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A MONOTONICITY FORMULA

ON COMPLETE K�AHLER MANIFOLDS

WITH NONNEGATIVE BISECTIONAL CURVATURE

LEI NI

0. Introduction

In [Y], Yau proposed to study the uniformization of complete K�ahler manifolds
with nonnegative curvature. In particular, one wishes to determine whether or not
a complete K�ahler manifoldM with positive bisectional curvature is biholomorphic
to Cm . See also [GW], [Si]. For this sake, it was further asked in [Y] whether
or not the ring of the holomorphic functions with polynomial growth, which we
denote by OP (M ), is �nitely generated, and whether or not the dimension of the
spaces of holomorphic functions of polynomial growth is bounded from above by the
dimension of the corresponding spaces of polynomials on Cm . This paper addresses
the latter questions. We denote by Od(M ) the space of holomorphic functions of
polynomial growth with degree d. (See Section 3 for the precise de�nition.) Then
OP (M ) =

S
d�0Od(M ). In this paper, we show that

Theorem 0.1. Let Mm be a complete K�ahler manifold with nonnegative holomor-

phic bisectional curvature. Assume that M is of maximum volume growth.1

Then

(0.1) dimC(Od(M )) � dimC(O[d](C
m )):

Here [d] is the greatest integer less than or equal to d. In the case that equality

holds in (0:1), M is biholomorphic-isometric to Cm .

Denote by Vo(r) the volume of the ball of radius r centered at o. For mani-

folds with nonnegative Ricci curvature, Vo(r)
r2m

is monotone decreasing by the Bishop
volume comparison theorem. M is said to have the maximum volume growth if

limr!1
Vo(r)
r2m

> 0.
Although we did not prove the �nite generation of the ring OP (M ), we can

show that the quotient �eld generated by OP (M ) is �nitely generated. In fact, this
follows from the following rougher dimension estimate for the general case.
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Theorem 0.2. Let Mm be a complete K�ahler manifold with nonnegative holo-

morphic bisectional curvature of complex dimension m. There exists a constant

C1 = C1(m) such that for every d � 1,

(0.2) dimC(Od(M )) � C1d
m:

By an argument in [M], which is originally due to Poincar�e and Siegel, the above
result does imply that the rational functions �eld M(M ) generated by OP (M )
is of transcendental degree at most m and is �nitely generated. From this one
can further construct a birational embedding of M into Cm+2 in the case that M
has positive bisectional curvature and admits nonconstant holomorphic functions
of polynomial growth. In a future publication we shall study the �nite generation
of OP (M ) as well as the aÆne embedding of M , using the results and techniques
developed here.

The new idea of this paper is a monotonicity formula for the plurisubharmonic
functions, as well as positive currents. In order to illustrate our approach let us
recall a classical result attributed to the Bishop-Lelong Lemma.

Let � be a closed (p; p) positive current in Cm . De�ne

(0.3) �(�; x; r) =
1

r2m�2p

Z
Bx(r)

� ^
�
1

�
!Cm

�m�p
:

Here !Cm is the K�ahler form of Cm . Then

(0.4)
@

@r
�(�; x; r) � 0:

In particular, this monotonicity formula can be applied to the (1; 1) currentp�1
2� @ �@ log jf j2, where f is a holomorphic function. Through the monotonicity
(0.4), in [B] Bombieri derived a Schwarz's Lemma type inequality, out of which one
can infer that the vanishing order of a polynomial is bounded by its degree.

However, this line of argument encountered diÆculties when applied to the non-
at spaces. In [M] Mok made the �rst such attempt. The following result of Mok
in [M] is particularly notable.

Theorem (Mok). Let M be a complete K�ahler manifold with nonnegative holo-

morphic bisectional curvature. Suppose that there exist positive constants C2 and

C3 such that for some �xed point o 2M ,

(0.5) Vo(r) � C2r
2m

and

(0.6) 0 < R(x) < C3

(1 + r(x))2
:

Here Vo(r) is the volume of Bo(r), the ball of radius r centered at o, R(x) is

the scalar curvature function and r(x) is the distance function to o. Then M is

biholomorphic to an aÆne algebraic variety.

The key step of the proof to the above result is to obtain estimate (0.2) or
a multiplicity estimate, from which (0.2) can be derived. (See Section 3 for the
de�nition and derivation.) The extra assumptions (0.5) and (0.6) were needed to
compensate the failure of (0.4) on curved manifolds.

The main contribution of this paper is to establish a new monotonicity for-
mula on any complete K�ahler manifold with nonnegative bisectional curvature.
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The monotonicity formula was established through the heat equation deformation
of the initial plurisubharmonic functions (or positive (1; 1)-current). In the case
of plurisubharmonic functions, the monotonicity formula has the following simple
form. One can refer to Theorem 1.1 for the general case.

LetM be a complete K�ahler manifold. Let v(x; t) be a family of plurisubharmonic

functions deformed by the heat equation
�
@
@t
��

�
v(x; t) = 0 such that w(x; t) =

@
@t
v(x; t) is continuous for each t > 0. Then

(0.7)
@

@t
(tw(x; t)) � 0:

Here we assume that v(x; t) is plurisubharmonic just for the sake of simplicity. This
assumption in general can be ensured by a recent established maximum principle
for tensors on complete manifolds (see [NT2, Theorem 2.1]) if the initial function
v(x; 0) is plurisubharmonic and of reasonable growth. The monotonicity of tw(x; t)
replaces (0.4) in the non-at case. The dimension estimates in Theorem 0.1 and
Theorem 0.2 can be proved by comparing the value of tw(x; t) at t = 0 with its
limit as t ! 1. In the proof of Theorem 0.1, the sharp upper bound on the heat
kernel by Li-Tam-Wang [LTW, Theorem 2.1]2 was used. In the proof of Theorem
0.2, we make use of the less precise `moment' estimates proved in [N1, Theorem
3.1] by the author.

The estimate (0.7) follows from a gradient estimate of Li-Yau type, which re-
sembles the trace form of Hamilton's Li-Yau-Hamilton di�erential inequality [H],
originally also called the di�erential Harnack inequality, for the Ricci ow. See also
[Co] for the K�ahler version. Indeed, the derivation of (0.7) was motivated by the
earlier work of Chow and Hamilton in [CH] on the linear trace Li-Yau-Hamilton
inequality, as well as in [NT1] by Luen-Fai Tam and the author for the K�ahler case.
In fact, the author discovered (0.7) when trying to generalize Chow's interpolation
[C] between Li-Yau's estimates and the linear trace Harnack (Li-Yau-Hamilton)
estimates for the Ricci ow on Riemann surfaces to the high dimension.3 The
parabolic approach here is also inuenced by a discussion held with G. Perelman,
in which Perelman attributed the success of parabolic methods to an `uncertainty
principle'. This suggests that an elliptic method may only be possible after deeper
understandings of the geometry of K�ahler manifolds with nonnegative curvature,
such as a total classi�cation of such manifolds up to biholomorphisms. Since one
can think of the heat equation deformation of a plurisubharmonic function as a
parabolic deformation of related currents, the work here suggests that there exist
strong connections between the K�ahler-Ricci ow and the other curvature ows.
The recent works of Perelman [P] and Huisken-Sinestrari [HS] also suggest some
strong dualities between the Ricci ow and the mean curvature ow. It is not clear
whether or not the parabolic deformation of the currents in this paper has any
connection with the mean curvature ow. This certainly deserves further deeper
investigations in future projects. The previous work [NT2] is also crucial to this
paper, especially the tensor maximum principle on complete manifolds [NT2, The-
orem 2.1].

2It turns out that this is not necessary. Li-Yau's well-known heat kernel estimates are enough.

Please see Remark 4.2.
3This was successfully carried out in Theorem 1.3, with the generous help from Professor Ben

Chow.
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There have been many articles on estimating the dimension of the harmonic
functions of polynomial growth in the last few years. See, for example, [CM, LT1-
2], [LW]. One can refer to [L2] for an updated survey on the subject. The previous
results on harmonic functions conclude that the dimension has upper bound of the
form C5 d

2m�1, which is sharp in the power for the harmonic functions. Since the
space of harmonic functions is far larger than the space of holomorphic functions,
the estimate is neither sharp for the holomorphic functions, nor enough for the geo-
metric applications such as the aÆne embedding considered in the above-mentioned
work of Mok. On the other hand, estimate (0.2) is sharp in the power and strong
enough to draw some complex geometric conclusions out of it.

In [LW], the problem of obtaining the sharp upper bound for the dimension of the
space of harmonic functions of polynomial growth was studied for manifolds with
nonnegative sectional curvature and maximum volume growth. An asymptotically
sharp estimate was proved there. But the estimate as (0.1) is still missing. Due to
the apparent di�erence in the nature of the two problems, the method in this paper
is quite di�erent from the previous papers on harmonic functions. The exceptional
cases are either m = 1 or d = 1. For both cases, the sharp bounds have been
proved by Li-Tam [LT1], [LT2].) The consequence on the equality of the estimate
(0.1), when m = 1, namely the case of Riemann surfaces, was implicit in the work
of [LT2], and was also considered in [L1] for d = 1.

Combining the estimate (0.3) with H�ormander's L2-estimate of the �@-operator,
we can obtain some topological consequences on the complete K�ahler manifolds
with nonnegative bisectional curvature. For example, we have the following result.

Corollary 0.1. Let Mm be a complete K�ahler manifold with nonnegative bisec-

tional curvature. Assume that the transcendence degree of M(M ), degtr(M(M ))
is equal to m. Then M has �nite fundamental group.

Since it is still unknown whether or not a complete K�ahler manifold with pos-
itive bisectional curvature is simply-connected, the result above gives some infor-
mation on this question as well as on the uniformization problem. The assumption
degtr(M(M )) can be replaced by the positivity of the Ricci curvature and some
average curvature decay conditions.

The concept of the transcendence degree of M(M ) has a geometric meaning as
in classical algebraic geometry. It is the same as the so-called Kodaira dimension of
M (denoted by k(M )). Please see Section 5 for the details of the de�nition. In the
case that the transcendence degree of M(M ), equivalently k(M ), is smaller than
the dimension of Mm, we have the following improved version of Theorem 0.1.

Theorem 0.3. LetMm be a complete K�ahler manifold with nonnegative bisectional

curvature. If k(M ) = degtr(M(M )) � m� 1, we have that

(0.8) dimC(Od(M )) � dimC(O[d](C
k(M))):

The case of equality implies the splitting M = M1 � C k(M) , with OP (M1) = C .

Theorems 0.1{0.3 can all be generalized to the spaces of polynomial growth
holomorphic sections of holomorphic Hermitian line bundles. Please see Theorem
3.2, Corollary 4.2 and Theorem 4.3 for details.

We organize the paper as follows. In Section 1 we derive the gradient estimate
of Li-Yau-Hamilton type for the symmetric tensors, from which the monotonicity
formula (0.7) is derived in Section 2. Theorem 0.1 and Theorem 0.2 are proved in
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Section 4 and Section 3 respectively. The more general estimates are also proved
for the holomorphic sections of polynomial growth for line bundles with �nite `Le-
long number at in�nity'. (See Section 4 for the precise de�nition.) As another
application, we also include uni�ed treatments on the Liouville theorem for the
plurisubharmonic functions on complete K�ahler manifolds with nonnegative bi-
sectional curvature (namely, any continuous plurisubharmonic function of o(log r)
growth is a constant), as well as on the optimal gap theorem [NT2, Corollary 6.1].
They can all be phrased as the positivity of the `Lelong number at in�nity' for
non-at, nonnegative holomorphic line bundles. These results, which are presented
in Section 2 as a warm-up to the later cases, were originally proved in [NT2] by
Luen-Fai Tam and the author, using di�erent methods. In fact, Corollary 6.1 in
[NT2] is slightly more general than what was proved in Theorem 2.2 here. Theorem
0.2 is a weaker result than Theorem 0.1. However, it is enough for the geometric
purpose in mind. Since its proof is painless once we establish the monotonicity,
we treat it separately in Section 3 in order to illustrate the idea �rst and leave the
more technical sharp estimates to Section 4. In Section 5 we prove Corollary 0.1
and Theorem 0.3.

As was pointed out in Remark 4.1, our argument proves Theorem 0.1 for the
general case (without the maximum volume growth assumption) if one can prove
Lemma 4.2 without assuming the maximum volume growth. Therefore, Theorem
0.1 would hold if one can prove Lemma 4.2 without assuming the maximumvolume
growth. Recently, B. Chen, X. Fu, L. Yin and X. Zhu proved [CFYZ] that Lemma
4.2 of the current paper indeed holds in general due to the surprising e�ectiveness
of Li-Yau's heat kernel estimates. (The proof is even easier. Please see Remark
4.2 in Section 4.) Hence Theorem 0.1 is now true in general without assuming
the maximum volume growth condition. They also proved that the equality case
implies that the manifold is isometric to Cm , following the line of arguments in
[N2] (the result, in a sense, is a special case of [N2] since Cm can be viewed as
an expanding K�ahler-Ricci soliton).4 The proof in [CFYZ] also needs to appeal a
general splitting theorem proved by Luen-Fai Tam and the author in [NT2]. The
proof for the equality case presented in the proof of Theorem 4.1 of this paper is
simpler.
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1. A new differential inequality of Li-Yau-Hamilton type

In this section we derive a new di�erential inequality of Li-Yau-Hamilton type
for the symmetric (1,1) tensor h���(x; t) satisfying the Lichnerowicz-Laplacian heat
equation:

(1.1)

�
@

@t
��

�
h�Æ = R����Æh��� �

1

2
(R�shs�Æ +Rs�Æh�s) :

We assume that h���(x; t) is semi-positive de�nite (denoted briey as h���(x; t) � 0)
and that M has nonnegative bisectional curvature. Applying the new estimate
of this section to the complex Hessian of a plurisubharmonic function, we can
obtain a parabolic version generalization of the classical three-circle theorem for
the subharmonic functions on the complex plane to curved high-dimensional K�ahler
manifolds. The condition h���(x; t) � 0 can be ensured in most cases, provided that
h���(x; 0) � 0, by the maximumprinciple proved recently in [NT2]. Before we state
the result, let us start with a de�nition.

For any (1, 0) vector �eld V we de�ne

Zh(x; t) =
1

2

�
g�

��r��div(h)� + g
�Ærdiv(h)�Æ

�
+ g�

��div(h)�V�� + g
�Ædiv(h)�ÆV

+ g�
��g

�Æh��ÆV��V +
H

t
:

(1.2)

Here

(1.3) div(h)� = g
�Ærh��Æ; div(h)�Æ = g�

��r��h��Æ

and

(1.4) H = g�
��h���:

In the context where the meaning is clear we drop the subscript h in Zh.

Theorem 1.1. LetM be a complete K�ahler manifold with nonnegative holomorphic

bisectional curvature. Let h���(x; t) � 0 be a symmetric (1; 1) tensor satisfying (1:1)

on M � (0; T ). Assume that for any �0 > 0,

(1.5)

Z T

�0

Z
M

e�ar
2(x)khk2 dv dt <1:

Then

(1.6) Z(x; t) � 0;

for any (1; 0) vector V . If Z(x0; t0) = 0 for some point (x0; t0) with t0 > 0 and

h���(x; t) > 0, then M is at.

The assumption (1.5) is to ensure the validity of the maximum principle on
complete noncompact manifolds, which is false in general. In order to prove the
theorem, let us start with several lemmas.

Lemma 1.1.

(1.7)�
@

@t
��

�
div(h)� = �1

2
R��t div(h)t;

�
@

@t
��

�
div(h)�� = �1

2
R��t div(h)�t:
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Proof. Direct calculation shows that

@

@t

�
g

�Ærh��Æ

�
= g

�Æ @

@t

�
@h��Æ � �p�hp�Æ

�
= r

�
�h�� +R��s�th�st �

1

2
R��tht� �

1

2
Rt�h��t

�

= r�Rs�th�st + R��s�trh�st � 1

2
rR��tht�

� 1

2
R��trht� � 1

2
rtRh��t �

1

2
Rt�rh��t +r(�h��):

(1.8)

Now we calculate r(�h��). By de�nition,

r(�h��) =
1

2
r (rsr�s +r�srs)h��:

On the other hand,

rrsr�sh�� = rsrr�sh��

= rs [r�srh�� � R��p�shp� +Rp��sh��p]

= rsr�srh�� �rR��php� � R��p�srshp� +rpRh��p +Rp�srsh��p:

Similarly,

rr�srsh�� = r�srrsh�� + Rp��srsh��p �Rs�p�srph�� �R��p�srshp�

= r�srsrh�� + Rp�srsh��p �R�prph�� �R��p�srshp� :

Combining the above three equations we have that

r(�h��) = �(rh��)� 1

2
rR��php� � R��p�srshp�

+
1

2
rpRh��p +Rp�srsh��p � 1

2
R�prph�� :

Plugging the above equation into (1.8), the �rst equation in the lemma is proved.
The second one is the conjugation of the �rst. �

Lemma 1.2.

(1.9)

�
@

@t
��

��
g�

��r��div(h)�

�
= 0;

�
@

@t
��

��
g�

��r�div(h)��

�
= 0:

Proof. This follows from Lemma 1.1 and routine calculations. Indeed,

@

@t

�
g�

��r��div(h)�

�
= r��

�
@

@t
div(h)�

�

= r��

�
�div(h)� � 1

2
R��tdiv(h)t

�
;

by Lemma 1.1. Therefore we have that
(1.10)

@

@t

�
g�

��r��div(h)�

�
= r�� (�div(h)�)� 1

2
Rs��r�s (div(h)�) � 1

2
r�tR (div(h)t) :

Now we calculate r�� (�div(h)�). By de�nition,

r�� (�div(h)�) =
1

2
r��rsr�sdiv(h)� +

1

2
r��r�srsdiv(h)�:
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On the other hand,

r��r�srsdiv(h)� = r�sr��rsdiv(h)�

= r�s [rsr��div(h)� +R��ps��div(h)p]

= r�srsr��div(h)� + (r�sR) (div(h)s) +Rs�pr�sdiv(h)p

and

r��rsr�sdiv(h)� = rsr��r�sdiv(h)� + R�psr�sdiv(h)p �Rp��r�pdiv(h)�

= rsr�sr��div(h)� + R�psr�sdiv(h)p �Rp��r�pdiv(h)�:

Combining the above three equalities we have that

r�� (�div(h)�) = � (r��div(h)�) +
1

2
r�sR(div(h)s) +

1

2
Rs�pr�sdiv(h)p:

Plugging into (1.10), this completes the proof of the �rst equation of Lemma 1.2.
The second one is the conjugation of the �rst. �

Since h��� � 0 only (not strictly positive), we need the perturbation trick of

[NT1]. Namely, we consider

bZ =
1

2

�
g�

��r��div(h)� + g
�Ærdiv(h)�Æ

�
+ g�

��div(h)�V�� + g
�Ædiv(h)�ÆV

+ g�
��g

�Æ (h��Æ + �g��Æ)V��V +
H + �m

t
:

(1.11)

We can simply denote eh��� = h��� + �g���, which is strictly positive de�nite. Let V

be the vector �eld which minimizes bZ. Then the �rst variation formula gives

(1.12) div(h)� + eh��V = 0 and div(h)�� + eh ��V� = 0:

Di�erentiating (1.12) we have that

rsdiv(h)� + (rsh��)V + eh��rsV = 0;

rsdiv(h)�� + (rsh ��)V� + eh ��rsV� = 0;

r�sdiv(h)� + (r�sh��)V + eh��r�sV = 0;

r�sdiv(h)�� + (r�sh ��)V� + eh ��r�sV� = 0:

(1.13)

From (1.12) we also have the following alternative form of bZ:
(1.14) bZ = �1

2
eh���r��V� � 1

2
eh���r�V�� +

H + �m

t
:
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On the other hand, by Lemmas 1.1 and 1.2 we have that�
@

@t
��

� bZ = div(h)�

��
@

@t
��

�
V��

�
+ div(h)��

��
@

@t
��

�
V�

�
�rsdiv(h)�r�sV�� �r�sdiv(h)�rsV��

�rsdiv(h)��r�sV� �r�sdiv(h)��rsV�

� 1

2
R��tdiv(h)tV�� �

1

2
Rt��div(h)�tV�

+R���s�th�stV�V�� �
1

2
R��shs�VV�� � 1

2
h��sRs�VV��

+ eh��
��

@

@t
��

�
V

�
V�� + eh��V

��
@

@t
��

�
V��

�
�rsh��r�s (VV��) �r�sh��rs (VV��)

� eh�� [rsVr�sV�� +r�sVrsV��]� H + �m

t2
:

(1.15)

Lemma 1.3.�
@

@t
��

� bZ = eh ��
�
rpV� � 1

t
gp�

��
r�pV� � 1

t
g�p�

�
+ eh��r�pV�rpV�

+R���s�th�stV�V�� �
2 bZ
t
:

(1.16)

Proof. Using (1.12), (1.13) we can simplify (1.15) to�
@

@t
��

� bZ = R���s�th�stV�V��

+ eh��rsV�r�sV� + eh ��r�sV�rsV� � H + �m

t2
:

(1.17)

Combining with (1.14) we have the lemma. �

In order to apply the maximum principle on complete manifolds and prove the
theorem we need the following result.

Lemma 1.4. Under the assumption of Theorem 1.1, for any � > 0,

(1.18)

Z T

�

Z
M

e�ar
2(x)kdiv(h)k2 dv dt <1

and

(1.19)

Z T

�

Z
M

e�ar
2(x)

�krsdiv(h)�k2 + kr�sdiv(h)�k2
�
dv dt <1:

Proof. To simplify the notation we �rst de�ne

� = khk2;
	 = kdiv(h)k2;
� = krsdiv(h)�k2 + kr�sdiv(h)�k2:

From (1.1), we have that

(1.20)

�
�� @

@t

�
� � 	:
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Here we have used the fact that M has nonnegative holomorphic bisectional cur-
vature. The reader can refer to [NT2, Lemma 2.2] for a detailed proof of (1.20). It
follows from an argument which goes back to Bishop and Goldberg [BG]. (See also
[MSY].)

Let � be a cut-o� function such that � = 0 for r(x) � 2R or t � �

2
and � = 1

for r(x) � R and t � �. Multiplying by �2 on both sides of (1.20), integration by
parts gives thatZ T

0

Z
M

	�2 dv dt � 2

Z T

0

Z
M

�
�j(�2)tj+ 4jr�j2� dv dt:

Then (1.18) follows from the assumption (1.5).

To prove (1.19) we need to calculate
�
�� @

@t

�
	. From Lemma 1.1, it is easy to

obtain �
�� @

@t

�
	 = �+R��tdiv(h)��div(h)t

� �

(1.21)

since M has nonnegative Ricci curvature. Repeating the above argument in the
proof of (1.18) we can obtain the integral estimate on �. Hence we complete the
proof of the lemma. �

Proof of Theorem 1.1. By translating the time and the limiting argument we can

assume that h��� is well-de�ned on M � [0; t]. Since eh��� � �g��� on M � [0; T ], by

(1.12) and (1.13), we have

jjV jj � C1	
1
2

and

jjrV jj � C2

�
�

1
2 + 	

�
;

for some constants C1 and C2. Combining this with (1.14), we have that

(1.22) jt2 bZj2 � C3t
�
�+�(	2 +�) + 1

�
for some constant C3. By (1.16), the corresponding t2 bZ satis�es that

(1.23)

�
@

@t
��

�
(t2 bZ) � 0

for the vector �eld which minimizes bZ. By Lemma 1.4 and (1.22), we have thatZ T

0

Z
M

exp(�ar20(x))
�
t2 bZ�2 dv dt <1

for any a > 0. By the maximumprinciple of Karp-Li [KL] (see also [NT1, Theorem

1.1]), we have t2 bZ � 0 because it is obvious that t2 bZ = 0 at t = 0. Since this is

true for the vector �eld V minimizing bZ, we have bZ � 0 for any (1,0) vector �eld.
Letting � ! 0, we complete the proof of the fact that Z(z; t) � 0. If the equality
holds, as in [N2, page 16], by the strong maximum principle and the right-hand
side of (1.16) one has that

r�V�� �
1

t
g���

and

r�V� � 0:
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This implies that locally V is given by the gradient of a holomorphic function f .
In particular, f��� = 1

t
g��� and f�� = 0. The atness follows from the curvature

expression in terms of metrics/potential functions and taking derivatives on the
above-mentioned two sets of equalities. Namely, from the well-known expression
(see, for example, [KM, page 117])

R����Æ = �
@4(tf)

@z�@z
��@z@z

�Æ
+ gp�q

�
@3(tf)

@z�q@z�@z

��
@3(tf)

@zp@z
��@z

�Æ

�
one can conclude that M is at due to f�� � 0. �

Remark 1.1. Theorem 1.1 was motivated by the so-called linear trace Li-Yau-
Hamilton inequality for Ricci ow. The linear trace Li-Yau-Hamilton inequality
of the real case was �rst proved in [CH] by Chow and Hamilton. In [NT1], the
authors proved the corresponding result for the K�ahler-Ricci ow. In fact, we can
state Theorem 1.2 in [NT1] in a slightly more general way such that it can be used
in classifying the K�ahler-Ricci solitons, which was done in [N2]. The proof of the
following Theorem 1.2 remains unchanged as in [NT1].

Theorem 1.2. Let (M; g���(x; t)) be a complete solution to the K�ahler-Ricci ow

on M � (0; T ) with nonnegative bisectional curvature. Assume that the curvature

is uniformly bounded on M � ftg for any t > 0. Let h be a symmetric (1; 1) tensor
satisfying (1.1). Assume also that h���(x; t) � 0 and (1.5) holds. Then

(1.24) eZ � 0

where

eZ =
1

2
[g�

��r��div(h)� + g
�Ærdiv(h)�Æ ]

+ g�
��g

�Æ [R��Æh �� +rh��ÆV�� +r��h��ÆV + h��ÆV��V ] +
H

t
:

(1.25)

The equality in (1.24) holding for some positive time implies that (M; g(t)) is an ex-

panding gradient K�ahler-Ricci soliton provided that h���(x; t) > 0 and M is simply-

connected.

Besides relaxing the assumption on h���(x; t), another main advantage of stating
the result as above is that the form here can be applied to cases without considering
the initial value problem. The form stated in [CH], as well as in [NT1], with the
initial value prevents the application to the expanding solitons. It is also more
clear to separate the issue of preserving the nonnegativity of h���(x; t) from the

nonnegativity of eZ.
In fact, by combining the proof of Theorem 1.2 of [NT1] and the proof of Theo-

rem 1.1 we can obtain the high-dimensional generalization of Chow's interpolation
between Li-Yau's gradient estimate and Chow-Hamilton's linear trace di�erential
Harnack inequality. Here the role of Li-Yau's inequality in [C] is replaced by the
inequality proved in Theorem 1.1, and Chow-Hamilton's inequality is replaced by
its K�ahler analogue proved by Tam and the author, namely the inequality in The-
orem 1.2. More precisely, for 1 � � � 0, consider the K�ahler-Ricci ow with speed
adjusted by � :

(1.26)
@

@t
g���(x; t) = ��R���(x; t):
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De�ne

Z(�)(x; t) = Z(x; t) + �
�
g�

��g
�ÆR��Æh ��

�
(x; t):

Then we have the following result, which interpolates between Theorem 1.1 and
Theorem 1.2.

Theorem 1.3. Let (M; g(t)) be a solution to (1.26) with bounded nonnegative

bisectional curvature. Let h���(x; t) be the symmetric tensor as in Theorem 1.2.

Then Z(�)(x; t) � 0. Moreover, the equality holding for some t > 0 implies that

(M; g(t)) is an expanding gradient soliton, provided that h���(x; t) > 0 and M is

simply-connected.

Proof. Tracing the computation in the proof of Theorem 1.1 and Theorem 1.2 in
[NT1] we have that

�
@

@t
��

�
Z(�) = Y

(�)
1 +

�

2
[R��prpdiv(h)�� +Rp��r�pdiv(h)�]

+
�

2
[Rs�pr�r�shp�� + Rs�pr��rph��s] + �R���s�tR���ht�s

+ � (� � 1)R���R��sh��s + �R���div(h)�V�� +R���div(h)��V�

+ div(h)�

��
@

@t
��

�
V��

�
+ div(h)��

��
@

@t
��

�
V�

�
�rsdiv(h)�r�sV�� �r�sdiv(h)�rsV��

�rsdiv(h)��r�sV� �r�sdiv(h)��rsV�

+

�
�Rs�trth��sV�� � 1

2
R��tdiv(h)tV�� + �Rs�tr�sht��V�

�1
2
Rt��div(h)�tV�

�

+ (� � 1

2
) (R��shs�VV�� + h��sRs�VV��)

+ h��

��
@

@t
��

�
V

�
V�� + h��V

��
@

@t
��

�
V��

�
�rsh��r�s (VV��)�r�sh��rs (VV��)

� h�� [rsVr�sV�� +r�sVrsV��]� H

t2
;

(1.27)

where

(1.28)

Y
(�)
1 =

�
�
2
�Rs�t + �

2
Rs�t���R���+ �r�Rs�tV��+ �r��Rs�tV�+ Rs�t���V��V�+ �

Rs�t

t

�
h�st

= �
2

�
�Rs�t +Rs�t���R��� +r�Rs�t

V��

�
+r��Rs�t

V�

�
+Rs�t���

V��

�

V�

�
+

Rs�t

�t

�
h�st

� 0:
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Here we have used Cao's result [Co], applied to the vector �eld V
�
, for our speed

adjusted K�ahler-Ricci ow. A similar simpli�cation, utilizing the equations satis�ed
by the minimizing vector �elds as before, gives that

Z(�) = �R���h��� �
1

2
h���r��V� � 1

2
h���r�V�� +

H

t

and

(1.29)

�
@

@t
��

�
Z(�) = Y

(�)
1 + Y

(�)
2 � 2

Z(�)

t

where
(1.30)

Y
(�)
2 = h ��

�
rpV� � �Rp� � 1

t
gp�

��
r�pV� � �R��p � 1

t
g�p�

�
+ h ��r�pV�rpV� � 0:

The theorem follows, by an argument similar to before, from (1.28){(1.30). �

Theorem 1.3 shows strong connections between the Ricci ow and the linear
heat equation (in [N3], further evidence is provided by the strong similarity in the
entropy formulae for both cases). One can even think that Theorem 1.1 is the
limiting case of its corresponding result for K�ahler-Ricci ow. It is tempting to
speculate that K�ahler geometry might be a special case of the K�ahler-Ricci ow
geometry.

Remark 1.2. In [CN] we prove another high-dimensional generalization of Chow's
interpolation, which also has some interesting consequences for K�ahler-Ricci ow/
geometry. The new inequality is also strong enough for the applications considered
in the later sections of this paper.

2. Nonnegative holomorphic line bundles

In this section we shall apply results in Section 1 to study the holomorphic line
bundles on K�ahler manifolds with nonnegative holomorphic bisectional curvature.
First we illustrate the cases to which Theorem 1.1 can be applied.

Theorem 2.1. Let (E;H) be a holomorphic vector bundle on M . Consider the

Hermitian metric H(x; t) deformed by the Hermitian-Einstein ow:

(2.1)
@H

@t
H�1 = ��FH + �I:

Here � means the contraction by the K�ahler form !, � is a constant, which is a

holomorphic invariant in the case M is compact, and FH is the curvature of the

metric H, which locally can be written as F
j

i���
dz� ^ d�z�e�i 
 ej with feig a local

frame for E. The transition rule for H under the frame change is HU
i�j
= fki f

k
j H

V
k�l

with transition functions f
j
i satisfying eUi = f

j
i e

V
j . Let

� =

p�1
2�


���dz� ^ d�z� =
p�1
2�

X
i

F i
i���dz

� ^ d�z�:

Assume that 
��� is smooth on M � (0; T ]. Then 
���(x; t) satis�es (1.1). There-

fore, if 
���(x; t) � 0, Z
(x; t) � 0, provided that 
���(x; t) satis�es the growth
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assumption of (1.5), when the manifold is noncompact. In particular, if 
(x; t) =

g�
��(x)
���(x; t) > 0, one has that

(2.2) 
t � jr
j
2



+



t
� 0:

Proof. The proof on pages 10{12 of [N2] can be applied to this case without modi-
�cation. �

The following Harnack inequality follows from an argument of Li-Yau [LY] by
applying (2.2) and integrating along a space-time path. Notice that there is a slight

notational discrepancy. From now on we use � = 4g�
�� @2

@z�@z��
, while in the last

section the Laplacian operator is one quarter of the current one. However, the
conclusion of the result stays the same.

Corollary 2.1. Let M and 
 be as above. Assume that 
(x; t) > 0. Then for any

t2 > t1,

(2.3) 
(x; t2) � 
(y; t1)

�
t1

t2

�
exp

�
� r2(x; y)

4(t2 � t1)

�
:

In particular,

(2.4)
@

@t
(t
(x; t)) � 0:

The factor 4 in (2.3) is introduced due to the factor 4 in our de�nition of the
Laplacian operator. We use this convention since we have to use Li-Yau's heat
kernel estimates on the heat kernels, which follows from a Harnack inequality of
the same form as (2.3), extensively afterwards.

The Hermitian-Einstein ow (2.1) was studied, for example, by Donaldson [Dn]
to ow a metric into an equilibrium solution under some algebraic stability as-
sumptions. In this section we focus on the following two cases when Theorem 2.1
applies.

Case 1. This is the special case when (E;H) = (L;H), a line bundle and � = 0.
Now the metric change can be expressed by a single function v(x; t) with H(x; t) =
H(x) exp(�v(x; t)), where H(x; 0) = H(x), equivalently v(x; 0) = 0. Then (2.1)
reduces to the simple equation:

(2.5)

�
@

@t
��

�
v(x; t) = 
(x)

where 
���(x) is the curvature form of the initial metricH(x), 
(x) = g�
��(x)
���(x)

and 
���(x; t) = 
���(x) + v���(x; t). It is easy to see that w(x; t) := @
@t
v(x; t) =

�v(x; t) + 
(x) = 
(x; t) satis�es the heat equation
�
�� @

@t

�
w(x; t) = 0 with the

initial data w(x; 0) = 
(x). In the following we will focus on the line bundle case.
We follow the convention of calling (L;H) nonnegative if the curvature of (L;H),

� =
p�1
2� 
��� dz� ^ d�z� =

p�1
2� @ �@ log(H), is a nonnegative (1; 1) form.

In order to ensure that, for the deformed metric H(x; t), 
���(x; t) � 0 when


���(x; 0) = 
���(x) � 0 one needs some constraints on 
(x). First we assume that


(x) is continuous. Furthermore, we also require that

(2.6) sup
r�0

 
exp(�ar)

Z
Bo(r)


(y) dy

!
<1
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and

(2.7) sup
r�0

 
exp(�ar2)

Z
Bo(r)


2(y) dy

!
<1

for some positive constant a > 0. Here, for any continuous function f(y),Z
Bo(r)

f(y) dvy =
1

Vo(r)

Z
Bo(r)

f(y) dvy :

Case 2. The is the case when 
���(x; 0) is given by the Hessian of continuous
plurisubharmonic functions. It has special interest for later applications. This
corresponds to the metrics H(x) = exp(�u(x)) being singular, as considered in
[D]. In [D], due to the compactness of the manifolds and the local nature of the
questions considered there, locally integrable functions are allowed. However, since
we are interested in global properties of u(x), especially the behavior near in�nity,
and our argument is (only) a global one, we require the functions to be de�ned on
the whole of M . Moreover, in order to apply the tensor maximum principle [NT2,
Theorem 2.1] we also put growth constraints on the plurisubharmonic functions.
These constraints are similar to (2.6) and (2.7), which are speci�ed as follows.

Let u be a continuous function on M . We say that u is of exponential growth if
there exists a > 0 such that

(2.60) juj(x) � exp(a(r2(x) + 1)):

By Proposition 2.1 of [NT1] we know that if u(x) is of exponential growth, the

equation
�
�� @

@t

�
~v = 0, with ~v(x; 0) = u(x), has a solution on M � [0; T ] for any

T > 0. Furthermore, we know that there exists a constant b such that

(2.8) j~vj(x; t) � exp(b(r2(x) + 1)):

In this case, it is easy to check that H(x; t) = exp(�~v(x; t)) gives the solution to
(2.1) and v(x; t) = ~v(x; t)� u(x) solves (2.5) with 
���(x; t) = ~v���(x; t).

The following lemma ensures that 
���(x; t) � 0 for the above two cases, with

the help of the general maximum principle proved in [NT2].

Lemma 2.1. Let M be a complete K�ahler manifold with nonnegative holomorphic

bisectional curvature. Let (L; h) be a nonnegative holomorphic line bundle. We

assume that either we are in case 1 with (2.6) and (2.7), or in case 2 with (2:60).
Then (2.1) has a long-time solution with 
���(x; t) � 0.

Proof. Case 2 is easier. Since (2.1) amounts to solving
�
�� @

@t

�
~v = 0 with

~v(x; 0) = u(x), the result follows from Theorem 3.1 of [NT2].
For Case 1, clearly,

v(x; t) =

Z t

0

Z
M

H(x; y; s)
(y) dvy ds;

where H(x; y; s) is the heat kernel, gives the solution to (2.5). It exists for all
time due to (2.6). In order to show 
���(x; t) � 0, since 
���(x; t) satis�es (1.1) by

Theorem 2.1, we only need to check that the maximum principle [NT2, Theorem
2.1] applies. Due to the assumption (2.7), we only need to check that v���(x; t) =


���(x; t)�
���(x) satis�es the assumptions of Theorem 2.1 of [NT2]. Notice that

v(x; t) satis�es the nonhomogeneous heat equation (2.5). Therefore v(x; t) has
pointwise control through the representation formula above. The by-now standard
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integration by parts arguments give the wanted integral estimates for kv���k2(x; t).
The interested reader can refer to the proof of Lemma 6.2 of [NT2] for details on
checking the conditions for the maximum principle. (See also Lemma 1.4.) The
extra terms caused by the nonhomogeneous term 
(x) are taken care of by the
assumption (2.7). �

Combining Theorem 2.1 and Lemma 2.1 we are in a position to apply the mono-
tonicity formula (2.4). Next we prove the following gap theorem, which combines
the Liouville theorem [NT2, Theorem 0.3] with a gap theorem, a slightly weaker
version of [NT2, Corollary 6.1]. The proof here uses the result from Section 1 and
�ts the general duality principle in [N2].

Theorem 2.2. LetM be a complete K�ahler manifold with nonnegative holomorphic

bisectional curvature. Let (L;H) be a nonnegative holomorphic line bundle on M

with Hermitian metric H. We assume either in Case 1 that (2.7) holds and

(2.9)

Z r

0

s

 Z
Bo(s)


(y) dy

!
ds = o(log r);

where 
(y) = g�
��
���(y); or in Case 2, with H(x) = exp(�u(x)), that

(2.10) lim sup
r!1

u(x)

log r
= 0:

Then (L;H) is at. Namely 
���(x) � 0. In particular, if L = K�1
M , the anti-

canonical line bundle, this implies that M is at. Moreover, in Case 2, this further

implies that u is a constant.

Proof of Theorem 2.2. In Case 1, (2.9) implies (2.6) and in the second case, since
we can replace u by u+, the positive part of u, we can assume that u satis�es (2:60).
Therefore, by Lemma 2.1, we can apply Theorem 2.1, in particular (2.4), in both
situations.

Assume that (L;H) is not at. Then 
(x) � 0 and > 0 somewhere. This implies
that 
(x; t) =

R
M
H(x; y; t)
(y) dvy > 0 for t > 0. By (2.4) we know that

(2.11)

Z t

1


(x; s) ds � C log t

for t� 1 and some C > 0 independent of t. On the other hand, by Theorem 3.1 of
[N1], (2.9) implies that

(2.12)

Z t

1


(x; s) ds � � log t

for t� 1 in Case 1. This proves that (L; h) is at in the �rst case.
For Case 2, since ~vt(x; t) = 
(x; t), (2.11) implies that

(2.13) ~v(x; t) � C log t +C0;

for t � 1 with positive constants C and C0 independent of t. By the assumption
(2.10) we know that for any � > 0,Z

Bo(r)

u dv � � log r
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for r � 1. Using Theorem 3.1 of [N1] we have that

~v(x; t) � C(n)� log t

for t � 1. This is a contradiction to (2.13). The contradictions show that (L;H)
is at in both cases.

For the last part of the theorem, the atness of (L;H) implies that u is har-
monic. But u also satis�es (2.10). Then u is a constant by a gradient estimate
of Cheng and Yau [CY], or the result of Cheng stating that any sublinear growth
harmonic function must be constant on any complete Riemannian manifold with
nonnegative Ricci curvature. We should point out that there is another proof (see,
for example, [N4, pages 338-339]) which is based on the mean value inequality of
Li and Schoen. The advantage is that the mean value inequality can be proved via
the De Giorgi/Moser iteration argument even in the case that the gradient estimate
fails.

�

Remark 2.1. The results in Theorem 2.2 were proved earlier by Luen-Fain Tam
and the author in [NT2] (cf. Theorem 0.3 and Corollary 6.1 therein). The proof
in [NT2, Theorem 0.3], for the Liouville property on plurisubharmonic functions,
uses the L2-estimate of the �@-operator of H�ormander, as well as Hamilton's strong
maximumprinciple for tensors satisfying (1.1). The proof of the gap result in [NT2,
Corollary 6.1] uses the Liouville result above, along with some quite sophisticated
techniques of solving the Poincar�e-Lelong equation in [MSY] and [NST], as well as
some new re�nements through heat equation deformation (cf. Section 6 of [NT2]).

Corollary 2.2. Let M be a complete K�ahler manifold with nonnegative holomor-

phic bisectional curvature. Let u(x) be a continuous plurisubharmonic function of

exponential growth. Let ~v(x; t) be the solution to
�
@
@t
��

�
~v(x; t) = 0. Then

(2.14) Zw(x:t) := wt +r�wV�� +r��wV� + v���V��V� +
w

t
� 0

on M � (0;1), for any (1; 0) vector �eld V . Here w(x; t) = �~v(x; t) and wt =
@w
@t
.

In particular,

(2.15) wt � jrwj
2

w
+
w

t
� 0:

If (2.15) holds with equality for some (x0; t0) with t0 > 0, this implies that M is at,

provided v���(x; t) is positive de�nite. In particular, this is true if (tw)t(x; t) = 0

for some (x0; t0).

Proof. This follows from Theorem 1.1, Theorem 2.1 and Lemma 2.1. �

Remark 2.2. The estimate of the form (2.14) was �rst proved for the plurisubhar-
monic functions deformed by the time-dependent (with metric evolved by K�ahler-
Ricci ow) heat equation in [NT1]. It was also used there to prove the Liouville
theorem for the plurisubharmonic functions for the �rst time. However, due to
complications caused by the K�ahler-Ricci ow, the result requires various assump-
tions on the curvature of the initial metric on M . In particular, one has to assume
that the curvature is bounded, which is rather arti�cial for the study of the function
theory on M .
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3. Dimension estimates I

Let M be a complete K�ahler manifold with nonnegative bisectional curvature
of complex dimension m. In this section, we shall further show applications of
the gradient estimate (2.14) in the study of holomorphic functions of polynomial
growth. In a sense, the results here and in the next section are quanti�ed versions of
the results in Section 2. Let us �rst �x some notation. We say that a holomorphic
function f is of polynomial growth if there exists d � 0 and C = C(d; f) such that

(3.1) jf j(x) � C(rd(x) + 1);

where r(x) is the distance function to a �xed point o 2 M . For any d > 0 we
denote Od(M ) = ff 2 O(M )jf(x) satis�es (3:1)g: Let OP (M ) denote the space of
holomorphic functions of polynomial growth. Since any sublinear growth holomor-
phic function is constant on a complete K�ahler manifold with nonnegative Ricci
curvature,

OP (M ) = C [
0
@[
d�1

Od(M )

1
A :

We also de�ne the order of f in the sense of Hadamard to be

OrdH(f) = lim sup
r!1

log logA(r)

log r

where A(r) = supBo(r) jf(x)j. It is clear that if f 2 OP (M ), then OrdH(f) = 0.

We say that f has �nite order if OrdH(f) < 1. The �rst issue we are going to
address is that of estimating the dimension of Od(M ). Let us summarize some
simple observations in a lemma.

Lemma 3.1. Let f 2 O(M ) be a nonconstant holomorphic function of order less

than one, in the sense of Hadamard. Denote u(x) = log(jf j(x)). Then there exists

a solution v(x; t) to the heat equation
�
�� @

@t

�
v(x; t) = 0 such that v(x; 0) = u(x),

where v(x; t) is plurisubharmonic. Moreover, the function w(x; t) := �v(x; t) > 0,
for t > 0, and

(3.2)
@

@t
(t w(x; t)) � 0:

Proof. Let uj(x) = log(jf j(x) + 1
j
). Let H(x; y; t) be the heat kernel. Then

(3.3) vj(x; t) =

Z
M

H(x; y; t)uj(y) dy

gives the solution vj(x; t) such that vj(x; 0) = uj(x). Clearly vj(x; t) satis�es the
assumptions of Lemma 2.1. Thus vi(x; t) are plurisubharmonic functions. Letting
j !1 in (3.3), we obtain

v(x; t) =

Z
M

H(x; y; t)u(y) dy;

a solution with v(x; 0) = u(x). Let w(x; t) = vt(x; t). Since fvjg is a decreasing
sequence, v(x; t) is also plurisubharmonic. To prove (3.2) we claim that wj(x; t) =
(vj)t(x; t) satis�es (3.2). Since wj(x; t)! w(x; t) uniformly on compact subsets of
M � (0;1), the claim implies that w(x; t) also satis�es (3.2). In order to prove
(3.2) for wj, we notice that wj(x; 0) = �uj(x). By the strong maximum principle
we have that wj(x; t) > 0, otherwise uj is harmonic, which implies that f is a
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constant by Cheng-Yau's gradient estimate [CY]. This proves (3.2). To show that
w(x; t) > 0, observe that limt!0w(x; t) = �u(x). We claim that f must vanish
somewhere. Otherwise u is a harmonic function of sublinear growth, which implies
u is a constant by Cheng-Yau's gradient estimate [CY] again. This then implies f
is a constant, which contradicts the assumption. Therefore �u must be a nonzero,
nonnegative measure. This implies that w(x; t) cannot be identically zero for t > 0.
By the strong maximum principle we then have that w(x; t) > 0 for t > 0. �

Remark 3.1. 1) The monotonicity (3.2) can be justi�ed for any holomorphic func-
tion. One only needs the order condition to ensure that w(x; t) > 0.

2) The proof shows that, on a complete K�ahler manifold M with nonnegative
Ricci curvature, any nonconstant holomorphic function f with OrdH(f) < 1 must
vanish somewhere. This in particular generalizes the fundamental theorem of alge-
bra to complete K�ahler manifolds with nonnegative Ricci curvature.

Recall that for any positive (p; p) current � one can de�ne the Lelong number
of � at x as

(3.4) �(�; x) = lim
r!0

�(�; x; r)

where

(3.5) �(�; x; r) =
1

r2(m�p)�m�p

Z
Bx(r)

� ^ !m�p:

The existence of the limit in (3.4) is ensured by (0.4), the Bishop-Lelong Lemma.
For f(x) 2 O(M ) we de�ne Zf to be the zero set of f . Zf is a positive (1; 1)
current. The Poincar�e-Lelong Lemma (cf. [GH]) states that

(3.6)

p�1
2�

@ �@ log(jf j2) = Zf :

We de�ne

ordx(f) = maxfm 2 NjD�f(x) = 0; j�j< mg:
It is well known that

(3.7) ordx(f) = �(Zf ; x):

One can refer to [D] or [GH] for details of the above cited results on the Lelong
number and ordx(f). Using (3.4){(3.7), some elementary computation shows that

(3.8) ordx(f) =
1

2m
lim
r!0

 
r2

Vx(r)

Z
Bx(r)

�log jf j dv
!
:

Theorem 3.1. LetM be a complete K�ahler manifold with nonnegative holomorphic

bisectional curvature of complex dimension m. Then there exists a constant C1 =
C1(m) such that for any f 2 Od(M ),

(3.9) ordx(f) � C1d:

In particular, this implies that

(3.10) dimC(Od(M )) � C2d
m

for some C2 = C2(m).
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Proof. Let u(x); v(x; t); and w(x; t) be as in Lemma 3.1. From (3.2) we know that

(3.11) (tw(x; t))t � 0:

We are going to show that there exist positive constants C3 = C3(m) and C4 =
C4(m) such that

(3.12) lim
t!0

(tw(x; t)) � C3 ordx(f)

and

(3.13) tw(x; t) � C4 d

for t� 1.
We �rst show (3.12). The approximation argument in the proof of Lemma 3.1

shows that

w(x; t) =

Z
M

H(x; y; t)� log(jf j(y)) dvy :
As in the proof of Theorem 3.1 in [N1], using Li-Yau's [LY] lower bound for the
heat kernel we have that

w(x; t) � C(m)
1

Vx(
p
t)

Z
Bx(

p
t)

�log(jf j(y)) dvy:

Therefore

tw(x; t) � C(m)
t

Vx(
p
t)

Z
Bx(

p
t)

�log(jf j(y)) dvy :

Now (3.12) follows easily from (3.8).
To prove (3.13), we �rst observe that, by Theorem 3.1 in [N1], for t� 1,

(3.14) v(x; t) � C5d log t

for some constant C5 = C5(m), since from the assumption (3.1) one has log jf j(x) �
d log(r(x) + 1) +C. (Here one cannot apply Theorem 3.1 of [N1] directly since v is
not always nonnegative. But we can use u+ as the initial date to obtain a solution
to the heat equation, which serves as a barrier from above for v.) We claim that
this implies

tw(x; t) � C5 d

for t� 1. Otherwise, we have some � > 0 such that

tw(x; t) > (C5 + �)d

for t� 1. Here we have used the monotonicity of tw(x; t). Therefore

v(x; t) � (C5 + �)d log t �A

where A is independent of t. This contradicts (3.14). Since (3.9) follows from (3.11){
(3.13) and (3.10) follows from (3.9) by a simple dimension counting argument (cf.
[M, page 221]) we complete the proof of the theorem. �

Remark 3.2. The dimension estimate as well as the multiplicity estimate (3.9) for
holomorphic functions of polynomial growth was �rst considered in [M] by Mok. In
[M], the estimate was obtained for manifolds with maximumvolume growth as well
as a pointwise quadratic decay assumption on the curvature (cf. (0.5) and (0.6)).
Also, the constant in the estimate similar to (3.9), obtained in [M], depends on the
local geometry of M . Here the constant depends only on the complex dimension.
The estimate (3.10) is sharp in the power.
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Denote byM(M ) the meromorphic function �eld generated by OP (M ). Namely,
any F 2M(M ) can be written as F = g

h
with g; h 2 OP (M ). A direct consequence

of Theorem 3.1 is the following statement.

Corollary 3.1. Let M be as in Theorem 3.1. Then the transcendence degree of

M(M ) over C , degtr(M(M )) satis�es

degtr(M(M )) � m:

Moreover, in the equality case,M(M ) is a �nite algebraic extension over C (f1 ; � � � ;
fm), where fi are the transcendental elements in M(M ). More precisely, there

exist g; h 2 OP (M ) and a polynomial P with coeÆcients in C (f1 ; � � � ; fm) such

that P ( g
h
) = 0 and M(M ) = C (f1 ; � � � ; fm; gh ):

Proof. This follows from the so-called Poincar�e-Siegel arguments. See, for example,
[M, pages 220-221] or [S, pages 176-178]. �

The dimension estimates for the holomorphic functions can be generalized for
the holomorphic sections of polynomial growth of holomorphic line bundles with
controlled positive part of the curvature. In particular, this applies to the nonpos-
itive line bundles. (We call (L;H) nonpositive if the curvature form 
���(x) � 0.)
We treat the nonpositive line bundle with continuous curvature in this section �rst
and leave the more complicated case when the curvature has partial positivity to
the next section. Before we state the result let us de�ne

Od(M;L) = fs 2 O(M;L) j ksk(x) � C(r(x) + 1)dg:
Here r(x) is the distance function to a �xed point o 2M .

Theorem 3.2. Let M be a complete K�ahler manifold with nonnegative bisectional

curvature. Let (L;H) be a Hermitian line bundle with nonpositive curvature. Then

(3.15) dim(Od(M;L)) � C1d
m:

Here C1 = C1(m).

Proof. We assume that there exists s 2 Od(M;L). The well-known Poincar�e-Lelong
equation states that

(3.16)

p�1
2�

@ �@ log(ksk2) = [s]� �;

which is semipositive de�nite by the assumption that (L;H) is nonpositive. Here

� =
p�1
2�


���dz� ^ d�z�, and [s] is the divisor de�ned by the zero locus of s. In
particular, this implies that

(3.17) � logksk2(x) � �
(x) � 0:

Now let u(x) = log(ksk) and solve the heat equation
�
�� @

@t

�
v(x; t) = 0 with

the initial data v(x; 0) = u(x): The solvability can be justi�ed by the argument of
Lemma3.1. Similarlywe have that v(x; t) is plurisubharmonic and w(x; t) = vt(x; t)

satis�es
�
�� @

@t

�
w(x; t) = 0, w(x; 0) = � logksk. Moreover, by Remark 3.1,

(tw(x; t))t � 0:

The argument of Lemma 3.1 also implies that

(3.18) w(x; t) =

Z
M

H(x; y; t) (� logksk(y)) dvy:
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We denote by multx([s]) the multiplicity of the divisor [s]. It is from the de�nition
that

multx([s]) =
1

2m
lim
r!0

 
r2

Vx(r)

Z
Bx(r)

�logksk(y) dvy
!
:

Now the same argument as in the proof of (3.12) shows that

(3.19) lim
t!0

tw(x; t) � C2(m)multx([s]):

We claim that

(3.20) lim
t!1

tw(x; t) � C3(m)d:

In fact, since v(x; t) =
R
M
H(x; y; t) logksk(y) dvy we have that

(3.21) v(x; t) � C4(m)d log t

for t � 1, by Theorem 3.1 of [N1], as in the proof of Theorem 3.1. Now a similar
argument as in Theorem 3.1 shows (3.20). Therefore we have

(3.22) multx([s]) � C5(m)d;

from which (3.15) follows by the same dimension-counting argument as before. �

The proof of the above result as well as the proof of Theorem 3.1 gives the
following improvement of an earlier result [NT2, Theorem 4.3].

Corollary 3.2. Let M be a complete K�ahler manifold with nonnegative bisectional

curvature. Assume that M admits a nonconstant holomorphic function of polyno-

mial growth and that the bisectional curvature is positive at some point. Then

(3.23) Vx(r) � C1r
m+1

and

(3.24)

Z
Bx(r)

R(y) dvy � C2

r2

for some positive constants C1 and C2 (which might depend on x and certainly on

M), independent of r.

Proof. We only prove (3.24) here and leave (3.23) to the interested reader. By

the assumption that M admits a nonconstant holomorphic function of polynomial
growth and that M has quasi-positive bisectional curvature, the proof of [NT2,
Theorem 4.3] implies that there exists a smooth strictly plurisubharmonic function
u(x) on M such that u(x) � C(log r(x) + 2). By the proof of Lemma 4.2 of [NT2]
we can have a nontrivial s 2 Od(M;KM ) for some d > 0, only depending on M .
Now we apply the argument of Theorem 3.2 to the case L = KM . Notice that
�
(y) = R(y), the scalar curvature. Now combining (3.17) and (3.18), we have
that

w(x; t) �
Z
M

H(x; y; t)R(y) dvy:
Applying Theorem 3.1 of [N1] we then have

(3.25) w(x; t) � C3(m)

Z
Bx(

p
t)

R(y) dvy :

Now (3.24) follows from (3.20), (3.25) and the monotonicity of tw(x; t). �

Note that the special case m = 1 of (3.23) recovers the earlier result of Wu [W].
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Remark 3.3. Theorem 3.2 can be applied to the canonical line bundle to give the
dimension estimates for the canonical sections of polynomial growth. In Corollary
3.2, (3.24) also holds for the case with general nonpositive line bundles by assuming
that there exists a holomorphic section of polynomial growth.

The corollary and [NT2] also suggest the following conjecture.

Conjecture 3.1. Under the assumptions of Corollary 3.2 one should be able to

prove that M has maximum volume growth. Namely, OP (M ) 6= C , (3.24), and
M being of maximum volume growth are all equivalent if M has quasi-positive

bisectional curvature.

The intuition for this is that every transcendental holomorphic function of poly-
nomial growth seems to contribute to the volume by a factor of r2. On the other
hand, under the assumption of Corollary 3.2 one in fact has (f1; � � � ; fm) to form
a local coordinate near any given point, by Corollary 5.2 in Section 5. See also
Corollary 6.2 of [NT2]. The conjecture has been partially veri�ed. The details will
appear in a forthcoming paper.

4. Dimension estimates{the sharp ones

Let M be a complete K�ahler manifold of complex dimension m. Under the

assumption that M has nonnegative Ricci curvature, the function Vx(r)
rn

is mono-
tone decreasing (n = 2m is the real dimension). If it has a positive limit � =

limr!1
Vx(r)
rn

we say that M is of maximum volume growth. In [LW] the authors
proved some asymptotically sharp dimension estimates for harmonic functions of
polynomial growth on a complete Riemannian manifold with nonnegative sectional
curvature and maximum volume growth. Here we shall show the sharp dimension
estimate for Od(M ) for complete K�ahler manifolds with nonnegative bisectional
curvature and maximum volume growth.

Theorem 4.1. Let Mm be a complete K�ahler manifold with nonnegative holomor-

phic bisectional curvature. Assume that M is of maximum volume growth. Then

(4.1) ordx(f) � [d]:

In particular,

(4.2) dimC(Od(M )) � dimC(O[d](C
m )):

Here [d] is the greatest integer less than or equal to d. If the equality holds in (4.1)

for some f 2 OP (M ), the universal cover fM of M splits as fM = Mm�l
1 � C l , with

l � 1. If the equality holds in (4.2) for some d � 1, M is biholomorphic-isometric

to Cm .

We need several lemmas to prove the above results. The �rst one is the sharpened
version of (3.12), which does not require the manifold being of maximum volume
growth.

Lemma 4.1. Let u; v; w be as in Lemma 3.1. Then

(4.3) lim
t!0

tw(x; t) =
1

2
ordx(f):
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Proof. Since w(x; t) solves the heat equation
�
�� @

@t

�
w(x; t) = 0 with the initial

data being the positive measure � log(jf j(y)), we can apply Theorem 3.1 of [N1] to
w. (It is easy to see that the result proved in [N1] can be generalized to the case of
the initial data being the positive measure.) Therefore we have that

(4.4)

Z
Bx(r)

�log(jf j(y)) dvy � C(m)w(x; r2)

for some constant C(m) > 0. On the other hand, from the proof of Theorem 3.1
we know that

(4.5) tw(x; t) � C(m) d

for t� 1. (From now on, C(m) denotes a positive constant depending only on the
dimension, which may be di�erent from line to line.) This then implies that

(4.6)

Z
Bx(r)

�log(jf j(y)) dvy � C(m) d

r2

for r � 1.
It is well known that

(4.7) H(x; y; t) � 1

(4�t)
n
2
exp(�r

2(x; y)

4t
) + lower order terms

as t! 0. By (3.8) we also know that for � > 0 there exists Æ > 0 such that

(4.8) 2mordx(f) � � � r2

Vx(r)

Z
Bx(r)

�log jf j dv � 2mordx(f) + �

for r � Æ. Write

tw(x; t) = t

Z
M

H(x; y; t)� log(jf j(y)) dvy

= t

Z
r(x;y)�Æ

H(x; y; t)� log(jf j(y)) dvy

+ t

Z
r(x;y)�Æ

H(x; y; t)� log(jf j(y)) dvy
= I + II:

Here I and II denote the �rst and the second term in the second line of the above
exhibition, respectively. In the following we are going to show that I has limit 0,
as well as

(4.9)
1

2
ordx(f) � 2� � lim inf

t!0
II

and

(4.10) lim sup
t!0

II � 1

2
ordx(f) + 2�:



A MONOTONICITY FORMULA 25

Clearly, (4.3) is a consequence of these conclusions. Using Li-Yau's upper bound
on the heat kernel estimate we have

I � C(n)t

Vx(
p
t)

Z 1

Æ

exp(�s
2

5t
)

 Z
@Bx(s)

�log(jf j(y)) dA
!
ds

� C(n)t

Vx(
p
t)
exp(�Æ

2

5t
)

Z
Bx(Æ)

�log jf j(y) dvy

+C(n)t

Z 1

Æ

exp(�s
2

5t
)

�
sp
t

�n Z
Bx(s)

�log(jf j(y)) dvy
!�

2s

5t

�
ds

= III + IV:

Here we have used the volume comparison theorem and assumed that
p
t � Æ.

III and IV denote the term in the second and third line, respectively. Clearly
limt!0 III = 0. On the other hand,

IV � C(n)

Z 1

Æ2

5t

exp(�� )� n
2 �1t�

 Z
Bx(

p
5t�)

�log jf j(y) dvy
!
d�:

Using the estimate (4.6) we have that limt!0 IV = 0. Therefore we have shown
that

(4.11) lim
t!0

I = 0:

Now we prove (4.10). Using (4.7), for t� 1,

II � t

Z Æ

0

1

(4�t)
n
2

exp(�s
2

4t
)

 Z
@Bx(s)

�log jf j(y) dy
!
ds +

�

2

= t
1

(4�t)
n
2

exp(�Æ
2

4t
)

 Z
Bx(Æ)

�log jf j(y) dy
!

+ t

Z Æ

0

1

(4�t)
n
2

exp(�s
2

4t
)

 Z
Bx(s)

�log jf j(y) dy
!� s

2t

�
ds+

�

2

= V + V I +
�

2
:

Here V and V I denote the term in the second and the third line, respectively. The
term V has limit 0 as in the estimate of I. To estimate the term V I we use (4.8)
and the fact that

Vx(s) � !ns
n
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for s! 0, where !n is the volume of the unit ball in Rn. Indeed,

V I � t

Z Æ

0

!ns
n

(4�t)
n
2

exp(�s
2

4t
)

 Z
Bx(s)

�log jf j(y) dy
!� s

2t

�
ds

=
!n

�
n
2

Z Æ2

4t

0

1

4
exp(�� )� n

2
�1
 
(4t� )

Z
Bx(

p
4t�)

�log jf j(y) dvy
!
d�

� m

2

!n

�
n
2
ordx(f)

Z Æ2

4t

0

exp(�� )� n
2
�1d� +

�

2

=
m

2

!n

�
n
2

ordx(f)�(
n

2
) +

�

2

=
1

2
ordx(f) +

�

2
:

Here �(z) is the standard Gamma function. This proves (4.10). The proof for (4.9)
is similar. �

Notice that we do not make use of the maximum volume growth in Lemma 4.1.
The next lemma sharpens (3.13), which makes use of the maximum volume growth
assumption.

Lemma 4.2. Let M be as in Theorem 4.1 and let u; v; w be as in Lemma 3.1.

Then

(4.12) lim sup
t!1

v(x; t)

log t
� 1

2
d;

which, in particular, implies that

(4.13) lim
t!1

tw(x; t) � 1

2
d:

In order to prove the above lemma we need a result of Li-Tam-Wang [LTW,
Theorem 2.1] on the upper bound of the heat kernel under the maximum volume
growth assumption.

Theorem 4.2 (Li-Tam-Wang). Let M be a complete Riemannian manifold with

nonnegative Ricci curvature and maximum volume growth. For any Æ > 0, the heat
kernel of M must satisfy the estimate

!n

�(Ær(x; y))
(4�t)�

n
2 exp

�
�1 + 9Æ

4t
r2(x; y)

�
� H(x; y; t)

� (1 +C(n; �)(Æ + �))
!n

�
(4�t)�

n
2 exp

�
�1 � Æ

4t
r2(x; y)

�
;

(4.14)

where

(4.15) � = Æ�2n max
r�(1�Æ)r(x;y)

f1� �x(r)

�x(Æ2n+1r)
g:

Note that � is a function of r(x; y) such that

(4.16) lim
r(x;y)!1

� = 0:



A MONOTONICITY FORMULA 27

Proof of Lemma 4.2. By (4.16) and the fact that

Ax(s) � nsn�1�;

as s ! 1, where Ax(s) is the area of the sphere @Bx(s), we know that for any
� > 0, there exists a positive constant A > 0 such that for s = r(x; y) � A,

(4.17) � � � and
Ax(s)

�
� ((1 + �)n) sn�1:

Now, we estimate v(x; t) =
R
M
H(x; y; t) log jf j(y) dvy . Using the upper bound of

Li-Yau we have that

v(x; t) =

Z
r(x;y)�A

H(x; y; t) log jf j(y) dvy +
Z
r(x;y)�A

H(x; y; t) log jf j(y) dvy

� C(n)

Vx(
p
t)

Z A

0

exp(�s
2

5t
)

 Z
@Bx(s)

log jf j(y) dAy

!
ds+ II

� C(n)

Vx(
p
t)

Z
Bx(A)

log jf j(y) dvy + II

= I + II:

Here we use II to represent the second term of the �rst line and I to represent the
�rst term of the third line. Clearly

(4.18) lim
t!1

I

log t
= 0:

We claim that

(4.19) lim sup
t!1

II

log t
� 1

2
d:

The lemma follows easily from (4.18) and (4.19). To prove (4.19) we need the
estimate (4.14) of Li, Tam, and Wang. Notice that this is the only place where the
maximum volume growth condition is used. Indeed, by (4.14) and (4.17), for the
given �xed Æ and � > 0,

II � (1 + C(n; �)(Æ + �))
!n

(4�t)
n
2

Z 1

A

exp(�1 � Æ

4t
s2)

1

�

 Z
@Bx(s)

log jf j(y) dAy

!
ds

� (1 + C(n; �)(Æ + �))
!n

(4�t)
n
2

Z 1

A

exp(�1 � Æ

4t
s2)

Ax(s)

�

�
d log s+ ~C

�
ds

� (1 + C(n; �)(Æ + �))
!n

(4�t)
n
2

Z 1

A

exp(�1 � Æ

4t
s2)n(1 + �)sn�1

�
d log s + ~C

�
ds:

Here ~C is the constant in (3.1). Let

III = (1+ C(n; �)(Æ + �)) (1 + �)
dn!n

(4�t)
n
2

Z 1

A

exp(�1� Æ

4t
s2)sn�1 log s ds

and

IV = (1 + C(n; �)(Æ + �)) ~C(1 + �)
n!n

(4�t)
n
2

Z 1

A

exp(�1 � Æ

4t
s2)sn�1 ds:

Then we have II � III + IV . It is easy to check that

lim
t!1

IV

log t
= 0:
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For III we have that

III � (1 + C(n; �)(Æ + �))
(1 + �)dn!n

4(�(1� Æ))
n
2

�
Z 1

(1�Æ)A2

4t

exp(�� )� n
2
�1
�
log t+ log(

4�

1� Æ

�
d�:

Then we have that

lim sup
t!1

III

log t
� (1 + C(n; �)(Æ + �))

(1 + �)dn!n

4(�(1� Æ))
n
2

Z 1

0

exp(�� )� n
2
�1 d�

= (1 + C(n; �)(Æ + �))
(1 + �)dn!n

4(�(1� Æ))
n
2

�(
n

2
)

= (1 + C(n; �)(Æ + �))
(1 + �)d

2(1� Æ)
n
2

:

Since Æ and � are arbitrary chosen positive constants, this proves (4.19). �

Proof of Theorem 4.1. By Lemmas 4.1 and 4.2 we deduce (4.1), from which the
theorem follows by dimension counting. More precisely, for a �xed o 2 M and a
local coordinates chart (z1; � � � ; zm) with zi(o) = 0, one can de�ne the map

� : Od(M )! C
K[d]

by, for all j�j � [d],

�(f) = (f(o); Dzf(o); � � � ; D�
z f(o); � � � )

where

K[d] = dim(Od(M )) = 1 +

�
m

m� 1

�
+ � � �+

�
m+ [d]� 1
m � 1

�
=

�
m+ [d]
m

�
:

Assume that the conclusion of the theorem is not true. Then there exists f 6= 0
such that �(f) = 0. This implies that ordx(f) > d, which is a contradiction to

(4.1).
In the case that equality holds in (4.1), this implies that (tw)t(x; t) = 0 for all

t > 0. If v��� > 0, Theorem 1.1, in particular Corollary 2.2, implies that M is at.
Since it is of maximum volume growth, M must be isometric to Cm . Otherwise the
universal cover of M splits by the general splitting result proved in Theorem 0.1 of
[NT2]. The above argument shows that one of the factors, where v��� is positive, is

C l , l � 1 since f is not a constant.
In the case that equality holds in (4.2), it is easy to see that the map � above

is an isomorphism by the dimension consideration and (4.1). Hence there exist
fi 2 O[d](M ) such that

fi = z
[d]
i + higher order terms:

Consider v(x; t) with the initial data u(x) = 1
2
log(

Pm

i=1 jfij2). Clearly u(x) �
d log(r + C). On the other hand,

p�1
2� @ �@u has Lelong number d at o, by Lemma

4.4.14 in [Ho]. Therefore(4.1) (more precisely (2.15) or (3.2)) also holds with equal-
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ity for such choice of v. On the other hand, we claim that v���(x; t) > 0. Otherwise,

by applying Theorem 0.1 of [NT2] (passing to its universal cover, if needed) one
splits the manifold M into a product of two factors, and on one (nontrivial, if
v��� is not positive de�nite) of the two factors, v(x; t), therefore u(x), is harmonic,
therefore constant, thanks to Cheng-Yau's gradient estimate. But this contradicts
the choice of u(x) since u(x) has only an isolated singularity at o, and the splitting
implies that the singularity of u(x) cannot be zero dimensional. Therefore we have
that v���(x; t) > 0. By the above argument for the equality case in (4.1) or (2.15),
we have that M is at, therefore isometric to Cm . This completes the proof of the
theorem.

Notice that the above argument also works for the case in whichM is not assumed
to be of maximum volume growth. One just needs to notice that Od(M ) can be

viewed as a subspace of the corresponding function space of its universal cover ~M
and the above argument proves that ~M = Cm . The equality also forces Od(M ) =

Od( ~M ) = Od(C
m ). This implies that every polynomial of degree less than d is

equivariant, so are their common zeros. This particularly implies that the covering
has only one sheet since every point of ~M is a unique common zero of some linear
holomorphic functions. Therefore its orbit under the deck transformation contains
only itself. �

Remark 4.1. Theorem 4.1 was conjectured by Yau [Y]. The only place where
the maximum volume growth assumption was used is in Lemma 4.2, where the
asymptotically sharp heat kernel upper bound estimate of Li, Tam, and Wang
was applied. If the similar estimate as (4.12) holds for the general case without
assuming maximum volume growth, then the argument given above provides the
sharp dimension bound for the general case without any modi�cations.

A localized version of the estimate (4.1) was proved for polynomials on Cm by
Bombieri [B] in the study of the algebraic values of meromorphic maps. Similar
localization can be derived from the above proof of Theorem 4.1 for the holomorphic
functions of polynomial growth on complete K�ahler manifolds satisfying Theorem
4.1.

The following corollary is a simple consequence of the sharp estimate. The
interested reader might want to compare the corollary with the example of [Do], for
which there are more sub-quadratic harmonic functions than linear growth ones.
The example of `round-o�' cones on pages 3{4 of [NT2] shows that one cannot
expect that O1+�(M ) = O1(M ). Namely, one cannot conclude that f is indeed
linear. However, this is the case if one assumes a stronger `closeness' assumption
as in Theorem 0.3 of [NT2].

Corollary 4.1. Let M be as in Theorem 4.1. Then, for any � > 0,

dim(O2��(M )) � m + 1:

Remark 4.2. As pointed out in the previous remark, the sharp estimate, Theorem
0.1, without assuming maximum volume growth, follows if one can prove Lemma
4.2 without assuming maximum volume growth. In fact, Lemma 4.2 follows from
a nice observation by B. Chen, X. Fu, L. Yin and X. Zhu in a recent posting
[CFYZ]. For the sake of the reader we include a simpli�ed exposition here. Using
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the notation as in Lemma 4.2, by the estimates in the proof of (4.19), we have that

v(x; t) =

Z
M

H(x; y; t) log jf(y)j dvy

=

Z
r(x;y)>

p
t

H(x; y; t)

�
log jf(y)j � 1

2
d log t

�
+

Z
r(x;y)�

p
t

H(x; y; t) log jf(y)j

+

Z
r(x;y)>

p
t

H(x; y; t)
1

2
d log t dvy

�
Z
r(x;y)>

p
t

H(x; y; t)

�
log jf(y)j � 1

2
d log t

�
+
1

2
d log t+ C(f):

On the other hand, the �rst term above, denoted by I, satis�es

I �
Z 1
p
t

C(n)d

Vx(
p
t)

Z
@Bx(s)

exp(�s
2

5t
) log

sp
t
dAds � ~C(n)

by the heat kernel estimate of Li and Yau. Therefore, Lemma 4.2 holds for the
general case. The equality case was also treated in [CFYZ]. The argument of using
the equality in (1.15) and the strong maximum principle to get more information
on M can be found in [N2, page 16], which was completed in September of 2002
and has been available on arXiv since November of 2002. The argument for the
equality case (on (4.2)) in the proof of Theorem 4.1 also works assuming neither
the maximum volume growth nor the simply-connectedness due to the fact that
equality in (4.2) is stable under the lifting. The argument in the proof of Theorem
4.1 seems easier than the induction argument in [CFYZ], via the splitting theorem
of [NT2].

Similarly, replacing the rough estimates (3.12) and (3.14) by the precise esti-
mates in Lemma 4.1 and Lemma 4.2 we can have the corresponding result for the
nonpositive line bundle case.

Corollary 4.2. Let M be a complete K�ahler manifold with nonnegative bisectional

curvature. Let (L;H) be a Hermitian line bundle with nonpositive curvature. Then

for any s 2 Od(M;L),

(4.20) multx([s]) � d+ �1:

In particular,

dim(Od(M;L)) � dimC(O[d](C
m )):

In the next result we combine the techniques in the proof of Theorem 4.1 and
Theorem 3.2/Corollary 4.2 to obtain the dimension estimate for the holomorphic
sections of polynomial growth on line bundles with controlled positive curvature.

(We assume the curvature � =
p�1
2�


���(x)dz
� ^ dz

�� to be a continuous current,

for the sake of simplicity.)

Theorem 4.3. Let M be a complete K�ahler manifold with nonnegative bisectional

curvature. Let (L;H) be a holomorphic line bundle over M such that k
���k(x)
satis�es (2.6), (2.7). Assume that the curvature of (L;H), � =

p�1
2�


��� dz� ^ d�z�
satis�es

�(
+; x;1) = lim sup
r!1

1

2m

 
r2
Z
Bx(r)


+(y) dvy

!
<1:
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Then for any s 2 Od(M;L),

(4.21) multx([s]) � C(m) (d+ �1) :

Here we denote �(
+; x;1) by �1. In particular, this implies that

(4.22) dim(Od(M;L)) � C(m)(d+ �1)
m:

If, furthermore, we assume that M has maximum volume growth, then

(4.23) multx([s]) � d+ �1:

In particular,

(4.24) dim(Od(M;L)) � dimC(O[d+�1 ](C
m )):

Proof. The situation is more general than Case 1 considered in Section 2 since
the bundle is not assumed to be nonnegative. The assumptions (2.6) and (2.7) on
k
���k (in fact only 
(x) satisfying (2.6) and (2.7) is needed) ensure that we have a
global solution v(x; t) to the Hermitian-Einstein heat equation (2.1) (equivalently,

(2.5)). We also consider the equation
�
�� @

@t

�
~v(x; t) = 0 with initial data ~v(x; 0) =

� logksk(x). By the approximation argument of Lemma 3.1, since both 
���(x; t)

and ~v���(x; t) satisfy (1.1), and
�

��� + ~v���

�
(x; 0) � 0, by the proof of Lemma 2.1,

we know that
�

��� + ~v���

�
(x; t) � 0. Here one needs the assumptions (2.6) and

(2.7) on k
���k. Now we can apply Theorem 1.1 to
�

��� + ~v���

�
(x; t). In particular

we have that (tw(x; t))t � 0. Here w(x; t) = 
(x; t) + ~vt(x; t). One can show that

(4.25) lim
t!0

t w(x; t) =
1

2
multx([s])

still holds since 
���(x; 0) does not contribute to the Lelong number by the conti-

nuity assumption on 
. Similar to the proof of (3.13) we have that

(3.130) lim sup
t!1

t~vt(x; t) � C(m) d:

This can be justi�ed as follows. Since 
(x; t) satis�es the heat equation with

(x; 0) = 
(x), by Theorem 3.1 of [N1] we have that


(x; t) � C7(m) sup
r�pt

 Z
Bx(r)


+(y) dvy

!
;

which implies that

(4.26) lim sup
t!1

t
(x; t) � C(m)�1:

Here we have used the de�nition of �1. Combining (3:130) and (4.26) we get (4.21).
This �nishes the proof for the general case.

For the case of maximum volume growth, we need to show that

(4.27) lim
t!1

t w(x; t) � 1

2
(d+ �1) :

Applying Lemma 4.2 to ~v(x; t), we then have that

lim sup
t!1

t~vt(x; t) � 1

2
d:

A similar argument as in the proof of Lemma 4.2 also shows that

lim sup
t!1

t
(x; t) � 1

2
�1:
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Combining them together we have (4.27). �

Remark 4.3. One can think of �(
; x;1) as the Lelong number of 
 at in�nity.
Similarly, one can de�ne the Lelong number of a plurisubharmonic function at
in�nity. Then Theorem 2.2 can be simply rephrased as that any nonnegative line
bundle has positive Lelong number at in�nity, if it is not at, and any nonconstant
plurisubharmonic function has positive Lelong number at in�nity, respectively.

5. Further applications

In this section we show some consequences of the multiplicity estimates proved
in Sections 3 and 4. We �rst de�ne the holomorphic maps �j inductively, for j 2 N,
as follows:

�1(x) = (f11 (x); � � � ; f1k1(x)) 2 C k1
where f1i form a basis for O1(M )=C , and where k1 = dim(O1(M )=C ). Suppose
that we have de�ned the map �j :M ! C kj as

�j(x) = (fj1 (x); � � � ; fjkj (x));
where kj = dim(Oj(M )=C ) and the fji form a basis of Oj(M )=C . We de�ne

�j+1(x) = (fj+11 (x); � � � ; fj+1
kj

(x); fj+1
kj+1

(x); � � � ; fj+1
kj+1

(x))

such that fj+1i (x) = f
j
i (x) for all i � kj and f

j+1
i with i � kj + 1 form a basis of

Oj+1(M )=Oj(M ). We de�ne the Kodaira dimension k(M ) of M as

(5.1) k(M ) = max
j2N

fmax
x2M

(rank(�j(x)))g:

In the case OP (M ) = C we de�ne k(M ) = 0.
The �rst result follows closely the consideration (in complex algebraic geometry)

of the study of canonical embedding of a compact K�ahler manifold through the
sections of holomorphic line bundles [KM], [D].

Proposition 5.1. Let M be a complete K�ahler manifold with nonnegative bisec-

tional curvature. Let M(M ) be the quotient �eld generated by OP (M ). Then

(5.2) degtr(M(M )) = k(M ):

Proof. If maxx2M (rank(�j)) � k, it is easy to see that degtr(M(M )) � k since
there are at least k holomorphic functions in Oj(M ) which are transcendental. This
implies that degtr(M(M )) � k(M ).

Now we show that degtr(M(M )) � k(M ) too. By Theorem 3.1 we have that
ordx(f) � C1(m)d for any f 2 Od(M ). Assume that the conclusion is not true.
Then we have F1; � � � ; Fk(M)+1 2 M(M ) such that they are transcendental over C .

We can assume that they have the form Fi =
fi
f0

with fj 2 Od0 (M ). By counting

the monomials formed by Fi we conclude that

(5.3) dim(Od0 p(M )) � C2(m) (p)
k(M)+1

for some positive constant C2(m).
On the other hand, by the de�nition of k(M ) we know that there exists j0,

suÆciently big, such that for j � j0, maxx2M (rank(�j)(x)) = k(M ). By the

de�nition of �j , the basis elements ffji (x)g, i = 1; � � � ; kj, are constant on ��1j (y),

which is of dimension m� k(M ). Namely fji (x) are functions of at most k(M ) free
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variables. Let y be a regular value of �j. Pick x0 2 ��1j (y). This shows that it

only takes dimension of C3(m)~qk(M) to get a nontrivial function f 2 Oj(M ) such
that ordx0(f) � ~q. Here C3(m) is a positive constant only depending on m.

We can choose d� 1 such that d0jd and

C2(m)
dk(M)+1

d
k(M)+1
0

� C3(m)(C1(m)d + 1)k(M):

Now let j = d; q = d=d0; ~q = C1(m)d+ 1. From (5.3) this implies that there exists
an f 2 Od(M ) such that ordx0(f) � C1(m)d + 1. This is a contradiction.

�

Corollary 5.1. Let F1; � � � ; Fk(M) be the transcendental elements inM(M ). Then
the quotient �eld M(M ) is a �nite algebraic extension of C (F1 ; � � � ; Fk(M)). In

particular,M(M ) is �nitely generated.

Proof. The �niteness of the extension follows a similar argument to Proposition
5.1. Once we know that the extension is �nite, the Primitive Element Theorem
implies the �nite generation of M(M ) (cf. [ZS, page 84]). �

Remark 5.1. A result similar to Proposition 5.1 for compact manifolds, where the
holomorphic functions in Od(M ) are replaced by the holomorphic sections of the
power Ld of a �xed line bundle L, was known as the Serre-Siegel lemma (cf. (6.5)
in [D]). The dimension estimates as in Theorem 3.1 are much easier to prove in
that case via either the standard Moser iteration or a covering argument together
with Schwarz's lemma.

Proof of Theorem 0.3. By the proof of Proposition 5.1, for a regular value y of the
map �d, any f 2 Od(M ) is a constant on ��1d (y). Pick x0 as before. Therefore, f is
only a function of at most k(M ) variables. In fact, one can choose local holomorphic
coordinates (z1; � � � ; zl; � � � ; zm) near x0 with zi(x0) = 0, l � k(M ), such that any
f 2 Od(M ) is a function of z0 = (z1; � � � ; zl), locally. Then we de�ne a map

�0 : Og(M )! CK0

similarly as in the proof of Theorem 4.1, where K0 =
�
l+[d]
l

�
. It is de�ned, for all

l-multi-index � with j�j � [d], by assigning

f ! (f(x0); Dz0f(x0); � � � ; D�
z0f(x0)):

Therefore, if dim(Od(M )) � dim(Od(C
k(M))) + 1, one can �nd f 2 Od(M ) such

that ordx0(f) > d. This is a contradiction with Theorem 4.1.
Notice that there exist ffjg, j = 1; � � � ; l, in Od(M ) such that near x0, zj = fj .

If the equality holds in the dimension estimate, we know that l = k(M ) in the
above and the map �0 is onto. Therefore, for each multiple index � with j�j � d,
we can �nd g� 2 Od(M ) such that g� = (z0)� + higher order terms near x0. Here
we, in particular, let gi = zdi + higher order terms. By the unique continuation we
have the formal power series P� with vanishing order greater than d such that g� =
f�1

1 � � �f�k(M)

k(M)
+ P�(f1; � � � ; fk(M)). For the sake of simplicity we consider the case

k(M ) = m�1. Now de�ne ui(x) = log jgij and its heat equation deformation vi(x; t)

similarly as in the proof of Theorem 4.1. Let u(x) = 1
2
log(

Pk(M)
i jgij2). Denote its

heat equation deformation by v(x; t). Clearly the equality in (2.15) holds for vi(x; t)

and v(x; t). This implies that the universal cover ~M of M splits as ~M = C k
0 � ~M1.
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Here k0 � k(M ) by the consideration on the dimension of singularity of u(x) as
in the proof of Theorem 4.1. We claim that k0 = m � 1 = k(m). Otherwise,
v(x; t) will be positive de�nite everywhere. By the L2 estimates (see the proof of
Corollary 0.1 below), one will have that k(M ) = m, which is a contradiction. The

equality also implies that linear functions of C k(M) are equivariant. This implies
that the deck transformation action on C k(M) is trivial. ThereforeM = C k(M)�M2,
where M2 is a quotient of ~M2. Now it is clear that M2 does not contain any
nonconstant holomorphic functions of polynomial growth by the de�nition of k(M ).

(Note again, ~M1 may contain factors of C , and in general we do not have that

dim(Od(M )) = dim(Od( ~M )).) �

By Theorem 4.3 of [NT2] we know that if M is simply-connected, M splits as
M = M 0 �M 00, where dim(M 0) = k(M ) = k(M 0) and M 00 does not support any
nonconstant holomorphic functions of polynomial growth. In fact, the argument in
[NT2] proves more. We state the result in a theorem below. Before doing so we
introduce some notation.

We denote the spaces of holomorphic functions with order, in the sense of
Hadamard, less than or equal to a by O(a)(M ) . We denote a manifold by Ma

if O(b)(M ) = C for all b < a. Let Ma(M ) be the meromorphic function �eld gen-

erated by O(a)(M ). For any 1 > a � 0, we say that M has the curvature decay
(CD)a if for any � > 0 there exists a positive constant C� such that for any r,

(5.4)

Z
Bo(r)

R(y) dy � C�

(1 + r)2�(a+�)
:

The following result can be proved using the induction and the arguments of The-
orem 4.2 and Theorem 4.3 of [NT2].

Theorem 5.1 ([NT2]). Let M be a simply-connected complete noncompact K�ahler

manifold with nonnegative holomorphic bisectional curvature. Then O(1)(M ) 6=
C . Namely, M supports nonconstant holomorphic functions of order at most 1.
Moreover, there exists the following isometric-holomorphic splitting:

M = C k1 �MP �Ma1 �Ma2 � � � � �Mak2
�M1 �N

where N is a compact K�ahler manifold with nonnegative bisectional curvature. Here

0 � a1 � a2 � � � � � ak2 < 1. Mai(Mai ) is of transcendence degree at least

dim(Mai ). The same conclusion holds for the transcendence degree of M(MP ).
Furthermore, Mai has the curvature decay property (CD)ai , for all ai < 1. In

particular, M = M 0 � M 00, where k(M 0) = k(M ) = dim(M 0) and OP (M
00) =

C . In addition, any automorphism  of M decomposes as automorphisms of each

factor. Namely, (x1; x2; � � � ; xl) = (f1(x1); f2(x2); � � � ; fl(xl)) if we write x =
(x1; x2 � � � ; xl) according to the splitting of M . Here fi is an automorphism of the

i-th factor.

Intuitively, the factor manifolds in the above splitting picture `open smaller and
smaller angles at in�nity' towards the right and eventually close up in the last factor
N .

IfM is not simply-connected, let ~M be the universal covering (or just a covering

space) of M . In general, k( ~M ) can be much larger than k(M ). For example, let
~M = C � C . Let (z; w) = (�z; w + 2�). Let G = fkjk 2 Zg and M = ~M=G.

Then k(M ) = 1 and k( ~M ) = 2. The following example indicates the advantage of



A MONOTONICITY FORMULA 35

estimates via the Kodaira dimension. Let � denote the 2-dimensional cigar soliton.
Consider the manifold C k � �2l�. It has Kodaira dimension k. But the volume
growth order is 2k + 2l. This shows that the estimate in Theorem 0.3 is sharper
than the consideration via the volume growth order in [LT1].

Finally we prove Corollary 0.1. In order to do so we need the following well-
known result on the L2-estimate of �@.

Theorem 5.2 (cf. [AV], [D]). Let (E,H) be a Hermitian line bundle with semi-

positive curvature on the complete K�ahler manifold (M; g) of dimension m. Suppose

' : M ! [�1; 0] is a function of class C1 outside a discrete subset S of M and,

near each point p 2 S, '(z) = Ap log jzj2 where Ap is a positive constant and

z = (z1; z2; : : : ; zm) are local holomorphic coordinates centered at p. Assume that

�(E;H exp(�')) = �(E;H) + @ �@' � 0 on M n S, and let � : M ! [0; 1] be a

continuous function such that �(E;H) + @ �@' � �!g on M n S. Then, for every

C1 form � of type (m; 1) with values in L on M which satis�es

�@� = 0 and

Z
M

��1j�j2e�' dvg <1;

there exists a C1 form � of type (m; 0) with values in L on M such that

�@� = � and

Z
M

j�j2e�' dvg �
Z
M

��1j�j2e�' dvg <1:

Proof of Corollary 0.1. The proof uses a nice idea from [NR]. The estimate in

Theorem 3.1 also holds the key to making their argument work in this case. Let ~M
be a covering space of M . Denote by � the covering map. By the assumption that
degtr(M(M )) = m we know that k(M ) = m, from Proposition 5.1. In particular,
this implies that there exists a smooth plurisubharmonic function �, which can
be constructed using the holomorphic functions in OP (M ) such that � is strictly
plurisubharmonic at some point p 2M . Moreover, it satis�es

(5.5) 0 � �(x) � C5(M ) log(r(x) + 2):

Here r(x) is the distance function to a �xed point o 2M and C5(M ) is a positive
constant only depending on M . Now we choose a small coordinate neighborhood
W near p such that it is evenly covered by � such that

p�1@ �@� > 0 in W . Choose
p 2 U � W . Let Ui (Wi), i = 1; � � � ; l, be the disjointed pre-images of U (W ), and
let pi be the pre-images of p. Here l is the number of the covering sheets, which
could be in�nity a priori. We use the coordinates (z1; � � � ; zm) in W , as well as in
Ui such that p (pi) is the origin. Clearly, it does not hurt to assume that W is
inside the ball fzj jzj � 1g. We also de�ne 'p(x) = �(x) log jzj2, where �(x) is a
cut-o� function with support inside W , equal to 1 in U . By changing the constant
in (5.5), we can make sure that �+ 'p is plurisubharmonic and

(5.6)
p�1@ �@ (�+ 'p) > 0

inside U . Now we denote by ~� the lift of � to the cover ~M . Similarly ~'p is the lift

of 'p. Clearly (5.5) holds for ~� and (5.6) holds for ~� + ~'p. Now we use Theorem
5.1 to show that for any d 2 N, 1 � i � l, and � = (�1; � � � ; �m) with j�j = d, we

can construct holomorphic functions f i�(x) on
~M such that

D�f i� (pj) =

(
1; � = �; j = i;

0; otherwise:
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To achieve this we �rst give such a function locally in Ui, which is trivial to do,
and then extend it by cutting-o� to the whole of ~M . Let's call it �. Notice that
we can arrange � to be holomorphic in Ui. Now we let � = �@�. Apply Theorem

5.1 with E = K�1
~M

with the metric j � j exp(��(~�+ ~'p)) (namely ' = ~�+ ~'p) with

� = d + m + 3. Theorem 5.1 then provides � such that �@� = �. Now � � � gives
the wanted holomorphic function, since by the choice of �, the �niteness of

(5.7)

Z
M

j�j2 exp(��(~�+ ~'p)) dv

implies that � vanishes at least up to order d+ 1 at pj. The �niteness of (5.7) also
implies that

(5.8)

Z
M

jf i�j2 exp(��(~�+ ~'p)) dv � B <1

for some positive constant B. Observe that 'p � 0. Combining with (5.5) we
further have

(5.9)

Z
B~o(r)

jf i�j2 dv � B(r(x) + 2)�C5 :

Using the mean value inequality of Li and Schoen we can conclude that f i� 2
O�C5

2
( ~M ). Noticing that the f i� are linearly independent, the dimension of the

space spanned by them is bounded from below by C6(m)dml. But from Theorem
3.1 we also know that

dim(O�C5
2
( ~M )) � C7(m)

�
�C5

2

�m
:

Plugging � = d+m + 3 we have that

C6(m)dml � C7(m)

�
C5(d+m+ 3)

2

�m
;

which implies that l � C7(m)

C6(m)

�
C5

2

�m
, by letting d!1.

�

Corollary 5.2. Let Mm be a complete K�ahler manifold with nonnegative bisec-

tional curvature. Assume that the Ricci curvature is positive somewhere and the

scalar curvature R(x) satis�es (2.7) and (3.24). Namely,

sup
r�0

 
exp(�ar2)

Z
Bo(r)

R2(y) dy

!
<1

and Z
Bo(r)

R(y) dvy � C

r2

for some positive constants a and C. Then k(M ) = m. In particular, �1(M ) is
�nite.

Proof. The result follows from Corollary 0.1 and Corollary 6.2 of [NT2]. �

Remark 5.2. We believe that under the assumption of Corollary 0.1 or 5.2, M
should be simply-connected. But we do not have a proof for it at this moment.
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