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1. Introduction

In this paper we study the flow of convex hypersurfaces X̃(·, τ) : M → R
n+1 by the 

α-power of Gauss curvature:

∂

∂τ
X̃(x, τ) = −K̃α(x, τ) ν(x, τ). (1.1)

Here ν(x, τ) is the unit exterior normal at X̃(x, τ) of M̃τ = X̃(M, τ), and K̃(x, τ) is 
the Gauss curvature of M̃τ at X̃(x, τ) (the tildes distinguish these from the normalized 
counterparts introduced below).

Equation (1.1) is a parabolic fully nonlinear equation of Monge–Ampére type, hence 
the study sheds light on the general theory of such equations. The case α = 1 was 
proposed by Firey [19] as a model for the wearing of tumbling stones. The equation with 
general powers also arises in the study of affine geometry and of image analysis [1,15,31,
33,34]. For large α the equation becomes more degenerate and for small α it becomes 
more singular. Studying them together gives an example of nonlinear parabolic equations 
with varying degeneracy. The interested reader may consult [7] for motivation for the 
study of this flow. For the short time existence, it was proved in [39] for α = 1, and for 
any α > 0 in [17] that the flow shrinks any smooth, uniformly convex body M0 = ∂Ω0
to a point z∞ in finite time T > 0. An important differential Harnack estimate (also 
referred as Li–Yau–Hamilton type estimate) was later proved in [18] (see also [2]). The 
current paper concerns the asymptotics of the solutions as the time approaches to the 
singular time T .

The study of the asymptotic behavior is equivalent to the large time behavior of 
the normalized flow, which is obtained by re-scaling about the final point to keep the 
enclosed volume fixed, and suitably re-parameterizing the time variable (see section 3
for details):

∂

∂t
X(x, t) = − Kα(x, t)∫

Sn
Kα−1 ν(x, t) + X(x, t). (1.2)

Here we write 
∫
Sn

f(x)dθ(x) = 1
ωn

∫
Sn

f(x) dθ(x) for any continuous function f on Sn, 
where dθ(x) is the spherical Lebesgue measure and ωn = |Sn|, and we interpret K as a 
function on Sn via the Gauss map diffeomorphism ν : Mt → S

n. It can be easily checked 
that Mt = X(M, t) encloses a convex body Ωt whose volume |Ωt| changes according to 
the equation:

d

dt
|Ωt| = − 1∫

Sn
Kα−1

∫
Mt

Kα +
∫
Mt

〈X, ν〉

= −ωn + (n + 1)|Ωt|.

Hence if |Ω0| = |B(1)| = ωn

n+1 , where B(1) ⊂ R
n+1 is the unit ball, then |Ωt| = |B(1)|

for all t.
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We briefly summarize previous work on the asymptotic behavior of these flows: Chow 
[17] analyzed the case α = 1

n and proved that solutions of the normalized flow converge 
to the unit sphere as t → ∞, by using pointwise estimates on the second fundamental 
form as previously carried out by Huisken [23] for the mean curvature flow. Convergence 
to spheres is known in some other special cases: This was proved for n = 1 and α > 1
in [5], for n = 1 and 1

3 < α < 1 in [9] and for n = 2, α = 1 in [6] by the first author 
(see also [16, Proposition 2.3] for the case n = 1), and for n = 2 and 1

2 < α < 1 by Chen 
and the first author [10]. The convergence of the flow was also completely analyzed for 
α = 1

n+2 by the first author in [3] for any dimension (the case n = 1 was treated by Sapiro 
and Tannenbaum [35]): In this case the flow has a remarkable affine invariance, and the 
rescaled solutions converge to ellipsoids. It seems a plausible conjecture (generalizing a 
conjecture of Firey [19] for the case α = 1) that solutions of (1.2) should converge to 
spheres for any α > 1

n+2 , but this is at present still open except for the cases mentioned 
above and the case α ≥ 1 with central symmetry treated in this paper.

The sphere is a stationary solution of (1.2) for any α, corresponding to a ‘soliton’ 
solution of (1.1) which shrinks without change of shape. Convergence to (possibly non-
spherical) solitons was established for α ∈ ( 1

n+2 , 
1
n ) in [7] by the first author, not only for 

the flow (1.1), but also for a family of anisotropic generalizations. When α ∈ (0, 1
n+2 ), 

convergence to solitons was proved under the additional assumption that the isoperi-
metric ratio remains bounded, and examples were provided of non-spherical solitons for 
small α. However it was proved in [8] for n = 1 and 0 < α < 1

3 that the isoperimetric 
ratio of solutions generically becomes unbounded as the curve shrinks to a point, so the 
solutions of the normalized flow do not converge. This is expected to remain true in 
higher dimensions for α < 1

n+2 . The methods of [7] do not apply for α > 1
n , and indeed 

for any such α there are examples of flows with smooth, strictly positive anisotropy 
where no positive lower bound on the Gauss curvature can hold. This demonstrates that 
the analysis in these cases is much more subtle than for smaller α. Nevertheless, smooth 
convergence to solitons was established recently for the case α = 1 (without anisotropy) 
by the second and the third authors in [21].

The present paper generalizes the methods of [21] to the more general case α > 1
n+2 : 

We prove smooth convergence of solutions of (1.2) to solitons for arbitrary smooth, 
uniformly convex initial hypersurfaces, for any α > 1

n+2 . The crucial observation (in 
Lemma 2.5) is that an associated ‘entropy point’, generalizing the classical Santaló point, 
lies strictly in the interior for any convex body of full dimension. From this we arrive at 
a uniform lower bound on the support function (Theorem 4.1), and this in turn implies a 
uniform lower bound on the Gauss curvature (Theorem 5.2). A new feature here is that 
we prove this without appealing to the different Harnack estimate of [2] which extends 
to the anisotropy flow. These estimates make it possible to use the methods of [7] to 
deduce a uniform C2 estimate (Theorem 5.5), and to conclude that the solution of the 
normalized flow for any smooth initial convex body Ω0 converges smoothly as t → ∞ to 
a uniformly convex soliton (Theorem 6.2).
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As a corollary of the main result and a soliton classification result (Proposition 7.1) 
we prove the smooth convergence to a round sphere for α ≥ 1, provided that the initial 
data is centrally symmetric, by adapting an argument of Firey [19] for the case α = 1 to 
prove that centrally symmetric solitons are spheres.

Since the main convergence result is already known for the case α ∈ [ 1
n+2 , 

1
n ] we focus 

mainly on the case α ∈ ( 1
n , ∞), but our techniques do provide a uniform treatment for 

all α ∈ ( 1
n+2 , ∞). In the last section we also prove some stability estimates involving the 

entropy quantities. This generalizes the entropy nonnegativity result established in the 
next section. We expect applications of such estimates in the study of convex bodies and 
their flows.

2. The entropy and its basic properties

Our argument is based on the analysis of an ‘entropy’ functional, defined α ∈ (0, ∞)
by

Eα(Ω) := sup
z0∈Ω

Eα(Ω, z0), (2.1)

where

Eα(Ω, z0) :=

⎧⎨
⎩

α
α−1 log

( ∫
Sn

uz0(x)1− 1
α dθ(x)

)
, α 	= 1;∫

Sn
log uz0(x) dθ(x), α = 1,

(2.2)

where uz0(x) := supz∈Ω 〈z − z0, x〉 is the support function of Ω in direction x with respect 
to z0. Note that the integral 1

n+1
∫
Sn

uz0(x)q−n−1 dθ(x) is interpreted as a weighted vol-
ume in Proposition 2.3, but for positive integers q is known as q-th dual quermassintegral
of the dual body in classical convex geometry (e.g., [36], p. 508). When α = 1 this agrees 
with the entropy used in [21], first introduced by Firey [19]. When α = 1

n+2 , the entropy 
is related to the minimum volume of the polar dual body Ω∗

z0 of Ω, which is attained 
at the Santaló point zs [36, §10.5]. The general case was also used in [24] recently. We 
briefly recall the definition of the polar dual: Given Ω and z0 ∈ Int(Ω), define

Ω0
z0 := Ω∗

z0 − z0 = {w | 〈w, z − z0〉 ≤ 1, ∀ z ∈ Ω}.

It is the polar dual of Ω with respect to z0. Writing w in polar coordinates we have that

Ω0
z0 = {(r, x) ∈ (0,∞) × S

n | ruz0(x) ≤ 1}. (2.3)

This implies the formula for the volume of the dual body [36, §1.7], [30]:

|Ω∗
z0 | =

1/uz0 (x)∫ ∫
rn dθ dr = 1

n + 1

∫ 1
un+1
z0 (x)

dθ(x).

0 Sn Sn
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The volume of Ω∗
z0 varies with z0, and is minimized at a unique point zs called the 

Santaló point. We also denote Ω∗
zs by Ω∗

s. The Blaschke–Santaló inequality ([12, p. 208], 
[30,32]) states

|Ω| · |Ω∗
s | ≤ |B(1)|2. (2.4)

If |Ω| = |B(1)|, then this implies |Ω∗| ≤ |B(1)| = ωn

n+1 .

Proposition 2.1. For any fixed convex body of full dimension and z0 ∈ Int(Ω), the entropy 
Eα(Ω, z0) is continuous and nondecreasing in α (strictly unless uz0 is constant).

Proof. For continuity at α = 1, see for example [20, Problem 7.1]. Monotonicity for 
either α > 1 or 0 < α < 1 is a direct consequence of the Hölder inequality (see [20, page 
146]). �
Corollary 2.2. Let Ω be a bounded convex body in Rn+1 with |Ω| = |B(1)|. Then for each 
α > 1

n+2 we have Eα(Ω) ≥ 0, with equality if and only if Ω is a ball.

Proof. We observe that

E 1
n+2

(Ω, z0) = − 1
n + 1 log

⎛
⎝ ∫

Sn

uz0(x)−(n+1) dθ(x)

⎞
⎠ = − 1

n + 1 log
(
n + 1
ωn

∣∣Ω∗
z0

∣∣) .

It follows that the supremum E 1
n+2

(Ω) is attained when z0 is the Santaló point zs, 
and that E 1

n+2
(Ω) ≥ 0 by (2.4). The Corollary follows by the monotonicity in α of 

Proposition 2.1: We have Eα(Ω) ≥ Eα(Ω, zs) ≥ E 1
n+2

(Ω, zs) ≥ 0. �
Before proving the key estimates involving the entropy, we provide a geometric inter-

pretation in terms of a weighted volume of the dual body, analogous to [21, Proposition 
2.1]. The inequalities involved are called the dual Minkowski inequalities which are also 
consequences of the Hölder inequality (e.g., (9.44) in [36]).

Proposition 2.3. For α < 1,

ωne
α−1
α Eα(Ω,z0) =

∫
Sn

u
1− 1

α
z0 (x) dθ(x) = 1

1
α − 1

∫
Ω0

z0

|w| 1
α−2−n dw

and for α > 1

ωne
α−1
α Eα(Ω,z0) =

∫
Sn

u
1− 1

α
z0 (x) dθ(x) = 1

1 − 1
α

∫
Rn+1\Ω0

|w| 1
α−2−n dw.
z0
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That is, 
∫
Sn

u
1− 1

α
z0 is the weighted volume of Ω0

z0 for α < 1, or the weighted volume of 
R

n+1 \Ω0
z0 for α > 1, with respect to the measure |w| 1

α−n−2 dw. In particular, for any z0

with |Ω∗
z0 | ≤ |B(1)|, we have 

∫
Sn

u
1− 1

α
z0 (x) dθ(x) ≤ 1 for α < 1, and 

∫
Sn

u
1− 1

α
z0 (x) dθ(x) ≥ 1

for α > 1. Moreover, for 0 < α < 1, there is a unique point z0 ∈ Int(Ω) such that 
Eα(Ω) = Eα(Ω, z0), which satisfies

∫
Ω0

z0

w

|w|n+2− 1
α

dw = 0.

That is, z0 is the unique point for which the center of mass of Ω0
z0 with respect to the 

weighted measure d w

|w|n+2− 1
α

lies at the origin.

Proof. Direct calculation yields

∫
Sn

u
1− 1

α
z0 (x) dθ(x) = 1

1
α − 1

∫
Sn

1
uz0 (x)∫
0

r
1
α−2 dr dθ(x)

= 1
1
α − 1

∫
Sn

1
uz0∫
0

r
1
α−2−ndw

= 1
1
α − 1

· 1
ωn

∫
Ω0

z0

|w| 1
α−n−2 dw.

This proves the identity for α < 1. For α > 1 the computation is the same.
If |Ω∗

z0 | ≤ |B(1)|, then |B(1) \ Ω0
z0 | ≥ |Ω0

z0 \B(1)|. Hence we have

1
1
α − 1

∫
Ω0

z0

|w| 1
α−n−2 dw = 1

1
α − 1

⎛
⎜⎝ ∫

Ω0
z0

∩B(1)

+
∫

Ω0
z0

\B(1)

|w| 1
α−n−2 dw

⎞
⎟⎠

≤ 1
1
α − 1

⎛
⎜⎝ ∫

Ω0
z0

∩B(1)

+
∫

B(1)\Ω0
z0

|w| 1
α−n−2 dw

⎞
⎟⎠

= ωn.

For the inequality above we used that |w| 1
α−n−2 ≤ 1 for w ∈ Ω0

z0 \ B(1) while 
|w| 1

α−n−2 ≥ 1 for w ∈ B(1) \ Ω0
z0 . The last equality is via a simple calculation.

For α > 1 the proof can be done by reversing some of the estimates above. The last 
statement on the center of mass follows by a calculation similar to the proof of the first 
identity in the proposition. �



180 B. Andrews et al. / Advances in Mathematics 299 (2016) 174–201
Remark 2.4. From the proof one can derive the following identities from which Proposi-
tion 2.2 is also obvious. For 1

n+2 ≤ α < 1,

e
α−1
α E(Ω,z0) = 1 − 1

( 1
α − 1)ωn

(
dn+2− 1

α
(Ω0

z0 , B(1)) + (|B(1) \ Ω0
z0 | − |Ω0

z0 \B(1)|)
)
,

(2.5)

where dn+2− 1
α
(A, B) denotes the measure of the symmetric difference of two sets A, B

with respect to the measure 
∣∣∣|w| 1

α−n−2 − 1
∣∣∣ dw. For α > 1,

e
α−1
α E(Ω,z0) = 1 + 1

(1 − 1
α )ωn

(
dn+2− 1

α
(Ω0

z0 , B(1)) + (|B(1) \ Ω0
z0 | − |Ω0

z0 \B(1)|)
)
.

(2.6)

The next lemma is important in obtaining the crucial estimates for the flow.

Lemma 2.5. If Ω is a bounded convex domain with Int(Ω) 	= ∅, then there exists a unique 
point ze ∈ Int(Ω) such that Eα(Ω) = Eα(Ω, ze). Moreover

∫
Sn

xj

u
1
α
ze(x)

dθ(x) = 0. (2.7)

Furthermore, if z 	= ze is in Int(Ω) then Eα(Ω, z) < Eα(Ω).

Proof. Apply the argument in the proof of Lemma 2.2 in [21]. �
Remark 2.6. It is crucial to our later argument that the ‘entropy point’ ze constructed 
in Lemma 2.5 is in the interior of Ω. The proof of this fact is the only place where our 
argument fails in the more general situation of the anisotropic Gauss curvature flows 
considered in [7]. Accordingly, our main result of smooth convergence to solitons holds 
for any anisotropy for which it can be established that the entropy point is in the interior 
of the domain.

The next result allows us to control the geometry of a convex body Ω in terms of the 
entropy Eα(Ω). Let ρ+(Ω) and ρ−(Ω) be the circumradius and inradius of a convex body 
Ω respectively. By definition, the circumradius is the radius of the smallest ball which 
contains Ω and the inradius is the radius of the biggest ball which is enclosed by Ω. 
There is also a width function w(x) which is defined as uz0(x) + uz0(−x), where uz0 is 
the support function with respect to z0. It is clear that these are independent of the 
choice of z0. The maximum w+ and minimum w− values of w(x) are called the diameter 
and minimal width respectively. Recall from [26,38] (see also [13], pages 84–86) that
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1
2w+ ≤ ρ+ ≤ w+

√
2(n + 1)
n + 2 ,

1
2w− ≥ ρ− ≥

{ 1
2
√
n+1w−, when n is even

√
n+3

2(n+2)w−, when n is odd.
(2.8)

Proposition 2.7.

(i) For each α > 1
n+2 there exist positive constants β and C depending only on α and 

n such that for every convex body Ω with |Ω| = |B(1)|,

min{ρ−(Ω), w−(Ω)} ≥ C−1e−βEα(Ω), (2.9)

and

max{w+(Ω), ρ+(Ω)} ≤ CenβEα(Ω). (2.10)

(ii) For any α ∈ (0, 1
n+2 ) there exists a positive constant C depending only on α and n

such that for any convex body Ω of full dimension,

∣∣∣∣Eα(Ω) − 1 − α(n + 2)
1 − α

log (ρ−(Ω))
∣∣∣∣ ≤ C. (2.11)

Proof. We use the result of John and Löwner [25] which provides for any convex body 
Ω of full dimension the existence of an ellipsoid E and center z0 such that E + z0 ⊂ Ω ⊂
(n + 1)E + z0. In our case this means that the volume of E is comparable to that of the 
unit ball. The inclusion also implies that 1

n+1E
∗ ⊂ Ω0

z0 ⊂ E∗. The principal axis theorem 

allows us to rotate so that E = {z :
∑n+1

i=1 a2
i z

2
i ≤ 1}, so that the principal semi-axes of 

E have lengths a−1
i , 1 = 1, . . . , n + 1. Then E∗ = {w :

∑n+1
i=1 a−2

i w2
i ≤ 1} has principal 

semi-axes of length ai, i = 1, . . . , n + 1, which we arrange in non-decreasing order. We 
estimate the entropy using weighted area expression in Proposition 2.3, observing that 
|w| ≥ |wn+1| and that E∗ ⊂ Q = {w : |wi| ≤ ai, i = 1, . . . , n + 1}. Since Eα(Ω) is 
nondecreasing in α, the result for larger α follows from that for smaller α, so in the 
following we assume that 1

n+2 < α < 1
n+1 . This gives

1 − α

α
ωne−

1−α
α Eα(Ω) ≤ 1 − α

α
ωne−

1−α
α Eα(Ω,z0)

=
∫

Ω0
z0

|w| 1
α−2−n dw

≤
∫
E∗

|wn+1|
1
α−2−n dw

≤
∫

|wn+1|
1
α−2−n dw
Q
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=
an+1∫

−an+1

2n
(

n∏
i=1

ai

)
|z| 1

α−2−n dz

= 2n+1

1
α − n− 1

(
n∏

i=1
ai

)
a

1
α−n−1
n+1

= 2n+1

1
α − n− 1

(
n+1∏
i=1

ai

)
a

1
α−n−2
n+1 .

Now we observe that 2n+1 ∏n+1
i=1 ai is the volume of Q, which is (n + 1)2n+1ω−1

n times 
the volume of E∗. Since E is an ellipsoid we have |E| · |E∗| = ω2

n

(n+1)2 , and we also have 

|Ω| = ωn

n+1 ≤ (n + 1)n+1|E| by the inclusion Ω ⊂ (n + 1)E + z0. This gives 
∏n+1

i=1 ai ≤
((n + 1))n+1, and we conclude that

1 − α

α
ωne−

1−α
α Eα(Ω) ≤ (2(n + 1))n+1

1
α − n− 1

a
1
α−n−2
n+1 .

Finally, we observe that a−1
n+1 = w−(E)

2 , so by the inclusion E + z0 ⊂ Ω we have a−1
n+1 ≤

w−(Ω)
2 , implying the estimate

e
1−α
α Eα(Ω) ≥

(1 − α)( 1
α − n− 1)ωn

α(n + 1)n+1

(
w−(Ω)

2

)−(n+2− 1
α )

,

and we have proved the estimate (2.9) (since w− and ρ− are comparable in view of (2.8)). 
To obtain the estimate (2.10), we observe that Ω contains the convex hull of the union of 
a diameter of Ω with an insphere of Ω, and hence has volume no less than ωn−1

n(n+1)ρ+ρ
n
−. 

Since |Ω| = 1
n+1ωn, it follows that ρ+ ≤ nωn

ωn−1
ρ−n
− , so that (2.10) follows from (2.9).

The estimate (2.11) follows by a similar argument in the case 0 < α < 1
n+2 . �

We remark that the estimate (2.11) will play no further role in our argument (since 
our results concern only the case α > 1

n+2 ), but has an interesting consequence for 
the flow (1.2) with α < 1

n+2 : By inequality (2.11), any initial convex body Ω0 with 
|Ω0| = |B(1)| with large diameter (equivalently, small inradius) has entropy far below 
zero (whereas B(1) has entropy equal to zero). The monotonicity results proved in the 
next section for the entropy under (1.2) imply that the entropy remains far below zero, 
and the second inequality in (2.11) then implies that the diameter remains large. In 
particular the solution of (1.2) from such initial data remains far from spherical. It 
seems a plausible conjecture that in such situations the diameter will always become 
unbounded under (1.2) if it is initially sufficiently large.
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3. Monotonicity formulae and geometric bounds for the solutions

It will be useful during our argument to use both the un-normalized flow (1.1) and 
the normalized flow (1.2), so we provide a more precise account of the relation between 
the two here: Given a solution X̃ : M × [0, T ) → R

n+1 of (1.1), we translate so that X̃τ

shrinks to the origin as τ approaches T , and make the following definitions:

t := 1
n + 1 log

(
|B(1)|
|Ω̃τ |

)
, (3.1)

and (writing Ω̃τ for the region enclosed by M̃t = X̃(M, τ))

X(x, t) :=
(
|B(1)|
|Ω̃τ |

) 1
n+1

X̃(x, τ) = etX̃(x, τ). (3.2)

A direct computation then shows that X is a solution of (1.2). Note that the results 
of Tso [39] and Chow [17] guarantee that |Ω̃τ | approaches zero as τ approaches T , and 
consequently t approaches infinity as τ approaches T and the solution Xt exists for all 
positive times. We remark that the entropy of X is related to that of X̃ as follows:

Eα(Ωt, e
tz0) = Eα(Ω̃τ , z0) −

1
n + 1 log

(
|Ω̃τ |
|B(1)|

)
. (3.3)

For the solution X̃(x, τ) of the un-normalized flow, let ũ(x, τ) be the support function 
of Ω̃τ with respect to the origin, and let ũz0(x, τ) be the support function of Ω̃τ with 
respect to z0 and K̃(x, τ) be the Gauss curvature at X̃(x, τ). Let u(x, t), uz0(x, t), K(x, t)
be the corresponding functions respect to the rescaled body Ωt. The relation between 
then is dictated by (3.1) and (3.2).

The monotonicity of the entropy Eα(Ωt) along the flow (1.1)–(1.2) was first proved in 
[4]. The result below is a refinement of it.

Theorem 3.1. Assume that α > 0. Then

(i). Under the un-normalized flow (1.1), if z0 ∈ Int(Ω̃τ1) then z0 ∈ Int(Ω̃τ ) for all 
τ ∈ [0, τ1], and Eα(Ω̃τ , z0) − 1

n+1 log
(

|Ω̃τ |
|B(1)|

)
is non-increasing, strictly unless Ω̃τ is 

a soliton shrinking to z0. Furthermore we have the following for 0 ≤ τ0 < τ1 < T :

Eα(Ω̃τ1 , z0) − Eα(Ω̃τ0 , z0) −
1

n + 1 log
(
|Ω̃τ1 |
|Ω̃τ0 |

)
(3.4)

= −
τ1∫

τ0

[∫
Sn

f̃
1+ 1

α
z0 dσ̃∫

Sn
f̃

1
α
z0 dσ̃

−
∫
Sn

f̃z0 dσ̃∫
Sn

dσ̃

]
dτ ≤ 0,

where f̃z0(x, τ) = K̃α(x,τ) , dσ̃(x) = ũz0 (x,τ)
˜ dθ(x).
ũz0 (x,τ) K(x,τ)
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(ii). Under the normalized flow (1.2), Eα(Ωt) is non-increasing, strictly unless Ω0 is a 
soliton. Furthermore, E∞

α := limt→∞ Eα(Ωt) exists if α ≥ 1
n+2 , and we have the 

following inequality:

E∞
α − Eα(Ωt0) ≤ −

∞∫
t0

[∫
Sn

f1+ 1
α dσt ·

∫
Sn

dσt∫
Sn

f
1
α dσt ·

∫
Sn

f dσt

− 1
]
dt ≤ 0. (3.5)

Here f(x, t) = Kα(x,t)
u(x,t) , dσt(x) = u(x,t)

K(x,t) dθ(x).

Proof. In terms of the support function the flow (1.1) can be written as

ũτ (x, τ) = −K̃α(x, τ), (3.6)

while the normalized flow (1.2) becomes the following:

ut(x, t) = − Kα(x, t)∫
Sn

Kα−1(y, τ)dθ(y)
+ u(x, t). (3.7)

Since the origin is assumed to be the shrinking limit of the un-normalized flow, we 
have ũ(x, τ) > 0 under (1.1), hence also u(x, t) > 0 for all (x, t) ∈ S

n × (0, +∞)
under (1.2). We first prove the monotonicity under the un-normalized flow: Since M̃t

is shrinking we have Ω̃τ1 ⊂ Ω̃τ for any τ < τ1, and if z0 ∈ Int(Ω̃τ1) then we have 
ũz0(x, τ) > 0 for all (x, τ) ∈ S

n × [0, τ1]. We note that 
∫
Sn

1 dσ̃τ = (n + 1)|Ω̃τ |, ∫
Sn

f̃z0 dσ̃ =
∫
Sn

K̃α−1 dθ, and 
∫
Sn

f̃
1
α
z0 dσ̃ =

∫
Sn

ũ
1− 1

α
z0 dθ, while ∂

∂τ

∫
Sn

ũ
1−1/α
z0 dθ =

α−1
α

∫
Sn

ũ
− 1

α
z0 K̃α dθ = α−1

α

∫
Sn

f̃
1+ 1

α
z0 dσ̃. This gives

∂

∂τ

(
Eα(Ω̃τ ) −

1
n + 1 log

(
|Ω̃τ |
|B(1)|

))
= −

[∫
Sn

f̃
1+ 1

α
z0 dσ̃∫

Sn
f̃

1
α
z0 dσ̃

−
∫
Sn

f̃z0 dσ̃∫
Sn

dσ̃

]
.

The right-hand side is non-positive by the Hölder inequality, with equality if and only if 
f̃z0 is constant, in which case K̃α = cũz0 and Ω̃τ is a soliton shrinking to z0.

The monotonicity for the normalized flow follows: If t1 > t0 then

Eα(Ωti) = Eα(Ω̃τi) −
1

n + 1 log
(
|B(1)|
|Ω̃τi |

)

for i = 1, 2, where τi corresponds to ti under (3.1). Let z̃1 ∈ Int(Ω̃τ1) be the entropy 
point of Ω̃τ1 . Then we have

Eα(Ωt1) = Eα(Ω̃τ1) + 1
n + 1 log

(
|B(1)|
|Ω̃τ1 |

)
(3.8)

= Eα(Ω̃τ1 , z̃1) + 1 log
(
|B(1)|

˜

)

n + 1 |Ωτ1 |
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= Eα(Ω̃τ0 , z̃1) + 1
n + 1 log

(
|B(1)|
|Ω̃τ0 |

)
−

τ1∫
τ0

⎡
⎣∫Sn f̃

1+ 1
α

z̃1
dσ̃∫

Sn
f̃

1
α
z̃1

dσ̃
−

∫
Sn

f̃z̃1 dσ̃∫
Sn

dσ̃

⎤
⎦ dτ

≤ Eα(Ω̃τ0) + 1
n + 1 log

(
|B(1)|
|Ω̃τ0 |

)
−

τ1∫
τ0

⎡
⎣∫Sn f̃

1+ 1
α

z̃1
dσ̃∫

Sn
f̃

1
α
z̃1

dσ̃
−

∫
Sn

f̃z̃1 dσ̃∫
Sn

dσ̃

⎤
⎦ dτ

= Eα(Ωt0) −
τ1∫

τ0

⎡
⎣∫Sn f̃

1+ 1
α

z̃1
dσ̃∫

Sn
f̃

1
α
z̃1

dσ̃
−

∫
Sn

f̃z̃1 dσ̃∫
Sn

dσ̃

⎤
⎦ dτ.

The monotonicity of Eα(Ωt) follows. Since Eα(Ωt) is bounded below by zero for α ≥ 1
n+2

by Corollary 2.2, it follows that E∞
α exists and is non-negative. The expression (3.5)

follows by taking the limit t → ∞ and changing variables from τ to t in the integral, 
noting that in this limit τ → T the entropy point z̃τ ∈ Ω̃τ converges to the origin. �
Corollary 3.2. Let Mt = ∂Ωt be a solution to (1.2) with |Ωt| = |B(1)| and α > 1

n+2 . 
Then there exists C = C(Ω0) such that

max{w+(Ωt), ρ+(Ωt)} ≤ C, min{ρ−(Ωt), w−(Ωt)} ≥ 1
C
, (3.9)

for all t > 0.

Proof. Since the entropy is non-increasing, the result follows by Proposition 2.7. �
The following consequence gives some geometric meaning to the limiting point in 

terms of the entropy Eα(Ω, z).

Corollary 3.3. Let Ω be a smooth closed bounded convex domain with |Ω| = |B(1)|. 
Assume that origin is the shrinking limit of the flow (1.1) with support function u. 
Then

∫
Sn

u1− 1
α (x) dθ(x) ≤ 1, if 1

n + 2 ≤ α < 1;
∫
Sn

u1− 1
α (x) dθ(x) ≥ 1 if α > 1.

Proof. This follows from the expression in the third line of (3.8), after taking the limit 
τ1 → T . �
4. C0-estimates for the flow by Kα

The main result of this section is to establish a uniform lower bound for the support 
function u(x, t) under (1.2) for any α > 1 . Note that since the entropy is non-increasing 
n+2
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under the flow, the estimates of Proposition 2.7 provide a lower bound for the inradius 
or minimum width, so we can easily obtain a lower bound on the support function u if 
we are willing to translate the solution. The subtle point in the following theorem is to 
obtain a lower bound for the support function about the origin (which is chosen to be 
the shrinking limit of the solution) without translations.

Theorem 4.1. Suppose u(x, t) > 0 is the solution of (3.7) with initial data u(x, 0) =
u0(x), where u0(x) is the support function of a convex body Ω0 with |Ω0| = |B(1)|, 
and the corresponding solution of (1.1) converges to the origin. Then there exists ε =
ε(n, E(Ω0)) > 0 and T0 = T (Ω0) such that for t ≥ T0 and x ∈ S

n,

u(x, t) ≥ ε. (4.1)

The proof is built upon three elementary lemmas. In order to state these, we first 
define for each ρ ∈ (0, 1) the following collection of convex bodies:

Γρ =
{

Ω ⊂ R
n+1 compact, convex

∣∣∣ {ρ+(Ω), ρ−(Ω)} ⊂
[
ρ,

1
ρ

]}
. (4.2)

For each compact convex body Ω of full dimension, we denote by ze(Ω) the ‘entropy 
point’ of Ω characterized by Lemma 2.5.

Lemma 4.2. Eα(Ω, z) is a concave function of z for any Ω. Furthermore, for each α > 0
and ρ ∈ (0, 1) there exists D > 0 such that for every Ω ∈ Γρ and every z ∈ Int(Ω),

Eα(Ω, z) ≤ Eα(Ω) − min{1, D|z − ze(Ω)|2}.

Proof. At ze, Eα(Ω, z) attains its maximum with respect to z. Fix z 	= ze, and let 
z(s) = ze + s�a, where �a = z−ze

|z−ze| . Define F (s) = Eα(Ω, z(s)). By assumption we have 
F (0) = Eα(Ω) and F ′(0) = 0. Direct calculation shows that

F ′′(s) = −
∫
Sn

uz(s)(x)−α+1
α (x · �a)2 dθ(x)

α
∫
Sn

uz(s)(x)α−1
α dθ(x)

+
(

1
α
− 1

) ( ∫
Sn

uz(s)(x)− 1
αx · �a dθ(x)

)2

( ∫
Sn

uz(s)(x)α−1
α dθ(x)

)2

≤ − 1

α
( ∫

Sn
u

α−1
α

z(s) dθ
)2

⎧⎪⎨
⎪⎩
∫
Sn

u
α−1
α

z(s) dθ ·
∫
Sn

u
− 1+α

α

z(s) (x · �a)2 dθ −

⎛
⎝ ∫

Sn

u− 1
αx · �a dθ

⎞
⎠

2
⎫⎪⎬
⎪⎭

(4.3)

The bracket on the right of (4.3) can be estimated as follows:
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∫
Sn

u
α−1
α

z(s) dθ ·
∫
Sn

u
− 1+α

α

z(s) (x · �a)2 dθ −

⎛
⎝ ∫

Sn

u− 1
αx · �a dθ

⎞
⎠

2

= 1
2

∫
Sn

∫
Sn

(
uz(s)(y)x · �a− uz(s)(x)y · �a

)2
uz(s)(x) 1+α

α uz(s)(y)
1+α
α

dθ(x) dθ(y)

≥ 1
2 (diam(Ω))−2 1+α

α

∫
Sn

∫
Sn

(
uz(s)(y)x · �a− uz(s)(x)y · �a

)2
dθ(x) dθ(y)

The integral on the right is now invariant under translations. Evaluating at the 
center of mass where 

∫
Sn

uz(x)x · �a dθ(x) = 0, it equals 2
n+1

∫
Sn

uz(x)2 dθ(x) ≥
2

n+1
( ∫

Sn
uz(x)dθ(x)

)2 ≥ 2c(n)diam(Ω)2, since 
∫
Sn

uz(x) dθ is the mean width of Ω.
Next we control the denominator on the right-hand side of (4.3): If α ≥ 1 then ∫

Sn
u

α−1
α

z(s) dθ ≤ (diam(Ω))
α−1
α . Thus in these cases we have F ′′(s) ≤ −2D, where D =

c(n)
(diam(Ω))2 , and hence Eα(Ω, z) ≤ Eα(Ω) −D|z − ze|2.

In the case 0 < α < 1 we write 
∫
u

α−1
α

z(s) dθ = e− 1−α
α F (s), so we have either F (s) ≤

F (0) − 1 or F ′′(s) ≤ −2D, where 2D = c(n) diam(Ω)− 2
α e

2(1−α)
α Eα(Ω)e

−2(1−α)
α , and the 

estimate of the Lemma follows. We note that Eα(Ω) (and hence also D) is controlled 
above and below in terms of ρ, in view of Proposition 2.7. �
Lemma 4.3. Fix α > 0. For Ω ∈ Γρ let ze(Ω) be the entropy point of Ω. Then Eα(Ω) and 
ze(Ω) are both continuous functions on Γρ with respect to Hausdorff distance.

Proof. Fix Ω0 ∈ Γρ, and let z0 ∈ Int(Ω0) be the entropy point of Ω0. We will prove 
continuity of the entropy and entropy point at Ω0. Let u0

z be the support function of 
Ω0 about z, for each z ∈ Int(Ω0), and let uz be the support function of a neighboring
convex set Ω. Since z0 is in the interior of Ω0, there is η > 0 such that u0

z0(x) ≥ η for all 
x ∈ S

n. We may assume that ηD ≤ 1, where D is defined in Lemma 4.2. It follows that 
for |z− z0| < η

2 we have u0
z(x) ≥ η

2 for all x ∈ S
n. Now assume that σ = dH(Ω, Ω0) < η

4 . 
Then supSn |u(x) −u0(x)| ≤ σ, so we have |uz(x) −u0

z(x)| ≤ σ ≤ 2σ
η u0

z(x) for each x ∈ S
n

and each z with |z − z0| < η
2 . Since eEα is homogeneous of degree one in u, it follows 

that for such z we have

Eα(Ω0, z) + log
(

1 − 2σ
η

)
≤ Eα(Ω, z) ≤ Eα(Ω0, z) + log

(
1 + 2σ

η

)
.

In particular, we have Eα(Ω, z0) ≥ Eα(Ω0) +log(1 − 2σ
η ). On the other hand, by Lemma 4.2, 

provided σ < η
2 tanh(Dη

4 ), for any z with |z−z0|2 = 1
D log

(
η+2σ
η−2σ

)
we have D|z−z0|2 < 1

and so

Eα(Ω, z) ≤ Eα(Ω0) −D|z − z0|2 + log(1 + 2σ ) ≤ Eα(Ω0) + log(1 − 2σ ) ≤ Eα(Ω, z0).

η η
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Since Eα(Ω, z) is concave in z by Lemma 4.2, it follows that the maximum of Eα(Ω, z)

occurs in the ball B 1
D log

(
η+2σ
η−2σ

)(z0), so we have |ze(Ω) − z0| ≤
√

1
D log

(
η+2σ
η−2σ

)
≤√

2σ
ηD → 0 (as σ → 0), and

Eα(Ω0) + log(1 − 2σ
η

) ≤ Eα(Ω) ≤ Eα(Ω0) + log(1 + 2σ
η

),

so that |Eα(Ω) − Eα(Ω0)| ≤ max
{

log(1 + 2σ
η ), log

(
1

1− 2σ
η

)}
→ 0 as σ → 0. �

Lemma 4.4. For any δ > 0 there exists ε1 > 0 such that for every Ω ∈ Γδ,

dist(ze(Ω), ∂Ω) ≥ ε1. (4.4)

Proof. We argue by the contradiction. Suppose that the statement (4.4) is not true. 
Then there is a sequence {Ωk} of domains in Γρ such that

dist(zk, ∂Ωk) → 0, k → ∞.

By Blaschke selection theorem (cf. [36, Theorem 1.8.7]), there exists a subsequence of 
{Ωk} in Γδ, which we still denote as Ωk, converging to a convex body Ω0 ∈ Γρ. By 
Lemma 4.3, ze(Ω0) = limk→∞ ze(Ωk) ∈ ∂Ω0. This contradicts Lemma 2.5. �

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Note that under (1.2) for α > 1
n+2 , we have for all t ≥ 0 that 

|Ωt| = |B(1)|, and (by Proposition 2.7 and Corollary 3.2) there exists ρ > 0 such that 
Ωt ∈ Γρ for every t ≥ 0.

By (3.5) we have that

E∞
α − Eα(Ωt) ≤ E∞

α − Eα(Ωt, 0) ≤ 0.

This implies that limt→∞ Eα(Ωt, 0) = E∞
α and limt→∞ (Eα(Ωt, 0) − Eα(Ωt)) = 0. Let 

ze(Ω(t)) be the entropy point of Ω(t). By Lemma 4.2 we have that when Eα(Ωt, 0) >
Eα(Ωt) − 1, which is the case when t ≥ T for T sufficiently large,

|ze(Ω(t)) − 0|2 ≤ 1
D

|Eα(Ωt, 0) − Eα(Ωt)|

which approaches to zero as t → ∞. The claimed result then follows from Lemma 4.4. �
Corollary 4.5. Let u(x, t) be as in Theorem 4.1. Then there exists Λ = Λ(Ω0, α, n) > 0
such that
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1
Λ ≤ u(x, t) ≤ Λ. (4.5)

Proof. The upper bound is immediate since the diameter of Ωt is bounded by Proposi-
tion 2.7. The lower bound for t ≥ T0 is provided by Theorem 4.1, and for t < T0 we use 
the fact that ũ(x, τ) = u(x, t)e−t is non-increasing in τ , hence in t, so we have

u(x, t) ≥ et−T0u(x, T0) ≥ εe−T0 . �
5. C2-estimates

In this section we derive uniform C2-estimates from the C0-estimate (4.5). The first 
is a upper estimate on the Gauss curvature, which was first proved by Tso [39] for the 
case α = 1 (see also Hamilton [22]) and by the first author in [7] (Theorem 6) for all 
other α > 0:

Theorem 5.1. Suppose u(x, t) is the solution of (3.7) with initial data u(x, 0) = u0(x), 
where u0(x) is the support function of Ω0 with |Ω0| = |B(1)| and Ω0 ∈ Γρ for some 
ρ ∈ (0, 1). Then there exists a constant C = C(n, α, ρ) > 0 such that

K(x, t) ≤ C min
{

sup
M0

K, 1 + t−
n

1+nα

}
. (5.1)

Proof. See [7, Theorem 6]. �
Our crucial new contribution is the following lower bound on the Gauss curvature, 

which crucially uses the lower bound on the support function from Theorem 4.1:

Theorem 5.2. Suppose u(x, t) > 0 is a positive solution of (3.7), obtained from the 
un-normalized flow (1.2), with initial data u(x, 0) = u0(x), where u0(x) > 0 is the support 
function of Ω0 with |Ω0| = |B(1)|. Then there exists a constant ε2 = ε2(n, Ω0) > 0 such 
that

Kα(x, t) ≥ ε2. (5.2)

Proof. The result can be proved by a similar line of argument as in the proof of Theorem 
5.2 of [21]. We provide a different argument here. We observe that the minimum of K̃
over M̃τ is non-decreasing, so we have positive lower bounds on K for any finite time, 
given by K(x, t) ≥ (infM0 K) e−nt. Thus it suffices to obtain a uniform lower bound for 
large t.

The key result we will use is the following estimate for the normalized flow (see [11,
37]):
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Lemma 5.3. If ũ evolves according to (3.6), then for any τ2 > τ1 and any x ∈ S
n we have

K̃α(x, τ2) ≥
ũ(x, τ1) − ũ(x, τ2)
(1 + nα)(τ2 − τ1)

.

Proof. See [11, Theorem 14]. �
To apply this, we first show that for any time t corresponding to an un-rescaled 

time τ1, we can choose a suitable τ2 > τ1 so that the numerator is uniformly positive, 
using the bounds from Corollary 4.5: Since λ ≤ u(x, t) ≤ Λ for all x and t, we have for 
(3.6) the following:

λe−t ≤ ũ(x, τ(t)) ≤ Λe−t.

It follows that if we choose τ1 = τ(t) and τ2 = τ(t + log(2Λ
λ )) then

ũ(x, τ2) ≤ Λe−t λ

2Λ = λ

2 e−t ≤ ũ(x, τ1) −
λ

2 e−t.

We also observe that τ2− τ1 is no greater than the extinction time of Ω̃τ1 . By comparing 
with an enclosing sphere of radius r+ = Λe−t, we find the time to extinction is no greater 
than 

r1+nα
+

1+nα = 1
1+nαΛ1+nαe−(1+nα)t. This gives the estimate

Kα

(
x, t + log

(
2Λ
λ

))
=

(
λ

2Λ

)nα

e−nαtK̃α(x, τ2)

≥
(

λ

2Λ

)nα

e−nαt ũ(x, τ1) − ũ(x, τ2)
(1 + nα)(τ2 − τ1)

≥
(

λ

2Λ

)nα

e−nαt
λ
2 e−t

Λ1+nαe−(1+nα)t

= λ1+nα

(2Λ)1+2nα .

Since t ≥ 0 is arbitrary, this provides a uniform lower bound on Kα for all sufficiently 
large times, and the Theorem is proved. �

There exists however another proof of Theorem 5.2 which uses neither Lemma 5.3
nor the differential Harnack estimate. Instead when α 	= 1 it needs a simple lemma 
comparing the entropies. The proof is more self-contained. The following quantity was 
introduced in [7] (for the normalized flow (3.7)) generalizing the entropy introduced in 
[18]:

Zα(t) �

⎛
⎝ ∫

Sn

Kα−1(x, t) dθ(x)

⎞
⎠

1
α−1

.
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Lemma 5.4. Let Ω be a convex body with V (Ω) = V (B(1)). For any α > 0 we have that

Zα(Ω) ≥ eEα(Ω).

The equality holds if and only if λu = Kα for λ =
∫
Sn

Kα−1 dθ.

Proof. Without the loss of the generality we may assume that Eα(Ω) is attained at 
z0 = 0. We simply denote the support function uz0(x) with respect z0 as u(x). The 
condition V (Ω) = V (B(1)) yields that 

∫
Sn

u
K dθ = 1. Hence viewing dσ = u

K
dθ
ωn

as a 
probability measure, for α ∈ (0, 1),∫

Sn

Kα−1 d θ =
∫
Sn

Kα

u

u

K
dθ =

∫
Sn

Kα

u
dσ

≤

⎛
⎝ ∫

Sn

K

u
1
α

dσ

⎞
⎠

α

=

⎛
⎝ ∫

Sn

K

u
1
α

u

K
dθ

⎞
⎠

α

.

The claimed result follows from the above easily. Equality holds if and only if K
α

u = λ, 
a constant, which can be determined by 

∫
Sn

u
K dθ = 1. For α > 1,

∫
Sn

Kα−1 d θ =
∫
Sn

Kα

u

u

K
dθ ≥

⎛
⎝ ∫

Sn

K

u
1
α

u

K
dθ

⎞
⎠

α

.

The result follows by taking 1
α−1 power on the both side. For α = 1, it can be obtained 

by taking the limit. �
Now by Corollary 2.2 we can conclude that Zα(Ω) ≥ 1 if the volume is normalized. 

This is all we need on Zα(Ω) (in particular the monotonicity of Zα(t) is not needed).
Alternate proof of Theorem 5.2. Consider the solution u(x, t) of the normalized flow 

(3.7). By Corollary 4.5 and Theorem 5.1 we may assume that 1
Λ ≤ u ≤ Λ and K ≤ Λ for 

some Λ > 0. Set η(t) = (Zα(t))α−1, A = (uij + uḡij), and L = α
σ̇ij
n (A)∇̄i∇̄j

ησα+1
n (A) with σn(A)

being the n-th elementary symmetric function of A with σn(A) = K−1. Here recall the 
notations from [21] with A being the inverse of the second fundamental form and ∇̄
being the covariant derivative of Sn and ḡ being the round metric. Since u satisfies (3.7),

Kα = η(u− ut).

Using this equation, direct computations yield(
∂

∂t
− L

)
Kα = −nαKα + ασn−1(A)K2α

ησn(A) , (5.3)
(

∂ − L
)
u = −1 + nα

Kα + u + αuσn−1(A)Kα

. (5.4)

∂t η ησn(A)
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At the mean time observe the formula that for any l ≥ 0
(

∂

∂t
− L

)
log(fgl) = 1

f

(
∂

∂t
− L

)
f + l

g

(
∂

∂t
− L

)
g + α

σ̇ij
n (A)

σα+1
n (A)

∇̄if∇̄jf

f2

+ l α
σ̇ij
n (A)

σα+1
n (A)

∇̄ig∇̄jg

g2

≥ 1
f

(
∂

∂t
− L

)
f + l

g

(
∂

∂t
− L

)
g.

Combining with (5.3) and (5.4) we have the estimate
(

∂

∂t
− L

)
log(Kαul) ≥ (l − nα) − l(1 + nα)

η(t)
Kα

u
. (5.5)

Note that for α ≥ 1, η(t) ≥ 1 and for α < 1, η(t) ≥ Λα−1. Now let m(t) =
minSn Kα(·, t)ul(·, t) for l = nα + 1. Clearly by Corollary 4.5 for estimating Kα from 
the below it suffices to obtain a lower estimate on m(t). Set λ = 1

100(nα+1)2Λnα+3−α . 
By enlarging Λ we may assume that m(0) ≥ 2λ. We prove below by contradiction that 
m(t) ≥ λ for all t ≥ 0. Assume the contrary, and let t0 be the first time when m(t0)
touches λ. If x(t0) is where the minimum m(t0) is attained for Kα(·, t)u1+nα(·, t) then 
(5.5) implies at t = t0 with l = nα + 1

0 ≥
(

∂

∂t
− L

)
logm(t) ≥ 1 − (1 + nα)2 Kα(x(t), t)

Λα−1u(x(t), t)

= 1 − (1 + nα)2

Λα−1
Kα(x(t), t)ul(x(t), t)

ul+1(x(t), t)

≥ 1 − (1 + nα)2Λl+2−αm(t).

Here we have used that u ≥ 1
Λ . The above implies that m(t0) ≥ 100λ. But this is a 

contradiction since m(t0) = λ.
Once we have the two sided estimates of Kα, the proof of Theorem 10 in [7] gives the 

following estimate on the second fundamental forms of Mt.

Theorem 5.5. Suppose u(x, t) > 0 is the solution of (1.2) with initial data u(x, 0) = u0(x), 
where u0(x) > 0 is the support function of Ω0 with |Ω0| = |B(1)|. There exists a constant 
C > 0, depending on n, Ω0 such that

trace
(
∇̄i∇̄ju + uδij

)
≤ C. (5.6)

Moreover the symmetric tensor A has the lower estimate:

∇̄i∇̄ju + uḡij ≥
1
C
ḡij . (5.7)
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Combining Proposition 2.7, Corollary 3.2, Theorem 3.1, Theorem 4.1, Theorem 5.1
and Theorem 5.5, we conclude that there exists a positive constant C depending only 
on the initial data such that for the unique positive solution to (3.6)

‖u(·, t)‖C2(Sn) ≤ C. (5.8)

6. Convergence to solitons

Since (3.6) is a concave parabolic equation, by Krylov’s theorem [27] and the standard 
theory on the parabolic equations, estimates (5.8) and (5.7) imply the bounds on all 
derivatives (space and time) of u(x, t). More precisely, for any k ≥ 3, there exists Ck ≥ 0, 
depending only on the initial value such that for t ≥ 1

‖u(·, t)‖Ck(Sn) ≤ Ck. (6.1)

Now for any T > 0 and sequence {tj} → ∞, consider uj(x, t) � u(x, t − tj). We have the 
following result on the sequential convergence.

Proposition 6.1. After passing to a subsequence, on Sn × [−T, T ], {uj} converges in the 
C∞-topology to a smooth function u∞(x) which is a self-similar solution to (3.6). Namely 
it satisfies the equation

λu∞(x) = Kα
∞(x)

where λ =
∫
Sn

Kα−1
∞ (x) dθ(x).

Proof. For each k ∈ N, let uj(x, t) := u(x, t +j). Then uj is a solution of (3.7) for each j, 
and we have bounds in Ck for every k, independent of j. It follows that uj : Sn × [0, 1]→R

converges (for a subsequence of j) in C∞ to a limit u∞ which is again a solution of (3.7). 
Furthermore, if we denote by Ωj

t = Ωt+j the corresponding convex body, then we have 
Eα(Ωj

t ) = Eα(Ωt+j) → E∞
α for every t, so we have that Eα(Ω∞

t ) is constant. It follows 
from Theorem 3.1 that u∞ is a soliton: The function f = Kα

u is constant, so that

Kα
∞(x, t) = c(t)u∞(x, t)

for some constant c(t). Since 
∫
Sn

u∞
K∞

dθ = 1, we deduce that c(t) =
∫
Sn

Kα−1
∞ dθ. But now 

(3.7) gives that ∂u∂t = 0, so that u is a stationary solution. �
Theorem 2 of [4], together with the previous proposition, implies the following result.

Theorem 6.2. The flow (1.2) converges in C∞-topology to a smooth soliton u∞ (M∞) 
which has K > 0 and satisfies the soliton equation:

λu ·
(
det(u id +∇̄2u)

)α = 1. (6.2)

Here λ =
∫

n

(
det(u id +∇̄2u)

)1−α
dθ(x).
S



194 B. Andrews et al. / Advances in Mathematics 299 (2016) 174–201
7. Convergence to spheres in the centrally symmetric case

It remains an interesting question whether or not the round sphere (ball) is the unique 
compact soliton for α > 1

n+2 . For α = 1
n+2 , it was proved by Calabi [14] that the solitons 

are ellipsoids. Hence Theorem 6.2 recovers the main result of [3]. Since when α = 1
n , the 

soliton must be round sphere by [29] Theorem 6.2 recovers the main theorem of [17]. 
For the case α ≥ 1 we have the following result for the centrally symmetric case, which 
generalizes the result of Firey [19].

Proposition 7.1. Assume u is a soliton with associated body Ω (namely λu = Kα with 
λ =

∫
Sn

Kα−1). Then the following holds.

(i). The origin is the entropy point of Ω and |Ω| = |B(1)|;
(ii). When α ≥ 1, the volume of Ω∗

0 satisfies

|Ω∗
0| ≥ |B(1)|. (7.1)

This implies that if the origin is the Santaló point of Ω, then Ω is a ball.
(iii). More generally, if α ≥ 1, for any α′ ∈ [ 1

n+2 , 
α

α+1 ]

Eα′(Ω, 0) ≤ 0. (7.2)

This implies that if the origin is also the entropy point of Eα′(Ω) for some α′ ∈
[ 1
n+2 , 

α
α+1 ], then Ω must be a ball.

In particular, if Ω is centrally symmetric then Ω = B(1), and the flow (1.2) converges 
in C∞-topology to a ball if the initial body is centrally symmetric.

Proof. The equation clearly gives 
∫
Sn

u
K = 1. On the other hand 

∫
Sn

u
K = (n + 1)|Ω|. 

This proves that |Ω| = |B(1)|. By the soliton equation it is easy to check that

∫
Sn

xj

u
1
α (x)

d θ(x) = 0.

Hence 0 is the entropy point with respect to Eα(Ω).
For α > 1, we have (in the notation of Theorem 3.1)

λ =
∫
Sn

Kα−1 dθ =
∫
Sn

f dσ ≥

⎛
⎝ ∫

Sn

f
1
α dσ

⎞
⎠

α

= e(α−1)Eα(Ω) ≥ 1,

where we used 
∫

n dσ = |Ω| = 1, and then we argue as follows:

S |B(1)|
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|Ω∗
0|

|B(1)| =
∫
Sn

1
un+1 dθ = λn+1

∫
Sn

1
Kα(n+1) dθ

≥
∫
Sn

1
Kα(n+1) dθ

≥

⎛
⎝ ∫

Sn

1
K

dθ

⎞
⎠

α(n+1)

≥ 1.

At the last line above we use the isoperimetric inequality 
∫
Sn

1
K dθ(x) ≥ 1. By the 

Blaschke–Santaló inequality, if 0 is the Santaló point we have that |Ω∗| ≤ |B(1)|. Hence 
equality holds in the above inequalities, from which it is easy to see u = 1. The proof of 
part (iii) is similar. �
8. Applications and stability for the entropy

Using the proposition we derive some estimates on the entropy for general convex 
domains which can be viewed as stability results for Corollary 2.2. These results are 
inspired by [24]. To formulate the result we recall the concept of the curvature image 
ΛαΩ [28], which can be defined via the solution to certain Monge–Ampére equation 
(precisely the Minkowski problem) and the compatibility conditions (2.7), which hold if 
the origin is the entropy point. The convex body ΛαΩ is characterized by having the 
so-called surface area measure function fΛαΩ(x) (for the smooth case it is the reciprocal 
of the Gauss curvature) given by

fΛαΩ(x) = |Ω|
|B(1)|e

−α−1
α Eα(Ω)u

− 1
α

e (x). (8.1)

The (normalized) mixed volume V1(ΛαΩ, Ω) � 1
n+1

∫
Sn

uΩ(x)fΛαΩ(x) dθ(x) is then given 
by

V1(ΛαΩ,Ω) = |Ω|,

which then implies (by the Alexandrov–Fenchel inequality) that

|Ω|
|ΛαΩ| ≥ 1 and V1(ΛαΩ,Ω)

|ΛαΩ| ≥ 1. (8.2)

We first derive the estimates as a corollary of Proposition 7.1.

Corollary 8.1. Let Ω be a smooth strictly convex body. Suppose that either α = 1
n , or 

α ≥ 1 and Ω is centrally symmetric. Then
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Eα(Ω) ≥ 1
n + 1

log
(

|Ω|
|B(1)|

)
+ n

n + 1
log

(
|Ω|

|ΛαΩ|

)
. (8.3)

The equality holds if and only if Ω is a round ball.

Proof. The proof is essentially from [24]. The key is the observation that the entropy 
point of Eα(Ω) is invariant under the flow

∂

∂t
X(x, t) = 〈X(x, t), ν(x, t)〉1+ 1

α

K(x, t) ν(x, t) (8.4)

which in terms of the support function can be written as

∂

∂t
u(x, t) = u1+ 1

α (x, t)
K(x, t) . (8.5)

Hence we shall assume that the origin is the entropy point of the initial convex domain Ω. 
Let Ωt be the evolving convex domain. Here u(x, t) and K(x, t) denote the support 
function and the Gauss curvature of ∂Ωt (with respect to the origin). We denote by 
uΛαΩ and KΛαΩ the support function and the Gauss curvature of ∂(ΛαΩ). The evolution 
equation of the following three quantities Ji (1 ≤ i ≤ 3) along the flow (8.5) holds the 
key to the proof. A straight forward computation yields

d

dt
J1(t) = (n + 1)

∫
Sn

f− 1
α dσ∫

Sn
dσ

, with J1(t) = log
(

|Ωt|
|B(1)|

)
, (8.6)

where as before we write f = Kα

u and dσ = u
K dθ. We also have

d

dt
J2(t) =

∫
Sn

dσ∫
Sn

f
1
α dσ

, with J2(t) = Eα(Ωt). (8.7)

Combining the above we have that the scaling invariant quantity Q(t) = Eα(Ωt) −
1

n+1 log
(

|Ωt|
|B(1)|

)
, which by Corollary 2.2 is always bounded below by 0, satisfies the 

equation:

d

dt
Q(t) = J ′

2 −
1

n + 1J
′
1

=
( ∫

Sn
dσ∫

Sn
f

1
α dσ

−
∫
Sn

f− 1
α dσ)∫

Sn
dσ

)
≤ 0. (8.8)

This together with Proposition 2.7 controls the support function from above and below 
under the evolution, and the curvature can be estimated above and below following the 
methods of [24] (or by the method of Section 5). It follows that the solution exists for 
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finite time and expands to infinity under (8.4), and that after rescaling to fixed volume 
the solutions converge smoothly (for a subsequence of times) to a soliton.

To obtain the result of the theorem we derive the evolution equation of log |ΛαΩt|. 
The following computation has been carried in [24]. Note that K−1

ΛαΩt
(x, t) = fΛαΩ(x) is 

given by (8.1), and

|ΛαΩt| = 1
n + 1

∫
Sn

uΛαΩ(x, t)
KΛαΩt

(x, t) dθ(x), d

dt
|ΛαΩt| = 1

n

∫
Sn

uΛαΩ(x, t) ∂
∂t

K−1
ΛαΩt

(x, t).

Hence we have

d

dt
log |ΛαΩt| = n + 1

n
J ′

1 − (n + 1)
1 − 1

α

n
J ′

2 −
n + 1
n

1
α

V1(Ωt,ΛαΩt)
|ΛαΩt|

J ′
2. (8.9)

Next we consider the scaling invariant quantity J3(t) = n
n+1 log

(
|Ωt|

|ΛαΩt|

)
and its evolu-

tion equation:

d

dt
J3 = − 1

n + 1J
′
1 + (1 − 1

α
)J ′

2 + 1
α

V1(Ωt,ΛαΩt)
|ΛαΩt|

J ′
2 (8.10)

≥ − 1
n + 1J

′
1 + J ′

2 = d

dt
Q.

Thus Q −J3 is non-increasing, and the claimed estimate follows from the above and the 
classification of solitons provided by Firey [19] for the case α = 1, by Chow [17] for the 
case α = 1

n and Proposition 7.1 for the case α ≥ 1: These imply that the limiting soliton 
is a ball, in which case Q = J3 = 0, so necessarily Q ≥ J3 initially. �

The central symmetry assumption and the condition α ≥ 1 appear in the above 
proof only in the classification of solitons, and so the inequality holds whenever it can 
be established that solitons are spheres. In particular, our generalized conjecture would 
imply the inequality for all α > 1

n+2 without any central symmetry assumption. Indeed, 
in the next section we provide a different argument which establishes this inequality 
without using the flow.

9. Entropy stability via isoperimetric inequalities

Now we present a result which contains Corollary 8.1 as a special case without assum-
ing the central symmetry. To present this more general result we extend the definition 
of the entropy to α < 0 by adopting the definition (2.2) without change, and modifying 
the definition (2.1) by taking an infimum rather than a supremum for α < 0. As before 
there is a unique entropy point in the interior of the domain in the case α < 0 (the 
proof of Lemma 2.5 applies without change). The result of Corollary 2.2 (which used 
the Blaschke–Santaló inequality) gives that Eα(Ω) ≥ 0 whenever |Ω| = |B(1)|, and this 
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result can easily be extended to α < 0 using an isoperimetric inequality: We have by the 
Hölder inequality for α < 0 that

eEα(Ω,z) =

⎛
⎝ ∫

Sn

u1− 1
α dθ

⎞
⎠

1
1− 1

α

≥
∫
Sn

u dθ = 1
|B(1)|V1(B,Ω) ≥

(
|Ω|

|B(1)|

) 1
n+1

= 1,

where the last inequality is the Minkowski inequality relating mean width and volume 
(see [36, Theorem 7.2.1]), for which equality holds if and only if Ω is a ball.

We recall the affine isoperimetric inequality: For any convex body Ω′, if fΩ′ is its 
surface area measure, one may define the affine surface area by

A(Ω′) �
∫
Sn

f
n+1
n+2
Ω′ (x) dθ(x).

The affine isoperimetric inequality relates this to the volume (see [28,36]):

Theorem 9.1. For any convex body Ω,

A(Ω)n+2 ≤ (n + 1)n+2|B(1)|2|Ω|n. (9.1)

We now proceed to the main result:

Theorem 9.2. For any convex body Ω, for α ≥ 1
n+2 ,

Eα(Ω) ≥ 1
n + 1 log

(
|Ω|

|B(1)|

)
+ n

n + 1 log
(

|Ω|
|ΛαΩ|

)
. (9.2)

For α < 0,

Eα(Ω) ≤ 1
n + 1 log

(
|Ω|

|B(1)|

)
+ n

n + 1 log
(

|Ω|
|ΛαΩ|

)
. (9.3)

The equality holds if and only if Ω is a round ball, unless α = 1
n+2 , in which case equality 

also holds for ellipsoids.

Proof. Without the loss of generality we may always assume that the origin is the entropy 
point. Recall that the surface area measure of ΛαΩ is given by equation (8.1).

For the case α ≥ 1
n+2 , we proceed as follows:

A(ΛαΩ)n+2 = ωn+2
n

(
|Ω|

|B(1)|

)n+1

e−
(α−1)(n+1)

α Eα(Ω)

⎛
⎝ ∫ (

1
u(x)

) 1
α

n+1
n+2

dθ(x)

⎞
⎠

n+2

.

Sn
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Since α ≥ 1
n+2 we have 1

α
n+1
n+2 ≥ 1−α

α , and the Hölder inequality gives

⎛
⎝ ∫

Sn

(
1

u(x)

) 1
α

n+1
n+2

dθ(x)

⎞
⎠

n+2

≥

⎛
⎝ ∫

Sn

(
1

u(x)

) 1−α
α

dθ(x)

⎞
⎠

n+1
1−α

= e−
n+1
α Eα(Ω).

Note that the case α = 1 follows as a limit. Hence we have that

A(ΛαΩ)n+2 ≥ ωn+2
n

(
|Ω|

|B(1)|

)n+1

e−(n+1)Eα(Ω). (9.4)

The claimed result follows by combining the above with the affine isoperimetric inequality 
(9.1) for the body ΛαΩ.

For the case α < 0 we apply instead the isoperimetric inequality, namely

An+1(ΛαΩ) ≥
(
|ΛαΩ|
|B(1)|

)n

ωn+1
n , (9.5)

where A(Ω′) is the surface area of ∂Ω′ for any convex body Ω′.
On the other hand, the Hölder inequality implies that

An+1(ΛαΩ) =
(

|Ω|
|B(1)|

)n+1

e−
(α−1)(n+1)

α Eα(Ω)

⎛
⎝∫

Sn

u− 1
α (x) dθ(x)

⎞
⎠

n+1

≤
(

|Ω|
|B(1)|

)n+1

e−(n+1)Eα(Ω)ωn+1
n . (9.6)

Putting (9.5) and (9.6) together we have (9.3). �
Special cases of Theorem 9.2 were proved for n = 1 in [24] using the flow method.
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