following
general result.

Theorem 3.1. Let (Mn, g0) be a complete Riemannian manifold with n ≥ 3.
Assume that the curvature operator of M is uniformly bounded (|Rijkl|(x) ≤ A) and
satisfies that

(3.1) R ≥ δRI > 0

for some δ > 0. Then (M, g0) must be compact.

Recall that RI = 1
n(n−1)

Scal(R) I, where I is the identity of S2
B(so(n)). Hence

RI > 0 is equivalent to Scal(R) > 0 and the above result is a natural analogue of
Hamilton result for hypersurfaces.

Proof. Let g(t) be the solution to Ricci flow with initial metric g0 constructed by
[Sh1]. First we show that if M is noncompact, g(t) can be extended to a long-time
solution defined on M × [0,∞). In order to do that we first show that for sufficient
small b > 0, R(g0) lies inside the invariant cone constructed by Lemma 3.4 of [BW].
Recall from [BW] the linear transformation

la,b : R → R + 2(n− 1)aRI + (n− 2)bRRic0 .

More precisely

la,b(R) = R + 2aλ̄ I+2b id∧Ric0(R)

= (1 + 2(n− 1)a)RI + (1 + (n− 2)b)RRic0 + RW.

It is easy to see that la,b(S
2
B(so(n))) ⊂ S2

B(so(n)) and is invertible if a 6= − 1
2(n−1)

and b 6= − 1
n−2

. Using this linear map and Theorem 2 of [BW], a pinching family of
invariant convex cones are constructed. In particular, as one step of the construction,
it was shown that

Lemma 3.2 (Böhm-Wilking). For b ∈ [0, 1
2
], let

a =
(n− 2)b2 + 2b

2 + 2(n− 2)b2
and p =

(n− 2)b2

1 + (n− 2)b2
.
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Then the set la,b(C(b)) where

C(b) =


R ∈ S2

B(so(n)) |R ≥ 0, Ric ≥ p(b)
tr(Ric)

n

ff
,

is invariant under the vector fields Q(R). In fact for b ∈ (0, 1
2
] it is transverse to the

boundary of the set at all boundary points R 6= 0.

We claim that there exists b > 0 sufficiently small such that R(g0) ∈ la,b(C(b)),

which is equivalent to that l−1
a,b(R(g0)) ∈ C(b). For simplicity let R̃ = R(g0), λ̄(R̃) =

Scal(R̃)
n

and l = la,b. Direct computation shows that

R := l−1(R̃) = R̃W +
1

1 + 2(n− 1)a
R̃I +

1

1 + (n− 2)b
R̃Ric0

which implies that

Ric(l−1(R̃)) =
λ̄(R̃)

1 + 2(n− 1)a
id+

1

1 + (n− 2)b
Ric0(R̃)

and

λ̄(R) :=
tr(Ric(l−1(R̃)))

n
= λ̄(R̃)

„
1− 2(n− 1)a

1 + 2(n− 1)a

«
.

Let λ̃i be the eigenvalues of Ric0(R̃). Then by the assumption (3.1) we have that

(3.2) λ̃i + λ̄(R̃) ≥ δλ̄(R̃).

Clearly we also have that

(3.3) λ̃i + λ̄(R̃) ≤ nλ̄(R̃).

We first check that R satisfies the Ricci pinching condition. In fact if λi are the
eigenvalues of Ric0(R), from the above formulae we have that

−λi = − 1

1 + (n− 2)b
λ̃i

≤ 1− δ

1 + (n− 2)b
λ̄(R̃)

= (1− δ)
1 + 2(n− 1)a

1 + (n− 2)b
λ̄(R).

Then there exist δ1 > 0 and b0 such that for all b ∈ [0, b0], −λi ≤ (1 − δ1)λ̄(R).

Then we can find b1 ≤ b0 such that for any b ∈ [0, b1], p(b) ≤ δ1. Hence R = l−1
a,b(R̃)

satisfies the pinching condition of C(b). Now we check that R = l−1
a,b(R̃) ≥ 0. Rewrite

R = R̃− 2(n− 1)a

1 + 2(n− 1)a
R̃I − (n− 2)b

1 + (n− 2)b
R̃Ric0 .

Noticing that a → 0 as b → 0, we can find b2 such that for any b ∈ [0, b2] we have
that

R ≥ δ

2
R̃I − (n− 2)b

1 + (n− 2)b
R̃Ric0 .

But the eigenvalue (with respect to ei ∧ ej , where {ei} is a basis of TM consisting of

eigenvectors of Ric0(R̃)) of the right hand side operator can be computed as

δ

2

λ̄(R̃)

n− 1
− b

1 + (n− 2)b

“
λ̃i + λ̃j

”
.

Using (3.3), the above can be bounded from below by

λ̄(R̃)

„
δ

2(n− 1)
− 2(n− 1)b

1 + (n− 2)b

«
> 0
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if b is close to 0. This shows that there exists b3 > 0 such that for any b ∈ (0, b3],
R(g0) ∈ la,b(C(b)).

Now the virtue of the proof of Theorem 5.1 in [BW], along with the short time
existence result of [Sh1], shows that the Ricci flow has long time solution. Otherwise,
by Theorem 16.2 of [H3], we would end up with a blow-up solution, which is nonflat,
noncompact, but whose curvature operator R = RI. In view of Schur’s theorem, this
is a contradiction. Note that R(g0) ∈ la,b(C(b)) allows us to apply the generalized
pinching set construction (Theorem 4.1) from [BW], and since the evolving metric
has positive curvature operator and the manifold is assumed to be noncompact, the
injectivity radius always has a lower bound in terms of the size of the curvature. All
these ingredients allow us to perform Hamilton’s blow-up analysis [H3] (Theorem
16.2).

We continue to show that the extra assumption that M is noncompact will lead us
to a contradiction by performing the singularity analysis of [H3] as t → ∞. Notice
that for all t, R(g(t)) will stay in the cone la,b(C(b)) for some fixed (but sufficiently
small) b, by the tensor maximum principle, which can be verified in the same way as
Proposition 2.2. Now we claim that the curvature of g(t) satisfies that

(3.4) Ric ≥ p
tr(Ric)

n
id .

for some p > 0. Let R∗ = R(g(t)). First, by Lemma 3.2 we know that R(g(t)) ∈
la,b(C(b)) for some fixed small b. Thus we can find R ∈ C(b) such that la,b(R) = R∗.
Now let λ̄ = tr(Ric(R))

n
and λi be the eigenvalues of Ric0(R). By the assumption we

have that −λi ≤ (1− p)λ̄. Now we compute the Ricci curvature and its trace for R∗.
By the definition of la,b we have that

Ric(R∗) = Ric+2(n− 1)aλ̄ id+(n− 2)b Ric0

and

λ̄∗ :=
tr(Ric(R∗))

n
= λ̄(1 + 2(n− 1)a).

Letting λ∗i be the eigenvalue of R∗ we have that λ̄∗ + λ∗i = (1 + 2(n − 1)a)λ̄ + (1 +
(n− 2)b)λi. Therefore

−λ∗i = −(1 + (n− 2)b)λi

≤ (1− p)(1 + (n− 2)b)λ̄

= (1− p)
1 + (n− 2)b

1 + 2(n− 1)a
λ̄∗

≤ (1− p)λ̄∗.

Here we have used the fact that 1+2(n− 1)a = 1+(n− 1) (n−2)b2+2b
1+(n−2)b

> 1+ (n− 2)b.

This completes the proof of the claim (3.4).
Since for all g(t), its Ricci curvature satisfies (3.4), this holds up on the blow-

down/blow-up solutions, which after passing to its universal cover, are either a nonflat
gradient steady soliton or a nonflat gradient expanding soliton, with nonnegative
curvature operator, by results from [H3] (Theorem 16.5, Corollary 16.6) (See also
[N2], Theorem 4.2 and [CZ]). This contradicts to Corollary 3.1 of [N3]. q.e.d.

4. Discussions

In [W], the topology of so-called p-positive manifolds was studied. In view of the
result of Böhm-Wilking and a result of Schoen-Yau [ScY] stating that any noncom-
pact complete 3-manifold with positive Ricci curvature must be diffeomorphic to R3,
it is reasonable to speculate that any noncompact complete Riemannian manifold M
with 2-positive curvature operator must be diffeomorphic to Rn. Professor Wilking
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informed us that one can show that M is aspherical with cyclic fundamental group
(see also [W]).

In [N3] we speculated whether or not any complete Riemannian manifolds with
positive pinched Ricci curvature must be compact. Theorem 3.1 confirms it un-
der stronger assumption on curvature operator. The problem in full generality still
remains unsettled.
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