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Abstract

We derive some consequences of the Liouville theorem for plurisubharmonic
functions of L.-F. Tam and the author. The first result provides a nonlinear ver-
sion of the complex splitting theorem (which splits off a factor of C isometrically
from the simply connected Kähler manifold with nonnegative bisectional curva-
ture and a linear growth holomorphic function) of L.-F. Tam and the author. The
second set of results concerns the so-called k-hyperbolicity and its connection
with the negativity of the k-scalar curvature (when k D 1 they are the negativ-
ity of holomorphic sectional curvature and Kobayashi hyperbolicity) introduced
recently in [33] by F. Zheng and the author. We lastly prove a new Schwarz-
lemma-type estimate in terms of only the holomorphic sectional curvatures of
both domain and target manifolds. © 2020 Wiley Periodicals LLC.

1 Introduction
The first goal of this paper is to derive some consequences of the Liouville the-

orem proved in [28], which asserts that any continuous plurisubharmonic function
u.x/ defined on a Kähler manifold with nonnegative bisectional curvature satisfy-
ing that u.x/ D o.log.r.x///, where r.x/ denotes the distance function to a fixed
point p, must be a constant. This result was recently generalized in [18, 27] with
weaker assumptions on the curvature.

THEOREM 1.1. Let Mm and N n be two complete Kähler manifolds. Assume that
the bisectional curvature of M is nonnegative and the bisectional curvature of N
is nonpositive. (i) Then any holomorphic map f WM ! N satisfying

(1.1) lim sup
r.x/!1

kdf k.x/
r�.x/

D 0

for any � > 0, where r.x/ is the distance of x to a fixed point p 2 M , is totally
geodesic. (ii) If m D 1, then the same result holds under a weaker assumption that
N has nonpositive holomorphic sectional curvature.

In particular, if M is irreducible, then f is either a constant or a holomorphic
isometry.
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The result above can be viewed as a nonlinear version of the (holomorphic) split-
ting theorem proved in [28], which asserts that on a simply connected M with non-
negative bisectional curvature, any nonconstant linear growth holomorphic func-
tion splits off a C, since a holomorphic function can be viewed as the holomorphic
map into C, and being totally geodesic implies that rf is parallel, hence the split-
ting. The linear growth of a holomorphic function implies the boundedness of its
gradient by [4].

A result with the same conclusion was proved earlier for harmonic maps from
compact quotients of symmetric irreducible spaces into manifolds with nonpositive
complex sectional curvature, namely the celebrated geometric super-rigidity in [19]
(see also [13]). But the result here is different in nature from the result of Mok-Siu-
Yeung in the sense that while allowing the domain manifold to be noncompact, we
imposed a curvature condition on the domain instead. The result of [19] concerns
harmonic maps, which is a considerably larger class than holomorphic maps. On
the other hand, [19] is restricted for domain manifolds being compact quotients of
symmetric spaces, and at the same time poses a stronger curvature condition on the
target than the result above.

By Cheng’s gradient estimate for harmonic maps into a Cartan–Hadamard man-
ifold [3] (see also page 339 of [23] for an alternate proof without using the gradient
estimate) we have the following corollary.

COROLLARY 1.2. Let Mm and N n be two complete Kähler manifolds. Assume
that the bisectional curvature of M is nonnegative, and N is a Cartan-Hadamard
Kähler manifold. Then any holomorphic map f W M ! N , whose differential df
satisfies

lim sup
r.x/!1

dN .p0; f .x//

r1C�.x/
D 0

for any � > 0, where r.x/ is the distance of x to a fixed point p 2 M , and
dN .p0; �/ is the distance function of N to a point p0 2 N , is totally geodesic.

The proof utilizes a @x@-Bochner formula for holomorphic maps, which implies
the plurisubharmonicity of log.A C k@f k2/ (for any A > 0). The results above
also hold for pluriharmonic maps. It was proved in [28] that a harmonic function
of sub-quadratic growth is pluriharmonic under the assumption that the quadratic
orthogonal bisectional curvature of M is nonnegative. We have not been able to
prove a nonlinear analogue of this result for harmonic maps yet.

Various concepts of hyperbolicity arise in conjunction with the Schwarz lemma
[15]. Applying a @x@-lemma (which is collected in Section 2) on the logarithmic of
k-dimensional volume we derive, in Section 3, results related to the k-hyperbolicity
of a Kähler manifold in conjunction with the so-called kth scalar curvature. Below
we shall recall and define these concepts after proper motivations.
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Recall that in [33], .N n; h/ is defined to have negative (positive) k-scalar cur-
vature if

Sk.y;�/ +
k.k C 1/

2Vol.S2k�1/

Z
jZjD1;Z2�

H.Z/d�.Z/ < 0 .> 0/

for any y 2 N and any k-dimensional subspaces � � T 0yN . Here H denotes the
holomorphic sectional curvature of N , namely H.Z/ D RN .Z; xZ;Z; xZ/. We say
Sk.y/ < 0 if Sk.y;�/ < 0 for every k-dimensional �. N is called with negative
k-scalar curvature if Sk.y/ < 0 everywhere. Regarding compact Kähler manifolds
with Sk < 0, in view of the recent result of [33], an interesting question is “when
is a compact Kähler manifold with S2 < 0 projective?”

The celebrated Brody criterion [14, 15] asserts that N n is Kobayashi hyper-
bolic if and only if any holomorphic map from complex plane C into N n must
be a constant map. Motivated by this criterion of the Kobayashi hyperbolicity
(which amounts to 1-hyperbolicity as illustrated below) and the work of [6], [15]
(see also [41] for the extension to the meromorphic mappings and another defi-
nition of an intrinsic k-measure) we define a compact Kähler manifold N n to be
k-hyperbolic if and only if any holomorphic map f W Ck ! N must be degenerate
(namely the image of f must be of dimension less than k). This provides a natural
generalization of Kobayashi hyperbolicity (namely 1-hyperbolicity), and is equiv-
alent to that a pseudo norm on ^kTxN (on k-dimensional parallelepiped) defined
via holomorphic mappings from Dk ! N is indeed a norm (see the Appendix for
details and a proof of this equivalence).

In the meantime, recall that the classical Schwarz lemma of Yau-Royden [35,42]
for holomorphic maps from Riemann surfaces into compact Kähler manifolds with
negative holomorphic sectional curvature implies, via the above Brody’s criterion,
that any compact Kähler manifold N n with negative holomorphic sectional cur-
vature must be 1-hyperbolic. In view of that Sk defined above coincides with
the holomorphic sectional curvature H for k D 1; it is hence natural to ask the
question (Q): whether any holomorphic map from Ck into a compact .N n; h/ with
Sk < 0 must be degenerate. Namely, whether any compact Kähler manifold N n

with Sk < 0 is k-hyperbolic (in the sense defined above). The following result
provides a strong indication of a positive answer to the question (Q), by answer-
ing it affirmatively when the map is from a compact quotient of Ck or .N n; h/

has Rick < 0. We define Ric.x;�/ as the Ricci curvature of the curvature tensor
restricted to the k-dimensional subspace � � T 0xM . Precisely for any v 2 �,
Ric.x;�/.v; xv/ + Pk

iD1R.Ei ; Ei ; v; xv/ with fEig being a unitary basis of �.
We say that Rick.x/ < 0 if Ric.x;�/ < 0 for every k-dimensional subspace �.
Clearly Rick.x/ < 0 implies that Sk.x/ < 0, and it coincides with H when k D 1,
with Ric when k D n.

Since Rick coincides with H for k D 1, part (ii) of Theorem 1.3 below provides
a generalization of the above-mentioned consequence of Royden-Yau.
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THEOREM 1.3. Assume that dimCM D m � n D dimCN .

(i) Let .M; g/ be a compact Kähler manifold such that RicM � 0. Let
.N n; h/ be a complete Kähler manifold such that SNm .y/ < 0. Then any holo-
morphic map f WM ! N must be degenerate. The same result holds if RicM > 0

and SNm � 0.

(ii) Let .Mm; g/ be noncompact complete Kähler manifold with nonnegative
scalar curvature and RicM is bounded from below. Assume that .N n; h/ has
RicNm � �� < 0 (which holds if RicNm < 0 and N is compact). Then any holomor-
phic map f W M ! N must be degenerate. In particular, .N n; h/ is k-hyperbolic
if RicNk < 0.

(iii) Let .Mm; g/ be a noncompact complete Kähler manifold with RicM � 0.
Assume that .N n; h/ is noncompact and has the m-Ricci curvature RicNm < 0, and
f WM ! N is a holomorphic map. If D.x/ D .f �!h/

m.x/
!mg .x/

(with !g and !h being
the Kähler forms of M and N ) satisfies that

lim sup
x!1

D.x/

r�.x/
D 0

for any � > 0, then f must be degenerate.

Note that the condition Rick < 0 (or > 0) is independent of each other for dif-
ferent k, unlike fSk < 0g, which becomes less restrictive as k increases. A natural
question related to Rick is whether Rick < 0 (or Rick > 0) implies the projectivity
of the manifold. For k D 1, the answer has been known to be positive for both
Rick > 0 and Rick < 0 (cf. [38–40]). The result of [33] shows that for k D 2,
Rick > 0 does imply the projectivity. The projectivity and the rational connect-
edness of M with Rick.M/ > 0 for some k 2 f1; : : : ; ng have been proved in a
recent preprint of the author [25]. The projectivity has also been proved recently
for compact manifolds with Rick < 0 by Chu-Lee-Tam [16]. The method of [17]
also implies that a Kähler manifold with Rick � K > 0 must be compact.

We should remark that even for the case of the equal dimension (namely n D m),
the result of part (i) of above theorem seems new (at least the author is not aware
of any such statement in the literature). Note that part (i) can be applied to m-
dimensional tori. Hence if a map from Cm factors through a compact quotient
of Cm, the result here provides a positive answer to the question (Q). Part (ii)
is known for the equal-dimensional case [14]. Part (ii) of the above theorem in
particular implies that a compact Kähler manifold .N n; h/ with RicNk < 0 is k-
hyperbolic. Moreover, a recent joint paper [16] illustrates the existence of a closed
n-dimensional algebraic manifold with Rick < 0 admitting a holomorphioc em-
bedding of Pk�1, via a construction of McKernan. This implies that the results of
parts (i) and (ii) are sharp.

For part (iii) of Theorem 1.3, clearly the negativity of RicNm is needed, since
there are nondegenerate linear maps with bounded D between complex Euclidean
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spaces. In general, it is still unknown whether the Liouville theorem for the plurisub-
harmonic functions holds on a Kähler manifold Mm with nonnegative Ricci cur-
vature. Note that in [18] the Liouville theorem for plurisubharmonic functions was
proved for Kähler manifolds with nonnegative holomorphic sectional curvature,
and in [27] for Kähler manifolds with nonnegative orthogonal bisectional curva-
ture. On the other hand, under the nonnegativity of Ricci curvature there is a partial
result proved in [22] that asserts that for any plurisubharmonic function u.x/ with
o.log.r.x/// growth, .

p
�1@x@u/m � 0 holds. Part (iii) of the above theorem uses

this statement.
In Section 4 we also prove some extension of the above result, which in partic-

ular implies that f W Cm ! N is asymptotically degenerate if SNm < 0, and it
is degenerate if �m�1.@f / is of order o.r2.x//. Here �m�1.@f / is the .m � 1/th

symmetric function of the singular values of @f W T 0xM ! T 0
f .x/

N .
There are many generalizations of the classical Schwarz lemma on holomorphic

maps between unit balls via the work of Ahlfors, Chen-Cheng-Look, Lu, Mok-
Yau, Royden, Yau, and others (see [15,44] and references therein). In Section 5 we
prove a new version that only involves the holomorphic sectional curvature of do-
main and target manifolds. Hence it is perhaps the most natural high-dimensional
generalization of the classical result of Ahlfors. To state the result, we introduce
the following: For the tangent map @f W T 0xM ! T 0

f .x/
N , we define its maximum

norm square to be

k@f k2m.x/ + sup
v¤0

j@f .v/j2
jvj2 :

THEOREM 1.4. Let .M; g/ be a complete Kähler manifold such that the holomor-
phic sectional curvature HM .X/=jX j4 � �K for some K � 0. Let .N n; h/ be a
Kähler manifold such that HN .Y / < ��jY j4 for some � > 0. Let f W M ! N

be a holomorphic map. Then

(1.2) k@f k2m.x/ �
K

�

provided that the bisectional curvature of M is bounded from below. In particular,
if K D 0, any holomorphic map f WM ! N must be a constant map.

The proof uses a viscosity consideration from PDE theory (cf. [30] for another
such application concerning the isoperimetric inequalities in Riemannian geome-
try). It is also reminiscent of Pogorelov’s lemma (cf. lemma 4.1.1 of [10]) for the
Monge-Ampère equation, since the maximum eigenvalue of r2u is the k � km for
the normal map ru for any smooth function u. The assumption on the bisectional
curvature lower bound can be replaced with the existence of an exhaustion function
�.x/, which satisfies that

lim sup
�!1

� j@�j C �
p
�1@x@��C
�

�
D 0:
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In view of the ample applications of the classical Schwarz lemma, we expect
some implications of Theorem 1.4. A consequence of Theorem 1.4 asserts that the
equivalence of the negativities of the holomorphic sectional curvature implies the
equivalence of the metrics. Namely, if Mm admits two Kähler metrics g1 and g2
satisfying

�L1jX j4g1 � Hg1.X/ � �U1jX j4g1 ; �L2jX j4g2 � Hg2.X/ � �U2jX j4g2 ;
then for any v 2 T 0xM we have the estimates

jvj2g2 �
L1

U2
jvj2g1 ; jvj2g1 �

L2

U1
jvj2g2 :

Note that in this case the bisectional curvature lower bound can be easily checked
via the polarization formula (cf. [32], formula in the proof of corollary 2.1), and
the result can be stated locally given that the global result is derived from a local
estimate. This result can be viewed as a stability statement of the classical result
asserting that a complete Kähler manifold with the negative constant holomorphic
sectional curvature must be a quotient of the complex hyperbolic space form. A
natural question is whether a compact Kähler manifold M with its homomorphic
sectional curvature being close to�1 is biholomorphic to a quotient of the complex
hyperbolic space. See important works [8, 9] for the Riemannian case. A similar
question for the positive holomorphic sectional curvature turns out to have an af-
firmative answer thanks to the resolution of Hartshorne’s conjecture [20] (cf. [37]
for a proof of the Kähler case using only Kähler geometry). The algebraic result
of Berger (cf. [7, theorem G.6.3]) only provides an almost 1=4 sectional curvature
pinching, which is a bit shy from the assumptions needed to apply the previously
known results (cf. [11, 31, 43]).

There are estimates, sometimes even local estimates, associated with Theorems
1.1, 1.3, 1.4, and 4.1. These are collected in Corollaries 3.1, 3.4, and 4.2 and
estimates (4.2), (4.4), and (5.4). These estimates can be conveniently applied to
local settings.

We also obtained three statements (in Corollaries 3.6 and 5.5) asserting the
amount of “energy” (in terms of the curvature ratio) needed to have nondegenerate
or nonconstant holomorphic maps between two Kähler manifolds with curvature
constraints. These are in some sense dual versions of the Schwarz lemma for posi-
tively curved manifolds.

Finally, we show an easy application of the Liouville theorems proved in [18,27]
to d-closed .1; 1/-forms. We call � subharmonic if �x@

� � 0 as a .1; 1/-form. Here
�x@

D x@x@� C x@�x@ is the Hodge-Laplace operator. The following is a Liouville
theorem for .1; 1/-forms.

PROPOSITION 1.5. Assume that M is a complete noncompact Kähler manifold
with either H � 0, or its orthogonal bisectional B? � 0 and Ric � 0. Let � be a
d-closed subharmonic .1; 1/-form on M such that k�k.x/ D o.log r.x//. Then �
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is x@-harmonic. Namely, subharmonic .1; 1/-forms of sublogarithmic growth must
be harmonic.

PROOF. By lemma 2.1 of [29], which is proved via Kähler identities,
p
�1@x@�� D ��x@

� � 0:

Hence �� is a plurisubharmonic function. Clearly j��j � k�k. The Liouville
theorem of [18] and [27] implies that �� � C , for a constant C . From this the
claimed result follows easily from the above formula. �

As illustrated in the next two sections, the main step in proving Theorem 1.1 is
to show that f �!h is a subharmonic .1; 1/-form.

2 @x@-Bochner Formulae for Holomorphic Mappings
Let f W Mm ! N n be a holomorphic map between Kähler manifolds. Choose

holomorphic normal coordinate .´1; ´2; : : : ; ´m/ near a point p on the domain
manifold M , correspondingly .w1; w2; : : : ; wn/ near f .p/ in the target. The Käh-
ler forms of M and N are !g D

p
�1g

a x�
d´� ^ d x́� and !h D

p
�1hi xjdwi ^

d xwj , respectively. Correspondingly, the Christoffel symbols are given by

M���
 D
@g

�x�

@´

g
x�� D ��
�;

N�
j

ik
D @h

ixl

@wk
h
xlk D �

j

ki
:

We adapt the Einstein’s convention when there is any repeated index. The symme-
try in the Christoffel symbols is due to Kählerity. If the appearance of the indices
can distinguish the manifolds we omit the superscripts M and N . Correspondingly,
the curvatures are given by

MR
�

�x�

D � @

@x́� �
�
�
 ;

NR
j

ixlk
D � @

@ xwl
�
j

ik
:

At the points p and f .p/, where the normal coordinates are centered, we have that

RM
x��x�


D �
@2g x��

@´
@x́� ; RN
xj ixlk

D �
@2hxj i

@wk@ xwl
:

For a smooth map df . @
@´�

/ can be written as @wi

@´�
@

@wi C @ xwi

@´�
@

@ xwi . But for a holo-

morphic map df . @
@´�

/ D @f . @
@´�

/ D @wi

@´�
@
@wi , which we also write as @f i

@´�
@
@wi

or f i
�
@
@wi . Similarly, df . @

@x́�
/ D x@f . @

@x́�
/. Recall the Hessian of the map is

D df .X; Y / D DY .df .X// � df .rYX/. For the holomorphic map f ,

D df

�
@

@´�
;
@

@´�

�
D
X

f i
�;�d´

� 
 d´� 
 @

@wi
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is the nonzero part of the Hessian of f . Sometimes we also denote as DX dY f . In
local coordinates

f i
�;� D

@2f i

@´�@´�
� �




��

@f i

@´

C � ijk

@f k

@´�
@f l

@´�
:

LEMMA 2.1. For a holomorphic map f WM ! N ,

(2.1)

h@x@k@f k2; v ^ xvi

D kDv@.�/f k2 �
mX

�;�D1

g�
x�RN .@f�; x@f x� ; @f .v/; x@f .xv//

C
X
��

g�
x�


@f
�
RM
vxv

�
�
; x@f x�

�
:

Here @f� D @f . @
@´�

/; x@f x� D x@f . @
@x́�

/,Rvxv is viewed as a transformation T 0M !
T 0M defined as Rvxv.

@
@´�

/ D R
vxv� x�

g

x� @
@´


, and @f .RM
vxv/� D @f .RM

vxv.
@
@´�

//.

In this paper h� ; �i is the bilinear pairing extended (bilinearly) from the Rie-
mannian metric.

PROOF. The proof is via direct computations by choosing normal coordinates
centered at p and f .p/. We can also derive this from the classical Kodaira-Bochner
formula for .1; 1/-forms. (See, for example, [21] as well as lemma 2.1 of [26].)
This is based on the following observation: Let � denote the .1; 1/-form f �!h
with !h being the Kähler form of N . Then k@f k2 is nothing but �� (following the
notation of [26] with � being the contraction using the Kähler metric !g ). Hence
the left-hand side of the formula (2.1) amounts to computing @x@��. On the other
hand, lemma 2.1 of [29] asserts that it equals

p
�1�x@

� since d� D 0. Now the
Kodaira-Bochner formula (cf. lemma 2.1 of [26]) can be applied to obtain the right-
hand side, since the Kodaira-Bochner formula expresses �x@

� in terms of curvature
of M together with 1

2

�r
rx
 Crx
r

�
�. Note that the first two terms in the right-

hand side of (2.1) comes from 1
2

�r
rx
 Crx
r

�
�. There are also cancellations

for terms involving RicM . �

COROLLARY 2.2.

(a) Let Mm and N n be two complete Kähler manifolds. Assume that the bi-
sectional curvature of M is nonnegative and the bisectional curvature of N
is nonpositive. Let f W M ! N be a holomorphic map. Then log.1 C
kdf k2.x// is plurisubharmonic. Moreover, if log.1 C kdf k2.x// is pluri-
harmonic, then f is totally geodesic.

(b) If Mm is a Riemann surface with nonnegative curvature (whose universal
cover is C), the same result holds if N has nonpositive holomorphic sec-
tional curvature.
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PROOF. Direct calculation shows that�p
�1 @x@ log

�
1C k@f k2�; 1p

�1
v ^ xv

�
D @vx@xvk@f k2

1C k@f k2 �
j@vk@f kj2�
1C k@f k2�2 :

Under the curvature assumption of (a) we have that, under the normal coordinates

h@x@ log
�
1C k@f k2�; v ^ xvi

� kDv@.�/f k2
1C k@f k2 � j@vk@f kj2�

1C k@f k2�2
D kDv@.�/f k2

.1C k@f k2/2 C
Dvf

i
�Dxvf

xi
x�

��f k



��2 � ��Dvf
i
�f

xi
x�

��2
.1C k@f k2/2

� kDv@.�/f k2
.1C k@f k2/2 :

From this estimate the claims in (a) follow easily. If m D 1, let v D a @
@´1

for some
a 2 C. Hence

RN .@f�; x@f x� ; @f .v/; x@f .xv// D jaj2Rixij xj jf i
1 j2jf j

1 j2 � 0

under the assumption thatN has nonnegative holomorphic sectional curvature [44].
The rest of the proof is the same. �

Another quantity which enjoys a similar Bochner-type formula is .f �!h/
m

!mg
for

the case m � n. Here !h D
p
�1 Pn

i;jD1 hi xj dw
i ^ d xwj is the Kähler form of

N n and !g D
p
�1 Pm

�;�D1 g� x�d´
� ^ d x́� is the Kähler form of Mm. For the

equal dimensional case, a Bochner formula for the Laplacian operator � (instead
of @x@) was considered previously by various people, including Kobayashi, Yau,
Mok-Yau, etc. We refer the reader to [15, 44] and references therein for details.

LEMMA 2.3. For a holomorphic map f W Mm ! N n such that df has rank m
in a neighborhood of p. Let D.x/ D .f �!h/

m.x/
!mg .x/

(which is positive in a neigh-
borhood of p). Then for normal coordinates centered at p and f .p/ such that at
p, df

�
@
@´�

� D ���i�
@
@wi (namely, fj��j2g are singular values of @f W T 0pM !

T 0
f .p/

N ), we have at p,

(2.2)

�p
�1 @x@ logD;

1p
�1

v ^ xv
�

D
mX

�D1

X
mC1�i�n

jf i
�vj2
j��j2

�
mX

�D1

RN .�; x�; @f .v/; @f .v//

C RicM .v; xv/:
Here RN .�; x�; @f .v/; @f .v// D RN . @

@w� ;
@

@ xw� ; @f .v/; @f .v//.
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PROOF. As stated in the lemma, after unitary changes of frames of T 0pM and
T 0
f .p/

N , df or @f can be expressed as df
�
@
@´�

�
h D @f

�
@
@´�

� D ���i�
@
@wi . We

can perform the computation at p and f .p/, where

RM

� x�
x�
D �g

� x�;
x�
; RN

i xjkxl
D �h

i xj ;kxl
:

Here g
� x�;
x�

D @2g�x�
@´
@x́�

. Moreover, at f .p/, hi xj ;k D h
i xj ;xk

D 0. To simplify

notations we write @f i

@´�
as f i

� and @2f i

@´�@´

as f i

�
 . For v D P

 v


 @
@´


, f i
�v DP


 f
i
�
v


 . With respect to such coordinates, let A D .A
� x�
/ be the Hermitian

symmetric matrix with

A
� x�

D f i
�hi xjf

j

�
:

Then D D det.A/
det.g�x�/

. We denote .A� x� / as the inverse of A. Hence

@2

@´
@x́� logD D @2

@´
@x́� log det.A/C RicM .
; x�/:

Direct calculation shows that

.log det.A//x� D A� x�
h
f i
�hi xjf

j

��
C f i

�hi xj ;xlf
j

�
f l
�

i

D
X
�

f �
��
� ��

j��j2
:

The last line only holds at the point p, while the first holds in the neighborhood.
Similarly,

.log det.A//
 D A� x�
h
f i
�
hi xjf

j

�
C f i

�hi xj ;kf
j

�
f k



i

D
X
�

f �
�
 � ��
j��j2

:

Taking the second derivative and at the end restricting to p, we have

.log det.A//

x�
D �A�xs @Atxs

@´

At x�

h
f i
�hi xjf

j

��
C f i

�hi xj ;xlf
j

�
f l
�

i

C
X

1���m;1�i�n

f i
�
f

i
��

j��j2
C
X
�

X
ijkl

�RN

i xjkxl
f i
�f

j
� f

k

 f

l
�

j��j2

D
mX

�D1

X
mC1�i�n

f i
�
f

i
��

j��j2
�

mX
�D1

RN

�x�
x�
�
�� :
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Here we have used that

A�xs @Atxs

@´

At x�

h
f i
�hi xjf

j

��
C f i

�hi xj ;xlf
j

�
x
f l
�

i
D

mX
�;�D1

f �
�


xf �
� f

�
�

xf �
��

j��j2j�� j2

D
X
�;�

f �
�


xf �
��

j�� j2
:

Putting all the above together we have the Bochner formula claimed. �

COROLLARY 2.4. If RicNm � 0 and RicM � 0, logD.x/ is a plurisubharmonic
function.

Remark 2.5. With respect to the coordinates specified in Lemma 2.3, we also have

(2.3)

h@x@ log k@f k2; v ^ xvi

D
Pn

iD1

Pm
�D1 jf i

�vj2k@f k2 �
��Pm

�D1 f
�
�v��

��2
k@f k4

�
mX

�D1

j��j2RN .�; x�; @f .v/; x@f .xv//
k@f k2 C

mX
�D1

RM
vxv�x�j��j2
k@f k2 :

For � > n, �� D 0 is understood in the above formula.

3 Proof of Theorem 1.1 and Theorem 1.3
To prove part (i) of Theorem 1.1, note that u.x/ D log.k@f k2.x/ C 1/ is a

plurisubharmonic function by part (a) of Corollary 2.2. The growth assumption of
the gradient in the theorem implies that u.x/ D o.log.r.x///. Hence theorem 0.2
of [28] implies that u is a constant. This together with the second part of (a) in
Corollary 2.2 implies that f is totally geodesic.

To prove part (ii) of Theorem 1.1, we use part (b) of Corollary 2.2 instead.
Here we should remark that the argument of proving the three-circle theorem

in [18] works without any changes. Namely, one can conclude the following corol-
lary.

COROLLARY 3.1. Let M;N be as in Theorem 1.1. Let f W M ! N be a holo-
morphic map. Let M.r/ D supx2Bp.r/ k@f k.x/. Then for any r1 < r2 < r3:

logM.r2/ �
1

log r3 � log r1

�
.log r3 � log r2/ logM.r1/

C .log r2 � log r1/ logM.r3/
�
:

(3.1)

This together with the consequences of (3.1) derived in [18] implies that the bound-
edness of k@f k follows from (1.1).

To prove part (i) of Theorem 1.3, we argue by contradiction. Assume that there
exists a holomorphic map f such that @f W T 0xM ! T 0

f .x/
N is of full rank for
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some x. Let D.x/ be the function defined in Lemma 2.3. Since M is com-
pact, D.x/ attains its maximum at some point x0. Then in a neighborhood of
x0, D.x/ ¤ 0. Now let fj�
 j2.x/g be the singular value of @f at x. Define the
following second-order elliptic operator pointwise

L D
X



1

2j�
 j2
�r
rx
 Crx
r


�
:

Applying (2.2), we obtain that at x0, with respect to the normal coordinates speci-
fied in Lemma 2.3,

0 � L logD � �
mX


D1

mX
�D1

1

j�
 j2
RN

 
�; x�; @f

�
@

@´


�
; @f

�
@

@´


�!
:

Note that
Pm


D1

Pm
�D1

1
j�
 j2

RN .�; x�; @f . @
@´


/; @f . @
@´


// is nothing but the m-

scalar curvature of � D Spanf@f . @
@´


/g, which is negative by the assumption of
Theorem 1.3 (namely the right-hand above is positive). This is a contradiction to
L logD � 0 at x0. A similar argument proves the same result if RicM > 0 and
SNm � 0.

Note that the above argument implies a rigidity result when SNm � 0 is allowed
(but with other assumptions).

COROLLARY 3.2. Assume that dimCM D m � n D dimCN . Let .M; g/ be a
compact Kähler manifold such that RicM � 0. Let .N n; h/ be a complete Kähler
manifold such that SNm .y/ � 0. Then for any nondegenerate holomorphic map
f W M ! N , D.x/ must be a constant. Moreover, RicM � 0 and SNm D 0 at
least along a m-dimensional submanifold. Furthermore, if RicNm � 0 and .Mm; g/

has nonnegative bisectional curvature, then f must be totally geodesic. The same
holds for f W M ! N if HN � 0 and RicM � 0. The map is constant if any of
two inequalities is strict in both cases.

PROOF. Given that f is holomorphic, the locus where D ¤ 0 is open and
dense, with its complement being a closed subvariety. Over this open dense subset

L logD � 0:

Hence logD must be a constant since it attains an interior maximum. The Ricci
flatness and SNm vanishing along a m-submanifold follow from Lemma 2.3.

Under the condition that .M; g/ has nonnegative bisectional curvature and that
RicNm � 0, since D D const on M , we apply the operator L (which is well-defined
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due to D ¤ 0) to k@f k2. Then Lemma 2.1 implies that

Lk@f k2 D
nX

iD1

mX
�;
D1

jf i
�
 j2
j�
 j2

�
X
�

RicN .�; x�/j��j2

C
X
�;


RM

 x
�x�

j��j2
j�
 j2

� 0:

(3.2)

The maximum principle implies that Lk@f k2 D 0 and k@f k is a constant. The part
f being total geodesic follows from f i

�
 D 0 for all 1 � i � n, 1 � �; 
 � m.
For the case HN � 0 and RicM � 0, Lemma 2.1 implies that

�k@f k2 D
nX

iD1

mX
�;
D1

��f i
�


��2 �RN
ixij xj

��f i
�

��2��f j



��2 C RicM�x�
��f i
�

��2 � 0:

The argument in the Appendix implies that the right-hand side above is nonnega-
tive. The claim then follows by the maximum principle. �

Remark 3.3. Applying equation (2.3) to the special case of

f D id W .M; g/! .N; g0/ with N DM and g0
� x�

D g
� x�

C '
� x�
;

and employing the operator L yield the essential calculation in the derivation of
the crucial C 2-estimate [1] (see also [36]) in solving the complex Monge-Ampère
equation related to Kähler-Einstein metrics. In fact, the operator L is the same as
�0 on page 151 of [1]. Specifically, (2.3) implies that

L log k@f k2 � 1

k@f k2
�X
�;i

�j��j2RN
�x�ixi

CRM
ixi�x�

j��j2
j�i j2

�
:

Observe also in this case k@f k2 D mC�',X
i

j��j2RN
�x�ixi

D Ricg
0

�
@

@w�
;
@

@ xw�

�
j��j2;

which equals Ricg
0

. @
@´�

; @
@x́�

/ D Ricg�x�Cc'�x� � tF�x� due to the equation
!m
g0

!m
D

e�c'CtF , following the notations of pages 97–100 of [36]. From the above esti-
mate one can obtain the C 2-estimate (proposition on p. 151 of [1]) for the Monge-
Ampère equation related to the Kähler-Einstein metrics easily (however in terms of
the C 0-estimate, which was first proved via Moser’s iteration for the case of zero
first Chern class and is a highly delicate issue for the case of positive first Chern
class).

Recall from the introduction that we say N has k-dimensional Ricci curvature
bounded from above by �� (denoted by RicNk .v; xv/ � ��jvj2), if when restricted
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to any k-dimensional subspace � � T 0yN , the Ricci curvature of curvature tensor
of RN j�,

Ricy;�.v; xv/ +
kX


D1

R.E
 ; xE
 ; v; xv/

is bounded from above by ��jvj2 for any v 2 �. Here fE
g is a unitary basis of
� � T 0yN . Note that for k D 1, Ric1 is the same as the holomorphic sectional
curvature. However, RicNk for k � 2 is independent of the holomorphic sectional
curvature HN in view of the examples in [12, 32]. The following Schwarz-type
estimate generalizes the previous one proved for m D n (cf. p. 190 of [44]).

COROLLARY 3.4. Let f W Mm ! N n (m � n) be a holomorphic map with M

being a complete manifold. Assume that RicM is bounded from below and the
scalar curvature SM .x/ � �K. Assume further that RicNm .x/ � �� < 0. Then
we have the estimate

D.x/ �
�
K

m�

�m
:

PROOF. Note that Lemma 2.3 implies that

� logD � �
X



j�
 j2 �K � mD
1
m � �K:

The claimed result follows from a similar argument as in the proof of the classical
Schwarz lemma (see theorem 7.23 of [44]) by applying suitable cutoff techniques
and the maximum principle as in [4] (see also the next section). The lower bound
of the Ricci curvature is needed to apply the Laplacian comparison theorem on
the distance function (later a stronger lower bound is needed to apply the Hessian
comparison theorem). �

Part (ii) of Theorem 1.3 is an immediate consequence of the above estimate
applyed to K D 0. Note that the negative upper bound RicNm � �� holds if N is
compact with RicNm < 0. A similar argument to the proof of Corollary 3.2 implies
the following result.

COROLLARY 3.5. Assume that dimCM D m � n D dimCN . Let .M; g/ be a
compact Kähler manifold such that SM � 0. Let .N n; h/ be a complete Kähler
manifold such that RicNm .y/ � 0. For any nondegenerate holomorphic map f W
M ! N , D.x/ must be a constant. Moreover, SM � 0 and RicNm D 0, at least
along a m-dimensional submanifold.

By flipping the sign we have the following consequences.

COROLLARY 3.6 (A hoop lemma-volume version). Let f W M ! N be a holo-
morphic map with M being compact. Assume that RicM � K > 0. Assume
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further that RicNm .x/ � � with � > 0. Then we have the estimate

max
x2M

D1=m.x/ � K

�
;

provided that f is nondegenerate.

PROOF. At the maximum point of D.x/, say x0, apply Lemma 2.3 as before.
Pick v to be the unit direction such that j@f .v/j is the smallest. Then the maximum
principle implies that 0 � �� infv;jvjD1 j@f .v/j2 CK: The claimed result follows
easily. �

We should remark that a similar result can be obtained (with the same argument)
for the harmonic maps between two Riemannian manifolds, namely, if u WM ! N

is a harmonic map between two compact Riemannian manifolds. Assume that
the sectional curvature of N is bounded from above by � and RicM � K with
�;K > 0. Then for nonconstant map u

(3.3) max
x2M

kduk2.x/ � K

�
:

The corollary above has the advantage that when the volume (or the stretching of
the volume forms) is concerned only the Ricci curvatures of both the target and
domain manifolds are involved. The result for the harmonic maps is less satisfying
since it involves the bound of two different types of curvatures.

To prove part (iii) of Theorem 1.3, we need the following result from [22]:
Let .M; g/ be a complete Kähler manifold with RicM � 0. Let u.x/ be a

plurisubharmonic function on M satisfying that

lim
x!1

u.x/ D o
�
log.r.x//

�
:

Then
�p�1 @x@u�m � 0.

Now let u.x/ D logD.x/. Lemma 2.3 implies that u.x/ is a plurisubharmonic
function, and at the point where D > 0, it is strictly plurisubharmonic due to
RicNm < 0. On the other hand, the growth assumption in part (iii) of Theorem 1.3
implies that u.x/ D o.log.r.x///. Hence

�p�1 @x@u�m � 0. This is a contra-
diction at the point x with D.x/ > 0. The contradiction shows that D.x/ � 0;
namely, f is degenerate.

4 Extensions
In this section we extend the proofs in the previous section to obtain the follow-

ing result towards the question (Q) raised in the introduction.

THEOREM 4.1. Assume that dimCM D m � n D dimCN .
(i) Let .M; g/ be a complete Kähler manifold such that the holomorphic bi-

sectional curvature is bounded from below by �K1 for some K1 > 0.
Let .N n; h/ be a compact Kähler manifold such that Sm.y/ � �� < 0.
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Let fj�
 j2.x/g be the singular values of @f at T 0xM . Assume further that
RicM � �K and D.x/ is bounded from above. Then

(4.1) lim sup
x!1

.min


j�
 j2.x// �

mK

�
:

In particular, if additionally RicM � 0 then f W M ! N must be asymp-
totically degenerate in the sense that

lim sup
x!1

�
min

1�
�m
j�
 j2.x/

� D 0:

(ii) Let .M; g/ be a Kähler manifold. Assume that for R > 0, the holomorphic
bisectional curvature of M is bounded from below by �K1 for some K1 >

0 in Bp.R/. Let .N n; h/ be a compact Kähler manifold such that Sm.y/ <
�� < 0. Let f W M ! N be a holomorphic map. Let fj�
 j2.x/g be the
singular values of @f at T 0xM . Let �m�1.�/ be the .m � 1/th symmetric
function of the singular values fj�
 j2g. Assume further that RicM � �K.
Then we have

sup
Bp.

R
2
/

D.x/ � mK

�
sup

Bp.R/

�m�1

C
�
C1

R2
C C1

R

�
C.m/

�
1

R
C
p
K1

���supBp.R/ �m�1
�

:

(4.2)

Here C1 > 0 is an absolute constant. If furthermore .Mm; g/ is complete
and has nonnegative bisectional curvature and �m�1 satisfies that

lim sup
x!1

�m�1.x/

r2.x/
D 0;

then f must be degenerate.

PROOF. To prove part (i), we apply the maximum principle of [34] at infin-
ity. By the virtue of [34] we have a sequence of points xk ! 1 such that
limk!1D.xk/ ! supM D, which we may assume without loss of generality
is positive, and

lim
k!1

h
p
�1 @x@ logD;

1p
�1

v ^ xvi
����
xk

� 0:

Applying Lemma 2.3, if denoting the lower bound of the Ricci curvature (of M )
by �K, we have that

lim sup
k!1

0
@� �K

mX

D1

1

j�
 j2.xk/

1
A � 0:

This implies that

lim sup
k!1

.min


j�
 j2.xk// �

mK

�
:
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This proves (4.1), which implies the rest of part (i).
To prove part (ii), let �.t/ W �0;C1/ ! �0; 1� be a function supported in �0; 1�

with �0 D 0 on �0; 1
2
�, �0 � 0, j�

0j2

�
C .��00/ � C1. The construction of such � is

elementary. Let 'R.x/ D �. r.x/
R

/. When the meaning is clear, we omit subscriptR
in 'R. Clearly D �' attains a maximum somewhere at x0 in Bp.R/. Now we apply
L to log.D'/ at the maximum point x0 (where D � ' also attains its maximum).
The first derivatives vanish at x0, which implies

r
D.x0/ D �D.x0/
�0. r.x/

R
/

R�. r.x/
R

/
r
r.x/

�����
x0

;

rx
D.x0/ D �D.x0/
�0. r.x/

R
/

R�. r.x/
R

/
rx
r.x/

�����
x0

:

Applying Lemma 2.3, we have that at x0 (where we may assume D' > 0),

0 � L log.D'/ � � �K
X



1

j�
 j2
C L log'

D � �K
X



1

j�
 j2
C �00

R2'

X



jr
r.x/j2
j�
 j2

C �0

2R'

X



r2

 x
r.x/Cr2

x

r.x/

j�
 j2
� j�0j2
'2R2

X



jr
r.x/j2
j�
 j2

� � �K
X



1

j�
 j2
� C1

'R2

X



1

j�
 j2
� C1

'R

X



C.m/. 1
R
Cp

K1/

j�
 j2

� j�0j2
R2�'

X



1

j�
 j2
:

In the last line above we have used the complex Hessian comparison theorem of
[17]. Now multiplying D' on both sides of the estimate above, we have at x0

0 � D � '� �m'K�m�1 �
C1

R2
�m�1 �

C1

R

�
C.m/

�
1

R
C
p
K1

��
�m�1:

From this we have that

sup
Bp.

R
2
/

D � mK

�
sup

Bp.R/

�m�1C
�
C1

R2
C C1

R

�
C.m/

�
1

R
C
p
K1

���supBp.R/ �m�1
�

:

This proves (4.2). In the above estimate, letting K D 0 and letting R!1, noting
that limR!1

supBp.R/ �m�1

R2 D 0, we have the rest of the claim in part (ii). Here
we have used the complex Hessian comparison result assuming the bisectional
curvature lower bound [17]. �
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It is clear from the proof that part (i) of Theorem 4.1 holds if Ric � �K outside
a compact domain, or even only

lim inf
x!1

RicM .x/ � �K:

In particular, if lim infx!1 RicM .x/ � 0, we have

lim sup
x!1

�
min


j�
 j2.x/

� D 0:

For part (ii), if we choose � carefully, the following estimate can be proved: If
RicM � �K, the bisectional curvature is bounded from below by �K1 outside
Bp.R0/ for some R0 > 0 then

(4.3)

sup
Bp.

R
2
/nBp.R0/

D.x/

� mK

�
sup

Bp.R/

�m�1 C
C2

R
sup

Bp.R0/

�m�1

C
�
C1

R2
C C1

R

�
C.m/

�
1

R
C
p
K1

���supBp.R/ �m�1
�

:

Here C1 is an absolute constant, and C2 D C2.R0/.
A similar localization procedure also implies the following estimate:

COROLLARY 4.2. LetR > 0 be a constant. Assume that scalar curvature SM .x/ �
�K and RicM � �K1 in Bp.R/, and that the k-Ricci of N RicNk .x/ � ��. Then
we have the estimate

(4.4) sup
Bp.

R
2
/

mD1=m.x/ � K

�
C 1

�

�
C1

R2
C C1

R

�
C.m/

�
1

R
C
p
K1

���
:

Here C1 is an absolute constant.

For any p one may define the lower Ricci curvature radius (abbreviated by
r lRic.p/) as the biggest R such that Ric � � 1

R2 in Bp.R/. For R D r lRic the
estimate simplifies into the form

(4.5) sup
Bp.

R
2
/

mD1=m.x/ � K

�
C 1

�

C1

R2
:

5 A Schwarz Lemma
In this section we prove Theorem 1.4. We start with a linear algebra lemma.

LEMMA 5.1. Let A be a Hermitian symmetric matric that is semipositive. Let G
be a positive Hermitian symmetric matrix. We denote by .G� x� / the inverse of G.
Then for any s

(5.1) sup
v¤0

hA.v/; xvi
hG.v/; xvi �

Gs x�A
� x�
G�xs

Gsxs
� inf

v¤0

hA.v/; xvi
hG.v/; xvi :
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PROOF. By linear algebra, there exist matrices a and g such that A D xat �a and
G D xgt � g. The positivity of G implies that g is nonsingular. Let fE
g be f @

@´

g.

Now the middle term can be expressed as

hG�1AG�1.Es/; xEsi
hG�1.Es/; xEsi

D hxat � a � g�1 � .xgt /�1.Es/; g�1 � .xgt /�1.Es/i
h.xgt /�1.Es/; .xgt /�1.Es/i

:

Let w D .xgt /�1.Es/ and v D g�1.w/ (which is clearly nonzero). Then the right-
hand side can be written as

hxat � a � g�1.w/; g�1.w/i
jwj2 D ha.v/; a.v/i

jg.v/j2 D hA.v/; xvi
hG.v/; xvi :

Now the claimed result becomes obvious. �

Now we prove Theorem 1.4.1 Let � and ' be the cutoff functions as in the last
section. We consider k@f k2m'. It must attain a maximum somewhere in Bp.R/,
say at x0. Now we pick normal coordinates .´1; : : : ; ´m/ centered at x0, and
.w1; : : : ; wn/ centered at f .x0/ as before. Let A D .A

� x�
/ locally with

A
� x�
.x/ D f i

� .x/hi xj .f .x//f
j

�
.x/:

By unitary changes of frame of T 0x0M and T 0
f .x0/

N , we can assume that f i
� D

�i��� at x0. We may also assume that

k@f k2m.x0/ D j�1j2 � j�2j2 � � � � � j�mj2:
Now let

W.x/ D
g1

x� .x/A
� x�
.x/g�

x1.x/

g1x1.x/
:

By the choice of the normal coordinates specified as above, we have that W.x0/ D
j�1j2 D k@f k2m.x0/. The above lemma implies that W.x/ � k@f k2m.x/ for x
in the neighborhood of x0. Hence W.x/ � '.x/ still attains a local maximum at
x0, which is the same as k@f k2m � ' at x0. In the terminology of viscosity solu-
tions, W.x/ serves a smooth barrier for k@f k2m.x/. We shall apply the maximum
principle to log.W.x/ � '.x//. For that we need another @x@-lemma.

LEMMA 5.2. Under the above notations, at x0, or at any point with the normal
coordinates specified above,

(5.2)
�p

�1 @x@ logW;
1p
�1

v ^ xv
�
D RM

1x1vxv
�RN

1x1@f .v/@f .v/
C
P

i¤1 jf i
1vj2

W
:

1 Very recently we were informed by X. D. Wang that Theorem 1.4 was obtained by Chen-Cheng-
Lu under the assumption that the sectional curvature of the domain manifold is bounded from below.
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PROOF. We shall compute @2

@´
@´x

logW . Then the claimed result follows from

this by linear combinations. Under the normal coordinates specified above, we
have that

@g�
x�

@´

D �g�x� @gsx�

@´

gs

x� ;
@2g�

x�

@´
@´x

D �g�x� @2g

sx�

@´
@´x

gs

x� D R
� x�
 x


:

Hence we have at x0, noting that
@g�x�
@´


D 0 and
@hi xj
@wk D 0,

@ logW
@´


D
g1

x�f i
�
hi xjf

xj
x�
g�

x1

W
D

f 1
1
f

x1
x1

W
;

@ logW
@´x


D
f
x1
x1x

f 1
1

W
;

@2 logW
@´
@´x


D
2 @2g1

x�

@´
@´x

f i
�hi xjf

xj
x�
g�

x1 C g1
x�f i

�f
xj
x�

@2hi xj

@wk@wxl
f k

 f

xl
x
 g

�x1 C g1
x�f i

�
hi xjf
xj
x� x

g�

x1

W

�
jf 1
1
 j2jf 1

1 j2
W 2

�RM
1x1
 x


:

The claimed result follows by observing that W D jf 1
1 j2, and putting the above

computations together. �

Remark 5.3. The argument in the above proof also shows that k@f k2m is a viscosity
subsolution of (5.2), and the minimal eigenvalue of A, on the other hand, is a
viscosity supersolution of (5.2). In fact, one can prove something slightly better.
Let � be the multiplicity of �1 (namely for 
 > �, �
 < �1). If at point x0, ' is a
smooth barrier from above, namely '.x0/ D �1.x0/ and in a neighborhood of x0,
'.x/ � �1.x/. Then at x0, it holds that�p

�1 @x@ log';
1p
�1

v ^ xv
�

� RM
1x1vxv

�RN

1x1@f .v/@f .v/
C
X

>�

1

.' � �
 /

�jf 1

vj2 C jf 


1vj2
�
:

(5.3)

Now with the above lemma we continue along the same line of argument for the
proof of Theorem 4.1 and obtain at x0, where W � ' attains its maximum, that

0 � @2

@´1@´x1
.log.W'// � RM

1x11x1
�RN

1x11x1
jf 1
1 j2 C

@2 log'

@´1@´x1
�
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� �K C �jf 1
1 j2 C

�00

R2'
jr1r.x/j2 C

�0

2R'

�
r2
1x1
r.x/Cr2

x11
r.x/

�

� j�0j2
'2R2

� jr1r.x/j2

� �K C �jf 1
1 j2 �

C1

'R2
� C1

'R
� C.m/

�
1

R
C
p
K2

�
� C1j�0j2

R2�'
:

Here we applied the complex Hessian comparison theorem of [17] with K2 being
the lower bound of the bisectional curvature in Bp.R/. Multiplying ' on both
sides, we will have at x0 the estimate

�jf 1
1 j2' � K' C C1

R2
C C1

R
� C.m/

�
1

R
C
p
K2

�
C C1j�0j2

R2�
:

Hence we arrive at the estimate

(5.4) sup
Bp.

R
2
/

k@f k2m.x/ �
1

�

�
K C C1

R2
C C1

R
� C.m/

�
1

R
C
p
K2

��
:

The claimed estimate in Theorem 1.4 follows by letting R ! 1. The last state-
ment on the holomorphic map being a constant map follows easily by applying the
estimate to the case K D 0.

COROLLARY 5.4. Let R > 0 be a constant such that the bisectional curvature
of M is bounded from below on Bp.R/ by �K2. Assume that HM .X/ � �KjX j4
and that HN .Y / � ��jY j4. Then we have the estimate

(5.5) sup
Bp.

R
2
/

k@f k2m.x/ �
1

�

�
K C C1

R2
C C1

R
� C.m/

�
1

R
C
p
K2

��
:

Here C1 is an absolute constant.

For any point p, we can similarly define the lower bisectional curvature radius
being the biggest R such that the bisectional curvature is bounded by � 1

R2 on
Bp.R/. Such a radius is denoted by r lB.p/. Clearly, if the bisectional curvature is
nonnegative, r lB.p/ D1. For R D r lB.p/ the above estimate has the simple form

(5.6) sup
Bp.

R
2
/

k@f k2m.x/ �
1

�

�
K C C1

R2

�
:

A consequence from the proof also implies the following result, which can be in-
teresting in the study of holomorphic (even memomorphic) maps between compact
Kähler manifolds.

COROLLARY 5.5 (A hoop lemma-length version).
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(i) Assume that M is compact, HM .X/ � KjX j4, and HN .Y / � �jY j4,
with K; � > 0. Then for any nonconstant f WM ! N ,

max
x
k@f k2m.x/ �

K

�
:

(ii) Assume that M is compact, RicM � K1, and that HN .Y / � �jY j4, with
K1; � > 0. Then for any nonconstant holomorphic map f WM ! N ,

max
x
k@f k2.x/ � K1

�
:

The proof of the second statement uses an estimate modifying (A.3) in the Ap-
pendix. Part (i) of the result is more satisfying since it only involves the holomor-
phic sectional curvature of both the target and domain manifolds. The proof of the
Schwarz lemma implies the following result.

COROLLARY 5.6. Let .Mm; g/ be a compact Kähler manifold, and .N n; h/ an-
other Kähler manifold. Assume either that HM .X/ > 0 and HN .Y / � 0, or
HM .X/ � 0 and HN .Y / < 0. Then any holomorphic map f WM ! N must be
a constant.

PROOF. Assume otherwise. Then k@f k2m.x/ attains a nonzero maximum some-
where, say at x0. Applying the above proof of the Schwarz lemma at x0, we have

0 � @2 logW

@´1@´x1
� RM

1x11x1
�RN

1x11x1
k@f k2m > 0:

This contradiction proves the result. �

Note that under the assumptions HM .X/ > 0 and HN .Y / � 0, the result also
follows from the above Hoop lemma part (i) by taking � ! 0. This part was
also proved independently in [40], using a different method. Similarly, f must be
constant if RicM > 0 and HN � 0.

Appendix
First we include an alternate algebraic part of the proof, by Royden, of the “clas-

sical” Schwarz lemma [35]:
Let f W Mm ! N n be a holomorphic map. Assume that the
holomorphic sectional curvature of N , H.Y / � ��jY j4, and the
Ricci curvature of M , Ric.X; xX/ � �KjX j2, with �;K > 0. Let
d D rank.f /. Then

(A.1) k@f k2.x/ � 2d

d C 1

K

�
:

The estimate k@f k2 � K
�

was proved (by S.-T. Yau [42]) either for M being
a Riemann surface or for the case m � 2 assuming that the bisectional curvature
of N is bounded from above by �� (cf. [42]). The above result of Royden covers
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Yau’s estimate for the Riemann surfaces case while allowing a weaker holomor-
phic sectional curvature upper bound on the target manifolds for any dimension of
the domain manifolds. The algebraic ingredient is needed in showing, under the
assumption that HN .Y / � ��jY j4,

(A.2) �k@f k2 � d C 1

2d
�k@f k4 �Kk@f k2:

By taking the trace in (2.1) of Lemma 2.1, we have that

�k@f k2 � �g� x�g
x�RN
�
@f�; x@f x� ; @f
 ; x@fx�

�C g�
x�g


x�h@f .RM


x�
/�; x@f x� i:

With respect to normal coordinates chosen before (so that f i
� D �i��i ) the above

can be written as

�k@f k2 � �RN
ixij xj

jf i
� j2jf j


 j2 C RicM�x� jf i
� j2 � �RN

ixij xj
jf i
� j2jf j


 j2 �Kk@f k2:
Thus the result follows easily after the pointwise estimate (under the assumption
H.X/ � ��jX j4):

(A.3) RN
ixij xj

jf i
� j2jf j


 j2 � �d C 1

2d
�k@f k4:

The argument below, which is due to F. Zheng, proves (A.3), which is a lemma
of Royden. To prove this, consider the vector Y D P

�i¤0
wi�i

@
@wi (if m � n,

Y 2 @f .T 0xM/). Direct calculation shows that«
S2d�1

RN .Y; xY ; Y; xY /d�.w/ D 2

d.d C 1/
RN
ixij xj

j�i j2j�j j2

D 2

d.d C 1/
RN
ixij xj

jf i
� j2jf j


 j2:

On the other hand,«
S2d�1

RN .Y; xY ; Y; xY / d�.w/ � ��
«
S2d�1

jY j4 d�.w/

D ��
d.d C 1/

�
2
X

j�i j4 C
X
i¤j

j�i j2 j�j j2
�

D � �

d.d C 1/

�
k@f k4 C

X
j�i j4

�

� � �

d.d C 1/

d C 1

d
k@f k4:

Putting the above together we have (A.3).
From the proof it is easy to see that if the equality holds in (A.1), f is totally ge-

odesic. This is due to the formula in Lemma 2.1. Moreover, if f is an immersion
at some point, then f is an isometric immersion. We should remark that in a more
recent paper [24] the estimate (A.1) has been generalized to a family of interpolat-
ing estimates that connects Theorem 1.4 with Yau-Royden’s result. The rigidity for
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the equality case also holds for the estimates there. An easy consequence of this is
that any distance nondecreasing holomorphic map between quotients of complex
hyperbolic spaces must be totally geodesic. The general case without the distance
nondecreasing assumption is only known for holomorphic immersions between
compact hyperbolic quotients [2] under a restriction of the dimension of the target
manifold in terms of the dimension of the domain manifold.

Now we prove that the k-hyperbolicity defined in the introduction is the same
as: For any x 2 N , v1 ^ � � � ^ vk ¤ 0 with vi 2 T 0xN , the pseudonorm

kv1 ^ � � � ^ vkkk + inf
df .zv1^���^zvk/Dv1^���^vk

kzv1 ^ � � � ^ zvkkp;

with f W Dk.1/ ! N being holomorphic and f .0/ D x, is a norm. Here k � kp
denotes the Poincaré metric on Dk (naturally extended to ^kT 0N ). The proof is
parallel to the k D 1 case. It is easy to show that if there exists a nondegenerate
f W Ck ! N , then the above pseudonorm has to vanish for any v1 ^ � � � vk ¤ 0

in ^kT 0xN with df .zv1 ^ � � � ^ zvk/ D v1 ^ � � � ^ vk , since if we let �r.´/ D ´
r

and define f` D f .� 1
`
.´//, it is clear df`.

zv1
`
^ � � � ^ zvk

`
/ D v1 ^ � � � ^ vk . But

k zv1
`
^� � �^ zvk

`
kp ! 0 as `!1. The other direction utilizes that N is compact. It

suffices to show that if the pseudonorm is not a norm at x, then one can construct a
nondegenerate holomorphic f W Ck ! N . First, equip N with a Hermitian metric
h, and consider F D fholomorphic g W Dk.1/ ! N; g.0/ D xg. We claim that
there exists gi such that D.gi /.0/!1. Otherwise there will be a uniform upper
bound A for D.g/ for any g 2 F . This would imply that

0 < kv1 ^ � � � ^ vkkh �
p
Akzv1 ^ � � � ^ zvkkp:

This is a contradiction, since the right-hand side can be arbitrarily small! Now for
the gi with D.gi /.0/!1, we let `i D D.gi /.0/ and consider fi D gi .�`i .´//,
which shall be defined on a sequence of balls whose union exhausts Ck . Clearly
D.fi /.0/ D 1. Restricted to any compact subset K � Ck , by the compactness of
N and passing to a subsequence (still denoted as ffig), we assume fi ! f1 for
some f1 W Ck ! N . Clearly D.f1/.0/ D 1, and hence is nondegenerate.

It seems that our definition of k-hyperbolicity is different from Eisenman’s [6]
for k < n (cf. [5]), since his definition concerns k-dimensional measure for all real
k-dimensional submanifolds, while we are only concerned with the metric/norm on
elements in ^kT 0N , namely only k-dimensional “holomorphic” parallelepipeds in
the holomorphic tangent space.
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