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Abstract. This article was part of author’s 1993 master thesis at Fudan University.

Since the results were cited in more recent literatures it perhaps is helpful to make it
available on arXiv.

1. Introduction

Let Mn be a connected complete Riemannian manifold of dimension n, and let f be a
smooth function defined on M . If f is not a constant function and there is a smooth (or
even C2) function b : J := f(M)→ R such that

‖∇f‖2 = b(f), (1.1)

then we call f a transnormal function. This equation was first studied by Elie Cartan in
[4] where he began the project of classifying the isoparametric hypersufaces in the space
forms. Later on, this equation appeared in the series of papers [8, 9, 6, 7, 10]. By studying
the whole family of hypersurfaces defined by the level sets of the corresponding transnormal
(isoparametric) functions, [8, 9] gave surprising restrictions on the isoparametric hypersur-
faces in spheres. On general Riemannian manifolds this equation was first studied in [13].
The main result which was proved there is;

(1) There is no critical value in int(J). So the focal varieties, i.e. the singular level sets
of f , are only the level sets corresponding to the maximum or the minimum point of J (we
denote them by V+ and V−).

(2) (Theorem A of [13].) If M is a connected complete Riemannian manifold, and f is a
transnormal function on M , then

a) The focal varieties of f are smooth submanifolds of M .

b) Each regular level set of f is a tube over either of the focal varieties.

These results are generalizations of the geometry provided by the isoparametric family in
[8] and [9]. In this paper, we will show that the existence of transnormal functions puts
very strong restriction on the topology and geometry of the manifolds. In particular, we can
prove that if a simply-connected compact three manifold supports a transnormal function
then this manifold has to be a three-sphere. We can also show that the level hypersurfaces of
transnormal function in Sn are all isoparametric hypersurfaces (i.e. All principle curvatures
are constant on the hypersurface). The interesting point is the interaction between topology
and geometry, i.e. that the geometry of transnormal functions restrict the topology of the
manifold where they are defined and the topological structure, on the other hand, helps us to
get more geometric information of the leaves of the foliation provided by the functions. On
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complete manifold, there are plenty of transnormal functions (See next section for examples).
But one can give a complete classification of transnormal functions in Rn and Hn.

The author would like to thank Prof. P. Li for continuous support and Prof. R. Stern
Hesheng Hu, Y. L. Xin and T. Fuller for helpful discussions.

2. Transnormal foliations.

Examples. Before we study the general theory let’s start with some concrete examples
of transnormal functions.

Example 1. M = Rn, f = x21 + x22 + · · ·+ x2k.

Example 2. M = Sn, f = x21 + x22 + · · ·+ x2k − x2k+1 − · · · − x2n+1.

Example 3. M = Sn, all the polynomials (of degree 4) constructed using Clifford algebra
representations in [7].

Example 4. M is a complete manifold with nonnegative Ricci curvature and a line, then
the Busemann fuction is a transnormal function (See [12]). In this case, since the Busemann
function satisfies ‖∇B‖2 = 1 we know that all the level sets are regular and we can have
the splitting of the manifold by [13].

Definition 2.1. (See [B]). A partition F of a complete Riemannian manifold M is called
a transnormal foliation (or transnormal system) if every geodesic of M cuts the leaves (the
connected elements) of F orthorgonally at none or all of its points. And a transnormal
foliation is called regular if all leaves has same codimension. Otherwise it’s called singular.

Proposition 2.1. Let M be a complete manifold, f be a transnormal function on M . Then
the level sets of f yields a transnormal (might be singular) foliation of M .

Proof. The proof follows directly from the geometry described in [13], mainly the Theorem
A there. In fact, in our case we have codimension one foliation i.e. generic leaves are
codimension 1. �

Lemma 2.1. Let M be a compact manifold, F be a singular transnormal foliation of M

with only one singular leave S. Then there exists a double cover π : M̃ →M .

Proof. By the Lemma 1 of [1], we know that the exponential map expS : NS →M preserves
the leaves of the foliations (Over the NS , the normal bundle of S in M , the foliation is
given by the sections of constant length.) and it must have conjugate locus of S, otherwise,
by the Theorem 2 [1] we know that M is diffeomorphic to a vector bundle over S, which
is contradictory to the compactness of M . Let us denote the first conjugate locus of expS
by C(S). While S is the only singular leave of F we know expS(C(S)) = S. And we can
assume that N2tS = {(s, y) ∈ NS | ‖y‖ = 2t} is the first conjugate locus. By the above,
we know that the cut locus of S is NtS and we denote Ht = expS(NtS). Furthermore we
have that expS(NtS)→ Ht is a double cover. If we denote the deck transformation of this

double cover by h we can construct M̃ by gluing two copies of N≤tS along their boundary

through h. From the construction it’s quite clear that we have double cover π : M̃ →M .�

Theorem 2.2. If M is a simply-connected compact 3-manifold and with a Riemannian
metric g and a smooth function f such that f is transnormal with respect to g. Then M is
a three sphere.
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Proof. Let F be the transnormal foliation of M provided by f . By Lemma 2.1 and the
simply-connectness of M we know that F has more than one singular leaves. By the Theorem
3 of [1] we know that F has exactly two singular leaves. Let S1 and S2 be the two singular
leaves and di(i = 1, 2) be the codimension of them in M . For (d1, d2) we have the following
three cases;

i) (d1, d2) = (3, 3). In this case, we know S1 and S2 are all points (denoted as p and q)
then M = N≤t{p} ∪N≤ t{q}, is a three sphere by Brown’s theorem ([2]).

ii) (d1, d2) = (2, 2). In this case S1 = S2 = S1 , and M is so-called lens space L(p, q) (See,
for example, [11] Pages 234-235) and we know that L(1, q) = S3 and π1((L(p, q)) = Zp. By
the simply-connectness assumption we also know that M is a three sphere.

iii) (d1, d2) = (3, 2). But this case can’t happen in our situation by some Mayer-Vietoris
argument and it was essentially proved in Corollary 1 of [1]. For the sake of completeness
we include a simple argument here. We know that S1 = p and S2 = S1 and M = N≤t{p} ∪
N≤tS1. In particular we have Ht = S2 and also Ht = expS1(NtS1). But it’s a contradiction
since π1(S2) = 0 and π1(NtS1) = Z⊕ Z. �

3. Geometric constrains of the transnormal foliation.

In this section we first show that if M happen to be space form with nonnegative curvature
the level set of a transnormal function has some interesting geometric properties. Before we
prove our results we need to set up some preliminary results. From (1.1) we know that grad f√

b(f)

( over where b(f) 6= 0) is a self-parallel vector field (cf.[5]), and the integral curve is geodesic
perpendicular to f−1(α). We give the following definition according to this observation.

Definition 3.1. A geodesic segment σ : (α, β) → M is called an f -segment, if f(σ(t)) is

increasing and σ̇(t) = grad f√
b(f)

(b(f) 6= 0). And σ(t) is called an inverse f -segment if σ(−t) is

an f -segment(cf. [13]).

To give the description which Wang provided in [13], we need to define the following map
Φ(t, p). Suppose that α ∈ int(J), then Mα := f−1(α) is a hypersurface. Let p ∈ Mα, and
let ξ(p) be the unit normal vector pointing to the f -increasing direction, then expp(tξ(p))
is the arc-length geodesic starting from p. This is a f -segment. We can define the smooth
map Φ(t, p) := expp(tξ(p)), and let φt(p) := Φ(t, p). We know from lemmas of [13] that
φt((Mα) belongs to the level set of f . When dφt is non-degenerate for 0 ≤ t ≤ r, it’s a level
hypersurface of f , and d(Mα, φr(Mα)) = r. The f -segment φt(p) is the minimizing geodesic
which joins Mα to φt(Mα).

Remark 3.1. From [13] we know that V+ = φr(Mα), if r is the first degenerate point of
dφt.

Definition 3.2. Let K be a submanifold of M , p ∈ K,σ(t) be a geodesic starting from
p, σ̇(0) ⊥ Tp(K), and Y (t) be a Jacobi field along σ(t). We call Y (t) a K-Jacobi field

provided that it satisfies: Y (0) ∈ Tp(K), and Sσ̇(0)Y (0) + Ẏ (0) ∈ (Tp(K)⊥, where S is the
second fundamental form of K (cf. [3]).

The relation between the K-Jacobi fields and the function f is given in the following
proposition.
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Let Mα be a level set. We know from Theorem A of [13] that it’s always a manifold, and
we can assume that it is connected. Let q be a point of M , but q /∈ Mα, we can assume
β = f(q) > α. Consider σ(t) a f -segment joining p := σ(0) to q = σ(`). We know from [3]
that for any two vector X,Y ∈ Tq(Mβ), there exists two Mα-Jacobi fields Ji, i = 1, 2 such
that J(`) = X,J2(`) = Y . We have the following proposition.

Proposition 3.1. For Mβ regular,

D2f(X,Y ) =
√
b(f)〈J̇1(`), J2(`)〉. (3.1)

Proof. We divide the proof into two cases. Case 1). Mβ is a hypersurface. In this case we
can compute directly by using the concrete construction of Ji. Let γi(s) be two curves in
Mβ such that γi(0) = q, γ̇1(0) = X and γ̇2(0) = Y . Then by using the exponential map, we
can get two families of geodesics γi(t, s). These two families give two geodesic variations of
σ(t). Therefore, the variational vector fields are the Mβ-Jacobi fields (they are Mα-Jacobi
fields as well). From the construction we know J(`) = X; J2(`) = Y , Now we can do the
following calculation:

D2f(X,Y ) = D2f(Y,X) = XY f −DXY f

= X〈Y, grad f〉 − 〈DXY, grad f〉
= 〈Y,DX grad f〉 = 〈Y,DX(

√
b(f)σ̇〉

= 〈Y,
√
b(f)DX σ̇〉+

1

2
· b
′(f)√
b(f)
〈Y, 〈X, grad f〉σ̇〉

=
√
b(f)〈J2, DJ1 σ̇〉 =

√
b(f)〈J̇1, J2〉.

Case 2). Mβ is a focal submanifold. We can construct Jacobi fields as Case 1). From [13]
we know that σ(t) belongs to the level hypersurfaces, provided ` − ε < t < `. So Case 2)
follows Case 1) by continuity. �

Remark 3.2. If σ(t) is the inverse f -segment, we can get the similar result:

D2f(X,Y ) = −
√
b(f)〈J̇1, J2〉. (3.2)

The above proposition relates the Hession of f to the Mα-Jacobi fields. However, we have
known the following equation on hypersurface Mα (See Theorem 5.1 on page 268 of [CR]):

〈SξX,Y >= −D
2f(X,Y )√
b(f)

, (3.3)

where S is the second fundmental form of the level hypersurface, ξ = grad f√
b(f)

.

From the equation (3.1) and the Proposition 3.1 we can calculate the principal curvatures
of the level set of f . In the case that Mα is a hypersurface, let σ(t) be an f -segment joining
Mα to another level hypersurface Mβ . Then the Mα-Jacobi fields are the vector fields J(t)
satisfying

J̈(t) +RtJ = 0, J(0) ∈ Tp(Mα), Sσ̇J(0) = −J̇(0), (3.4)

where RtJ = R(σ̇(t), J(t))σ̇(t). If we can solve (3.4) we can get some information about the
principal curvatures of parallel hypersurfaces. Combining the global geometrical structure
of transnormal function and the calculation given above, we can prove the following result.
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Theorem 3.3. Let M = M(c) be a Riemannian manifold with nonnegative constant sec-
tional curvature c and f be a transnormal function on M . Then all the regular leaves
of the related transnormal foliation are isoparametric hypersurfaces, i.e. all the principal
curvatures of the level hypersurfaces are constant on the hypersurface.

Proof. When c > 0, we can assume c = 1, and we only need to give the proof for the case
c = 1. We divide the proof into two cases.

Case 1). V+ and V− have codimension greater than 1. In this case we can apply the
Theorem A in [13] to prove that the regular level set of f , say Mα = f−1(α), α ∈ int(J), is
an isoparametric hypersurface.

The map φr(p) defined as before is our starting point. We know from [3] that dφt(X) is
the Jacobi field J(t) along the f -segment φt(p), which have the initial value X. Whether
dφr is degenerate is determined by if there is a Jacobi-field J(t) with nonzero initial value,
but vanishes at φr(p).

We denote `1 := d(Mα, V+), `2 := d(V+, V−). From the facts described in the introduction
and the assumption that V+ and V− have codimension greater than 1, we know that when
r 6= `1+k`2, k = 0, 1, · · · , φr is a diffeomorphism from Mα to another hypersurface, and dφr
degenerates if and only if r = `1 + k`2. However, we can solve the equation (3.4) explicitly.
Let the principal curvatures at p be λ1 = λ1,1 = λ1,2 = · · · = λ1,m1 > λ2 = λ2,1 = λ2,2 =
λ2,m2 > · · · >= λg = λg,1 = λg,2 = · · · = λg,mg , with corresponding principal vectors
X1,1, X1,2, · · · , X1,m1

, X2,1, X2,2, · · · , X2,m2
, · · · , Xg,1, Xg,2, · · · , Xg,mg

, where mi are the
multiplicities of λi, g is the number of distinct principal curvatures. Solving the Jacobi
equations:

J̈i,j(t) + Ji,j(t) = 0, Ji,j = Xi,j , J̇i,j(0) = −λi,jXi,j

we get the solutions

Ji,j(t) = (cos t− λi,j sin t)X̃i,j(t) (3.5)

where X̃i,j(t) is the parallel transport of Xi,j along φt(p). So we conclude Ji,j(t) = 0 if
and only if t = cot−1(λi,1). And φr is diffeomorphism if 0 < r < `1, hence we have:
λ1,j = cot(`1) for j = 1, · · · ,m1.

Similarly, because φr is a diffeomorphism if `1 < r < `1 +`2 and degenerates at r = `1 +`2,
we have that λ2,j = cot(`1 +`2). Inductively, we can conclude that λi,j = cot(`1 +(i−1)`2).
So {λj} are independent of the point on Mα and we complete the proof in Case 1).

Case 2). Since φr must degenerate for some r (cf [3]), V+ and V− can not be both
hypersurfaces. We might as well assume that V+ has codimension greater than 1 and
V− is a hypersurface. In this case, φt(p) reaches V+, at t = `1, then f(φt(p)) begins to
decrease until φt(p) reaches V−, but φr : Mα → V− is a diffeomorphism, so dφ`1+`2 does not
degenerate. When t = `1 + 2`2, φt(p) reaches V+ again, and dφt degenerates. By the same
way as Case 1) we can get λi,j = cot(`1 + 2(i− 1)`2).

In both cases we all have Mα is isoparametric. For c = 0 one can do similarly. �

Remark 3.3. From the above proof we can conclude that g`2 = π for Case 1) and
2g`2 = π for Case 2). This is just the geometry which Münzner described in [8]. And this
result might be helpful to the classification of the isoparametric hypersurfaces in spheres.
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Remark 3.4. In [13] it was claimed (in Theorem B) that the transnormal functions on
Sn are all isoparametric functions. In fact the claim is not correct and Theorem 3.3 is the
right version of the claim.

Theorem 3.4. If M = M(0), then any transnormal function on M is the function of
distance to a totally geodesic submanfold.

To prove this result we will use the following lemma which is a corollary of Cartan’s
fundamental equation (see [6], Proposition 4).

Lemma 3.1. (See [F], Theorem 5.) If N is an isoparametric hypersurface in M = M(c)
of constant curvature c ≤ 0, then the number of distinct principal curvatures g is ≤ 2. For
g = 1, N is totally umbilic. For g = 2, the two distinct principal curvatures satisfy

λ1λ2 = c. (3.6)

Proof of Theorem 3.4. From Theorem 3.3 we know that if f is a transnormal function
on M , the level hypersurface Mα := f−1(α) is isoparametric. However, from Lemma 3.1.
we know that g, the number of distinct principal curvature, ≤ 2, and at least one of the
two principal curvatures is zero. If M is totally geodesic then the principal curvatures are
all zero. From the proof of Theorem 3.3, we know that there is no level set of f with

codimension greater than one. While t =
∫ f
α

1√
b(η)

dη, we can conclude f = f(t), where t is

the distance from Mα. In this case M has a topological type Mα × R or Mα × S1. If Mα

is not totally geodesic, from the proof of Theorem 3.3 we know the focal manifold always
exists. If λi are the principal curvatures of the focal manifold and Mα is the `-tube of the
focal manifold V (we can assume this focal manifold V is V−, and dim(V ) = m). Then
through the modified calculation of Lemma 3.1, we can get the principal curvatures of Mα

are λi

`λi+1 , and 1
` with the multiplicity of n−m− 1. From Lemma 3.1, we know λi = 0, i.e.

the focal manifold is totally geodesic.

Definition 3.5. (See also [13].) If f is a transnormal function on M and the second
Beltrami differential of f is also a continuous function of itself, i.e. ∆f = a(f) for some
continuous function a, we call f an isoparametric function. We call the corresponding
foliation an isoparametric foliation.

The further application of the sphere-bundle structure will give further properties on the
singular leaves of the isoparametric foliation.

Theorem 3.6. Let M be a connected Riemannian manifold, F be an isoparametric foliation
on M given by an isoparametric function f . Then the singular leaves of F are minimal
submanifolds in M .

Proof. Before the proof we give the following convention of indices: 1 ≤ i, j, k ≤ m, 1 ≤
A,B,C ≤ n,m+ 1 ≤ α, β, γ ≤ n where dim(M) = n+ 1, and m is the dimension of a fixed
focal manifold.

We assume Mα is a singular focal manifold, and α is the maximum of f . Then we consider
the Mα-Jacobi fields. Let p ∈ Mα, ξ(p) be a normal vector at p, and e1, e2, · · · , en+1 be a
local orthonormal frame field such that e1, · · · , em ∈ Tp(Mα), and en+1 = ξ(p), Sξ(p)ei =
−λiei. Let σ(t) be an inverse f -segment starting from p with σ̇(0) = en+1. Let {eA(t)} be
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the parallel transport of {eA}. By this convention en+1(t) = σ̇(t). Since D2f(en+1, en+1) =
1
2b
′(f), at σ(t) we have

(
∆f − 1

2
b′(f)

)
=

n∑
A=1

D2f(eA(t), eA(t)). (3.7)

Let {JA(t)} be the Jacobi fields which satisfy

J̈A(t) +RtJA(t) = 0;

JA(0) =

{
eA, 1 ≤ A ≤ m;
0, m+ 1 ≤ A ≤ n;

J̇A(0) =

{
λAeA, 1 ≤ A ≤ m;
eA, m+ 1 ≤ A ≤ n.

Then from (3.7), the tube lemma of [13], and the Remark 3.2, we have

(
∆f − 1

2
b′(f)

)
= −

∑
1≤A,B,C≤n

gABgAC〈J̇B , JC〉
√
b(f).

Here (gAB(t)) is given by the equations eA(t) =
∑
B gAB(t)JB(t). If we set H = (hAB) :=

(gAB)−1, then we have

(
∆f − 1

2
b′(f)

)
= −

√
b(f) trace(H−1 ·Ht). (3.8)

In the following, we compute trace(H−1 ·Ht). Note that H(t) satisfies the matrix equation:

Ḧ(t)−R(t)H(t) = 0; H(0) =

(
Im×m 0
0 0

)
,

and

Ht(0) =



λ1 · · · 0 0 · · · 0
...

...
...

...
...

...
0 · · · λm 0 · · · 0
0 · · · 0 1 · · · 0
...

...
...

...
...

...
0 · · · 0 0 · · · 1


.
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Here R(t) = (RAB(t)) with RAB(t) = −〈R(σ̇(t), eA(t))σ̇(t), eB(t)〉. Then we have the
expansion:

H−1(t) =


I − t2

2



R11(0)
1+tλ1

· · · 0 0 · · · 0
...

...
...

...
...

...

0 · · · Rmm(0)
1+tλm

0 · · · 0

0 · · · 0 0 · · · 0
...

...
...

...
...

...
0 · · · 0 0 · · · 0


+ o(t2)


·



1
1+tλ1

· · · 0 0 · · · 0
...

...
...

...
...

...
0 · · · 1

1+tλm
0 · · · 0

0 · · · 0 1
t · · · 0

...
...

...
...

...
...

0 · · · 0 0 · · · 1
t


.

And

Ht(t) =



λ1 · · · 0 0 · · · 0
...

...
...

...
...

...
0 · · · λm 0 · · · 0
0 · · · 0 1 · · · 0
...

...
...

...
...

...
0 · · · 0 0 · · · 1


+t



R11(0) · · · 0 0 · · · 0
...

...
...

...
...

...
0 · · · Rmm(0) 0 · · · 0
0 · · · 0 0 · · · 0
...

...
...

...
...

...
0 · · · 0 0 · · · 0


+O(t2).

Hence we obtain

H−1Ht =



λ1

1+tλ1
· · · 0 0 · · · 0

...
...

...
...

...
...

0 · · · λm

1+tλm
0 · · · 0

0 · · · 0 1
t · · · 0

...
...

...
...

...
...

0 · · · 0 0 · · · 1
t


+O(t). (3.9)

From it we have that

trace
(
H−1Ht

)
=

m∑
i=1

λi
1 + tλi

+
n−m
t

+ o(1). (3.10)

Combining (3.8) and (3.10) we have that

−(a(f)− 1

2
b′(f)) =

√
b(f)

(
m∑
i=1

λi
1 + tλi

+
n−m
t

)
+
√
b(f) · o(1).

From this we deduce
m∑
i=1

λi
1 + tλi

=
1√
b(f)

(
1

2
b′(f)− a(f)−

√
b(f)

n−m
t

)
+ o(1).
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Taking t→ 0 we have that
m∑
i=1

λi = lim
t→0

1√
b(f)

(
1

2
b′(f)− a(f)−

√
b(f)

n−m
t

)

= lim
f→α

1√
b(f)

(m− n)

√
b(f)∫ α

f
1√
b(η)

dη
− a(f) +

1

2
b′(f)

 .

But the right hand side of the above equation is independent of the choice of ξ(p). Hence∑m
i=1 λi = 0, i.e. the mean curvature is zero. This proves the focal manifold is minimal. �

Corollary 3.7. The same conclusion holds if ∆f = a(f) for f ∈ (α− ε, α). In particular,
the result holds even when a(η) is a multiple-valued function. If α = maxM f we have

n−m+ 1

2
b′(α) = a(α).

The same equation holds at β = minM f .

Remark 3.5. Theorem 3.6 was claimed in Theorem D of [13]. But to the best knowledge
of the author the proof here is the first one in the literature. The result generalizes the
result of Münzner and Nomizu for the focal manifolds of the isoparametric family in Sn,
which in turn follows from a Cartan’s fundamental identity.
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57–71.
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