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We prove a comparison theorem on the modulus of continuity of the solution of a
heat equation with a drifting term on Bakry-Emery manifolds. A direct consequence
of the result is an alternate proof of an eigenvalue comparison result of Bakry-Qian.
Examples are given to show that the estimate is sharp. Discussions on an explicit
lower estimate for the corresponding ODE and an application to the diameter lower
bound for gradient shrinking solitons are also included.
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1. A Lower Bound for the First Eigenvalue of the Drift Laplacian

Recall that �M� g� f�, a triple consisting of a manifold M , a Riemannian metric g
and a smooth function f , is called a gradient Ricci soliton if the Ricci curvature and
the Hessian of f satisfy:

Rcij + fij = agij� (1.1)

It is called shrinking, steady, or expanding soliton if a > 0, a = 0 or a < 0
respectively. More generally �M� g� f� is called a Bakry-Emery manifold if the
so-called Bakry-Emery Ricci tensor Rcij + fij ≥ agij for some a ∈ �. In this paper
we apply the modulus of continuity estimates developed in [1–3] to give a different
proof of an eigenvalue comparison estimate on Bakry-Emery manifolds for the
operator �f � �− ���·�� �f� on strictly convex � ⊂ M with diameter D and
smooth boundary. This result was first proved in [5, Theorem 14], which serves as a
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2082 Andrews and Ni

generalization to the earlier works of Payne-Weinberger[10], Li-Yau[7] and Zhong-
Yang [12]. An more recent result of this kind was obtained in [6].

Here in fact in Theorem 1.2 we extend a comparison theorem of [3] on the
modulus of continuity to manifolds with lower bound on the Bakry-Emery Ricci
tensor. This new result gives sharp modulus of continuity comparison between
the solution to �

�t
− �f and the corresponding sup-solution to a heat equation

on a certain interval. This implies the eigenvalue comparison result of Bakry-
Qian, Theorem 1.1, since first eigenvalue determines the rate of convergence to
equilibrium. As in [6] applying to the soliton setting, this implies a lower diameter
estimate for nontrivial gradient shrinking solitons (which improves [6]). We remark
here that the eigenvalue estimate we obtain is sharp for �M� g� f� satisfying the
Bakry-Emery-Ricci lower bound Rcij + fij ≥ agij , but presumably is not so for Ricci
solitons where the Bakry-Emery-Ricci tensor is constant, and so we expect that
our diameter bound is also not sharp. We discuss the sharpness of the eigenvalue
inequality in Section 2.

Before we state the result, we define a corresponding 1-dimensional eigenvalue
problem. On 	−D

2 �
D
2 
 we consider the functionals

� ��� =
∫ D

2

D
2

e−
a
2 s2��′�2ds� and ���� = � ���∫

e−
a
2 s

2
�2ds

�

namely the Dirichlet energy with weight e−
a
2 s

2
and its Rayleigh quotient. The

associated elliptic operator is �a = d2

ds2
− as d

ds
. Let �̄a�D be the first non-zero

Neumann eigenvalue of �a, which is the minimum of � among W 1�2-functions with
zero average.

Theorem 1.1 (Bakry-Qian). Let � be a compact manifold M , or a bounded strictly
convex domain inside a complete manifold M , satisfying that Rcij + fij ≥ a gij . Assume
that D is the diameter of �. Then the first non-zero Neumann eigenvalue �̃1 of the
operator �f is at least �̄a�D.

Proof. The key is to adapt Theorem 2.1 of [3] to this setting. Recall that 
 is a
modulus of continuity for a function f on M if for all x and y in M , �f�y�− f�x�� ≤
2


(
dM�x�y�

2

)
.

Theorem 1.2. Let v�x� t� be a solution to

�v

�t
= �v− 2�X��v� (1.2)

with 2X = �f . Assume also v�x� t� satisfies the Neumann boundary condition. Suppose
that v�x� 0� has a modulus of continuity �0�s� � 	0�

D
2 
 → � with �0�0� = 0 and

�′
0 > 0 on 	0� D

2 
. Assume further that there exists a function ��s� t� � 	0� D
2 
×�+ → �

such that

(i) ��s� 0� = �0�s� on 	0� D/2
;
(ii) ��

�t
≥ �′′ − a s �′ on 	0� D/2
×�+;

(iii) �′�s� t� > 0 on 	0� D
2 
;

(iv) ��0� t� ≥ 0 for each t ≥ 0.
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Eigenvalue Comparison 2083

Here �′ = �
�s
��s� t�� �′′ = �2

�s2
��s� t�. Then ��s� t� is a modulus of the continuity of v�x� t�

for all t > 0.

Proof. The proof of Theorem 1.2 is a modification of the argument of Theorem 2.1
in [3]. Precisely, consider

���x� y� t� � v�y� t�− v�x� t�− 2�
(
r�x� y�

2
� t

)
− �et�

It suffices to show that �� ≤ 0 for any � > 0. The proof of this claim is via reductio
ad absurdum. Assume that there exists �x0� y0� t0� such that ���·� ·� t� = 0 for the first
time. Namely ���x� y� t� achieves its maximum over �×�× 	0� t0
 at �x0� y0� t0�.
The strictly convexity, the Neumann boundary condition satisfied by v�x� t�, and
the positivity of �′ rule out the possibility that the maximum can be attained
at �x0� y0� ∈ ���×��. For the interior pair �x0� y0� where the maximum of � is
attained, pick a frame �ei� at x0 and parallel translate it along a minimizing geodesic
��s� � 	0� d
 → M joining x0 with y0. Still denote it by �ei�. We may also arrange
en = �′�s�. Let �Ei� be the frame at �x0� y0� (in T�x0�y0�

�×�) defined as Ei = ei ⊕ ei
for 1 ≤ i ≤ n− 1 and En = en ⊕ �−en�. Direct calculations show that at �x0� y0� t0�,(

�

�t
−

n∑
j=1

�2
EjEj

)
���x� y� t� = − ���f�y�� �′� − ��f�x�� �′�� �′

+ �′
n−1∑
i=1

�2
EiEi

r�x� y�− 2�t + 2�′′ − �et�

Here we have used the first variation ���·� ·� t0� = 0 at �x0� y0� which implies the
identities

��v��y� t0� = �′�′�d� ��v��x� t0� = �′�′�0��

Now choose the variational vector field Vi�s� = ei�s�, the parallel transport of ei
along ��s�, the second variation computation gives that

n−1∑
i=1

�2
EiEi

r�x� y� ≤ −
∫ d

0
Rc��′� �′�ds� (1.3)

Hence at �x0� y0� t0� we have that(
�

�t
−

n∑
j=1

�2
EjEj

)
��x� y� t� ≤ −�′

∫ d

0
��2f +Rc���′� �′�ds − 2�t + 2�′′ − �et

≤ −�′ar�x� y�− 2�t + 2�′′ − �et

< 0�
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2084 Andrews and Ni

Here we have used d = r�x� y� and s = r�x�y�

2 . This contradicts with that at �x0� y0� t0�
since it is the first time ��x� y� t� = 0,

��
�t

∣∣∣∣
�x0�y0�t0�

≥ 0�

�2
EiEi

�
∣∣
�x0�y0�t0�

≤ 0�

The above argument works well as long as �x0� y0� is not conjugate to each other
along the minimizing geodesic ��s� since we need this condition in establishing (1.3).
For the case �x0� y0� is a pair of points conjugate to each other, we can evoke a trick
similar to the one of Calabi to work through the argument. Let ei�s�, with 1 ≤ i ≤
n− 1 and 0 ≤ s ≤ d, be the parallel transport of ei along a minimizing geodesic ��s�
joining x0 = ��0�, y0 = ��d�. Let

�̃��1� �2� � � � � �n−1� s� = exp��s���1e1�s�+ · · · �n−1en−1�s���

Let L��1� � � � � �n−1� be the arc length of �̃��1� � � � � �i� ·�, which is greater or equal to
the distance between ���1� � � � � �n−1� 0� and ���1� � � � � �n−1� d�. Let

�̃��1� � � � � �n−1� � v����1� � � � � �n−1� d�� t0�− v����1� � � � � �n−1� 0�� t0�

− 2�
(
L��1� � � � � �n−1�

2
� t

)
− �et0 �

Then in view of the monotonicity of ��s� t� in s,

�̃�0� � � � � 0� = ��x0� y0� t0�

≥ �����1� � � � � �n−1� 0�� ���1� � � � � �n−1� d�� t0�

≥ �̃��1� � � � � �n−1��

In the previous computation if we replace � by �̃, we can still apply the maximum
principle to get a contradiction verbatim. �

To prove Theorem 1.1, let 
̄�s� be the first non-constant eigenfunction for �a,
which can be chosen to be positive on �0� D

2 �. To apply Theorem 1.2 as in [9] we
consider 
̄D′

�s�, the eigenfunction on 	−D′
2 �

D′
2 
 with the corresponding eigenvalue

�̄a�D′ . Let ��x� t� = Ce−�̄a�D′ t
̄D′
�s�. Let w�x� be the first non-constant eigenfunction

of �f and let v�x� t� = e−�̃1tw�x�. Since 
̄D′
�s� is an odd function (by adding an

eigenfunction ��s� with ��−s� one can always obtain one), we do have ��0� t� =
0. The possibility of choosing �
̄D′

�′�s� > 0 on 	0� D
2 
 can be proved as follows. By

the uniqueness, we have that �
̄D′
�′�0� > 0. It suffices to show that �
̄D′

�′�s� > 0 for
s ∈ �0� D′

2 �. For this, observe that e−
a
2 s

2
�
̄D′

�′�s� is non-increasing in s and vanishes
at s = D′

2 .
Finally Theorem 1.2 implies that for sufficient large C, ��s� t� is a modulus

of continuity of v�x� t� for all t > 0. Hence �̃1 ≥ �̄a�D′ . The claimed result of
Theorem 1.1 follows by letting D′ → D. �
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Eigenvalue Comparison 2085

2. Sharpness of the Lower Bound

In this section we show that (for n ≥ 3 for any a or for n ≥ 2 for a ≤ 0) the lower
bound �̃1 ≥ �̄a given in Theorem 1.1 is sharp: precisely, for each � > 0 we construct
a Bakry-Emery manifold �M� g� f� with diameter D and �̃1 < �̄a�D + �.

We will construct a smooth manifold M which is approximately a thin cylinder
with hemispherical caps at each end. Let � be the curve in �2 with curvature k given
as function of arc length as follows for suitably small positive r and � > 0 small
compared to r:

k�s� =



1
r
� s ∈

[
0�

�r

2
− �

]
�

�

(
s − �r

2

�

)
1
r
� s ∈

[�r
2

− ��
�r

2
+ �

]
�

0� s ∈
[
�r

2
+ ��

D

2

]
�

(2.1)

extended to be even under reflection in both s = 0 and s = D/2. This corresponds to
a pair of line segments parallel to the x axis, capped by semicircles of radius r and
smoothed at the joins. We write the corresponding embedding �x�s�� y�s��. Here � is
a smooth nonincreasing function with ��s� = 1 for s ≤ −1, ��s� = 0 for s ≥ 1, and
satisfying ��s�+ ��−s� = 1. We choose the point corresponding to s = 0 to have
y�0� = 0 and y′�0� = 1. The manifold M will then be the hypersurface of rotation in
�n+1 given by ��x�s�� y�s�z� � s ∈ �� z ∈ �n−1�. On M we choose the function f to
be a function of s only, such that

f ′′ =



a

(
1− D

�r

)
� s ∈

[
0�

�r

2
− �

]
�

�

(
s − �r

2

�

)
a

(
1− D

�r

)
+
(
1− �

(
s − �r

2

�

))
a� s ∈

[�r
2

− ��
�r

2
+ �

]
�

a� s ∈
[
�r

2
+ ��

D

2

]
�

(2.2)

with f ′�0� = 0 (the value of f�0� is immaterial). Note that this choice gives
f ′�D/2� = 0. We extend f to be even under reflection in s = 0 and s = D/2.

With these choices we compute the Bakry-Emery-Ricci tensor and verify that
the eigenvalues are no less than a for suitable choice of r. The eigenvalues of

the second fundamental form are k�s� (in the s direction) and
√

1−�y′�2
y

in the

orthogonal directions. Therefore the Ricci tensor has eigenvalues �n− 1�k
√

1−�y′�2
y

in

the s direction, and k

√
1−�y′�2
y

+ �n− 2� 1−�y′�2
y2

in the orthogonal directions. We can
also compute the eigenvalues of the Hessian of f : The curves of fixed z in M are
geodesics parametrized by s, the Hessian in this direction is just f ′′ as given above.
Since f depends only on s we also have that �2f��s� ei� = 0 for ei tangent to �n−1,
and �2f�ei� ej� = y′

y
f ′�ij .
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2086 Andrews and Ni

The identities y�s� = ∫ s

0 cos ������ d� and y′�s� = cos ���s�� where ��s� =∫ s

0 k��� d� applied to (2.1) imply that

y =


r sin�s/r�� s ∈

[
0�

�r

2
− �

]
�

r�1+ o����� s ∈
[
�r

2
− ��

D

2

]
�

y′ =



cos�s/r�� s ∈
[
0�

�r

2
− �

]
�

o���� s ∈
[�r
2

− ��
�r

2
+ �

]
�

0� s ∈
[
�r

2
+ ��

D

2

]
�

as � approaches zero. This gives the following expressions for the Bakry-Emery
Ricci tensor Rcf = Rc+ �2f :

Rcf ��s� �s� =



a+ n− 1
r2

− aD

�r
� s ∈

[
0�

�r

2
− �

]
�

a+ �

(
2− �r

2

�

)(
n− 1
r2

�1+ o����− aD

�r

)
s ∈

[�r
2

− ��
�r

2
+ �

]
�

a� s ∈
[
�r

2
+ ��

D

2

]
�

and

Rcf �e� e� =



n− 1
r2

+ as
(
1− D

�r

)
r tan �s/r�

� s ∈
[
0�

�r

2
− �

]
�

n− 2
r2

+ o���� s ∈
[�r
2

− ��
�r

2
+ �

]
�

n− 2
r2

�1+ o���� s ∈
[
�r

2
+ ��

D

2

]
�

while Rcf ��s� e� = 0, for any unit vector e tangent to �n−1. In particular we have
Rcf ≥ ag for sufficiently small r and � for any a ∈ � if n ≥ 3, and for a < 0 if
n = 2. Note also that the diameter of the manifold M is D�1+ o����.

Having constructed the manifold M , we now prove that for this example the
first non-trivial eigenvalue �̃1 of �f can be made as close as desired to �̄a�D by
choosing r and � small. Theorem 1.1 gives the upper bound �̃1 ≥ �̄a�D�1+o���� = �̄a�D +
o���. To prove an upper bound we can simply find a suitable test function to
substitute into the Rayleigh quotient which defines �̃1. We set

��s� z� =


w�s −D/2��

�r

2
+ � ≤ s ≤ D −

(
�r

2
+ �

)
�

w

(
D

2
− �r

2
− �

)
� 0 ≤ s ≤ �r

2
+ �� and D − �r

2
− � ≤ s ≤ D�
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Eigenvalue Comparison 2087

where w is the solution of w′′ − asw′ + �̄a�D−�r−2�w = 0 with w�0� = 0 and
w′ (D

2 − �r
2 − �

) = 0 and w′�0� = 1. This choice gives

���� =
�̄a�D−�r−2�

∫
��s−D/2�≤ D

2 − �
2r − �

2 �
�2e−fdVol�g�∫

��s−D/2�≤D/2� �
2e−fdVol�g�

≤ �̄a�D−�r−2��

It follows that �̃1 → �̄a�D as r and � approach zero, proving the sharpness of the
lower bound in Theorem 1.1.

Remark 2.1. If we allow manifolds with boundary the construction is rather
simpler: simply take a cylinder r�n−2 × 	−D/2� D/2
 for small r, with quadratic
potential f = a

2 s
2, and substitute the test function ��z� s� = w�s� defined above.

3. A Linear Lower Bound

Here we use the notation from Section 1. Concerning the lower estimate of �̄a�D, at
least for a ≥ 0, if we apply Theorem 1.2 to the trivial case M = � with ��x� t� =
e−� �

D′ �2t sin� �
D′ s�, and letting D′ → D we get �̄a�D ≥ �2

D2 .
For a more precise estimate, observe that y = �
̄D′

�′ satisfies(
e−

a
2 s

2
y′
)′ = �a− �̄a�D�e

− a
2 s

2
y� (3.1)

This immediately implies that �̄a�D ≥ a+ �a�D, where �a�D is the Dirichlet eigenvalue
of the Hermite operator d2

ds2
− 2a s d

ds
. On the other hand, if y is the first Dirichlet

eigenfunction on 	−D/2� D/2
, which is an even function, let 
 = ∫ s

0 y. Direct
calculation also shows that 
 is a Neumann eigenfunction, hence we have the upper
bound �̄a�D ≤ a+ �a�D. This establishes the identity:

�̄a�D = a+ �a�D� (3.2)

The following result and its consequence improve the main results of [6]. It
applies to a compact Riemannian manifold �M� g� satisfying Rc ≥ �n− 1�K for
some K > 0, and concludes that �1�M� ≥ n−1

2 K + �2

D2 holds with D being the diameter
of the manifold M . This improves earlier works of [8, 11], etc.

Proposition 3.1. When a > 0, the first nonzero Neumann eigenvalue �̄a�D is bounded
from below by a

2 + �2

D2 . Moreover, the a
2 in the lower bound is the largest possible.

In particular �̃1���, with � being a convex domain in any Riemannian manifold with
Rcij + fij ≥ agij , is bounded from below by a

2 + �2

D2 .

Proof. We present two proofs for the lower bound via two types of normalization.
The first is to reduce the problem to finding the first nontrivial Neumann eigenvalue
�̄2�

√
a
2D

for the Hermite equation: d2

ds2
− 2s d

ds
on the interval

[−√
a
2
D
2 �
√

a
2
D
2

]
since

�̄a�D = a
2 �̄2�

√
a
2D
. Namely the first one normalizes the a.

For the operator d2

ds2
− 2s d

ds
on interval 	−�D

2 �
�D
2 
 the equation (3.2) implies that

�̄2��D = 2+ �2��D, with � being the first Dirichlet eigenvalue. Now we may introduce
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2088 Andrews and Ni

the transformation w = e−
s2
2 �. Direct calculation shows that � is the first Dirichlet

eigenfunction of d2

ds2
− 2s d

ds
if and only if w is the eigenfunction of the harmonic

oscillator:

d2

ds2
w − s2w = −�� + 1�w

with w vanishing on the boundary. By Corollary 6.4 of [9] we have that

� + 1 ≥ �2

�D2
�

Combining them together we have that �̄2��D ≥ 1+ �2

�D2 . Letting �D = √
a
2D we get the

claimed lower bound for �̄a�D.
The second one is via the normalization on D. Precisely by the change of

variable, D2

4 �a�D = �D2
4 a�2

. Now let ā = D2

4 a and consider the operator d2

ds2
− ās d

ds
. The

transformation � → e−
ā
4 s

2
� relates �ā�2 with the first eigenvalue ��b� of the harmonic

oscillator d2

ds2
− bs2 with b = ā2

4 via the equation:

��b� = �ā�2 +
ā

2
� (3.3)

For the harmonic oscillator d2

ds2
− bs2 on �−1� 1�,

��b� = inf∫
�2=1���±1�=0

∫ 1

−1
��′�2 + bs2�2ds�

Note that the functional is increasing and concave in b. Hence we have that
�2

4
= ��0� ≤ ��b� ≤ ��0�+ �′�0�b = �2

4
+
(
1
3
− 2

�2

)
b�

Combining the above with (3.3) and the equation �a�D = 4
D2 �ā�2, we have that �̄a�D =

�a�D + a satisfies

a

2
+ �2

D2
≤ �̄a�D ≤ a

2
+ �2

D2
+
(
�2

12
− 1

2

)
a2D2

�2
�

�

Corollary 3.1. If �M� g� f� is a nontrivial (namely with nonconstant f) gradient
shrinking soliton satisfying (1.1) with a > 0. Then

Diameter�M� g� ≥
√

2
3a

��

Proof. The result follows from the above lower estimate on the first Neumann
eigenvalue, applying to the case that � = M , and the observation, Lemma 2.1 of [6],
that 2a is an eigenvalue of the operator �− ��f� ��·��. �

This result clearly is not sharp. See [4] for a related upper bound on the
diameter. A better eigenvalue lower bound (and hence a better diameter lower
bound) will follow from a better understanding of the first Dirichlet eigenvalue of
the harmonic oscillator. We investigate this in the next section.
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4. The Harmonic Oscillator on Bounded Symmetric Intervals

In this section we will investigate the sharp lower bound given by the eigenvalue
of the one-dimensional harmonic oscillator on a bounded symmetric interval: recall
from section 3 that the first Neumann eigenvalue �̄2�D is equal to �̂1�D + 1, where �̂b�D
is defined by the existence of a solution of the eigenvalue problem

w′′ +
(
�̂b�D − bs2

)
w = 0� s ∈ 	−D/2� D/2
�

w�D/2� = w�−D/2� = 0�

w�x� > 0� s ∈ �−D/2� D/2��

The solution of the ordinary differential equation w′′ − s2w + �w = 0 (with w′�0� =
0), which is also called Weber’s equation, can be written in terms of confluent
hypergeometric functions: We have

w�s� = e−s2U

(
1
4
− �

8
�
1
2
� 2s2

)

where U is the confluent hypergeometric function of the first kind. Thus �̂1�D is the

first root of the equation U
(

1
4 − �

8 �
1
2 �

D2

2

)
= 0. Since U is strictly monotone in the

first argument, the solution is an analytic function of D.
Noting that �̂1�D = �2

D2 �̂ D4

�4
��
, we use a perturbation argument to compute the

Taylor expansion for �̂b�� as a function of b = a2

4 about b = 0 (this provides
an expansion for �̂1�D about D = 0). That is, we consider the solution u of the
eigenvalue problem

u′′ + (
�− bs2

)
u = 0� s ∈ 	−�/2� �/2
�

u��/2� = u�−�/2� = 0�

u�s� > 0� s ∈ �−�/2� �/2��

The solution for b = 0 is of course given by u�s� = cos�s�. The perturbation
expansion produces a solution of the form

u�s� b� =

∑
k=0

bk
3k∑
j=0

(
�k�js

j cos s + �k�js
k sin s

)
�

with � =∑

k=0 �kb

k. This expansion is unique provided we specify that u is even,
�0�0 = 1, �0�1 = 0, and �k�0 = �k�0 = 0 for k > 0. The first few terms in the expansion
for � are given by

�̂b�� = 1+
(
�2

12
− 1

2

)
b +

(
�4

720
− 5�2

48
+ 7

8

)
b2 +

(
�6

30240
− �4

48
+ 31�2

32
− 121

16

)
b3

+
(

�8

362880
− �6

270
+ 683�4

1280
− 14573�2

768
+ 17771

128

)
b4 + O�b5��

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 1
0:

28
 0

2 
A

pr
il 

20
13

 



2090 Andrews and Ni

Figure 1. The eigenvalue �̂b�� for Weber’s equation y′′ + ��− bs2�y = 0, y�±�/2� = 0 (solid
curve); shown also are the lower bounds �̂ ≥ 1 and �̂ ≥ √

b (dashed curves).

We note that there is also a useful lower bound for �̂b��, which we can arrive at
as follows: The inclusion of 	−D/2� D/2
 in � implies �̂1�D ≥ limd→
 �̂1�d = 1, with
eigenfunction u�s� = e−s2/2. Therefore we also have

�̂b�� =
√
b�̂1��b1/4 ≥

√
b�

Figure 1 gives an illustration of �̂b�� in terms of b, with the lower bounds
indicated. This translates to an estimate for the drift eigenvalue �̄a�� appearing in
Theorem 1.1: We have �̄a�� = a

2 + �̂a2/4��, giving the following Taylor expansion:

�̄a�� = 1+ a

2
+
(
�2

12
− 1

2

)
a2

4
+
(

�4

720
− 5�2

48
+ 7

8

)
a4

16

+
(

�6

30240
− �4

48
+ 31�2

32
− 121

16

)
a6

64

+
(

�8

362880
− �6

270
+ 683�4

1280
− 14573�2

768
+ 17771

128

)
a8

256
+ O�a10��

In particular the lower bound �̂ ≥ 1 translates to �̄ ≥ 1+ a/2, and the lower
bound �̂ ≥ √

b translates to �̄ ≥ a/2+√
a2/4 = a. Finally, by scaling we obtain the

following:

�̄a�D = �2

D2
+ a

2
+
(
�2

12
− 1

2

)
D2a2

4�2
+
(

�4

720
− 5�2

48
+ 7

8

)
D6a4

16�6
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+
(

�6

30240
− �4

48
+ 31�2

32
− 121

16

)
D10a6

64�10

+
(

�8

362880
− �6

270
+ 683�4

1280
− 14573�2

768
+ 17771

128

)
D14a8

256�14

+ O�D18a10� as D2a → 0�

An interesting consequence of the Taylor expansion (combined with the fact
that the estimate �̃1 ≥ �̄a�D is sharp as proved in section 2) is the following:

Proposition 4.1. The constant a/2 in the lower bound �̃1 ≥ �2

D2 + a
2 is the largest

possible.

This follows from the Taylor expansion for small values of aD2.
We note that the sharp diameter bound (given by the value of a where the

dotted line � = 2a intersects with the solid curve in Figure 2) is not dramatically
different from the one given in Corollary 3.1 (where the dotted line intersects the
dashed line � = 1+ a/2). Since the eigenvalue estimate �̃1 ≥ �̄a�D appears from the
examples in Section 2 to be sharp only in situations which are far from gradient
solitons, we expect that neither of these diameter bounds is close to the sharp lower
diameter bound for a nontrivial gradient Ricci soliton.

Figure 2. The eigenvalue �̄a�� for the drift Laplacian equation y′′ − asy′ + �y = 0,
y′�±�/2� = 0 (solid curve); shown also are the lower bounds �̄ ≥ 1+ a

2 and �̄ ≥ a (dashed
lines), and the line �̄ = 2a corresponding to non-Einstein gradient Ricci solitons (dotted line).
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