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ANCIENT SOLUTIONS TO KÄHLER-RICCI FLOW

Lei Ni

Abstract. In this paper, we prove that any non-flat ancient solution to Kähler-
Ricci flow with bounded nonnegative bisectional curvature has asymptotic volume
ratio zero. We also classify all complete gradient shrinking solitons with nonnega-
tive bisectional curvature. Both results generalize the corresponding earlier results
of Perelman in [P1] and [P2]. The results then are applied to study the geometry
and function theory of complete Kähler manifolds with nonnegative bisectional
curvature via Kähler-Ricci flow. A compactness result on ancient solutions to
Kähler-Ricci flow is also obtained.

0. Introduction

The Kähler-Ricci flow

(0.1)
∂

∂t
gαβ̄(x, t) = −Rαβ̄(x, t)

has been useful in the study of complex geometry in the work of [B, C1, M2],
etc. The ancient solution, a solution defined for −∞ < t ≤ 0, arises [H5] when
one applies the parabolic blow-up to a finite time singularity or slowly form-
ing (Type II) singularity as t approaches infinity. In [H5] Hamilton introduced
some geometric invariants associated with ancient solutions. One of them is
the so-called asymptotic volume ratio (also called cone angle at infinity), which
is defined as V(M, g) := limr→∞

Vo(r)
ωnrn , for any complete Riemannian manifold

(M, g). Here n is the (real) dimension of M , Vo(r) is the volume of the ball
of radius r centered at o (with respect to metric g) and ωn is the volume of
unit ball in R

n. This asymptotic volume ratio is well-defined and independent
of the choice of o in the case when M has non-negative Ricci curvature, by the
Bishop volume comparison. One should consult [H5] for the condition (and the
proof) under which V(M, g(t)) is independent of t for a family of metrics g(t)
satisfying Ricci flow. When the meaning is clear in the context we simply denote
V(M, g(t)) by V(g(t)).

In [P1], Perelman studied the properties of ancient solutions with bounded
nonnegative curvature operator, via his entropy and reduced volume (reduced
distance) monotonicity formulae. In particular, the following result is proved.
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Theorem 1. Let (M, g(t)) be a complete non-flat ancient solution to Ricci flow,
with bounded nonnegative curvature operator. Then V(g(t)) = 0.

This result holds the key to the rest striking results on ancient solutions in
[P1]. The assumption on the nonnegativity of the curvature operator is ensured
in dimension three by Hamilton-Ivey’s pinching estimate [H5, Theorem 24.4], if
the ancient solution is obtained from the blow-up limit of a finite time singular-
ity. It is also needed to make effective uses of the reduced distance introduced
in [P1, Section 7] in Perelman’s blow down procedure [P1. Section 11] on the
ancient solutions. For Kähler-Ricci flow, one would like to replace the nonneg-
ativity of the curvature operator by the nonnegativity of bisectional curvature
since the nonnegativity of the sectional curvature is neither natural nor nec-
essarily preserved under Kähler-Ricci flow. On the other hand, the argument
of [P1, Section 11] made essential uses of the nonnegativity of sectional curva-
ture and the properties of such Alexandrov spaces. There is no obvious way of
adapting the proof of [P1, Section 11.4] to the Kähler setting. Therefore one
needs some new ingredients in order to generalize Perelman’s result to Kähler-
Ricci flow assuming only the nonnegativity of the bisectional curvature. It turns
out that this technical hurdle can be overcome by a result (Proposition 1.1) on
the shrinking solitons, Perelman’s blow-down procedure and a splitting result
for Kähler manifolds with nonnegative bisectional curvature, proved recently by
Luen-Fai Tam and the author in [NT2]. These will be the main focus of this
paper.

There exists another motivation of proving Theorem 1 for Kähler-Ricci flow
on Kähler manifolds with nonnegative bisectional curvature. In a AMS meet-
ing (November 2001, held at Irvine, California), Huai-dong Cao proposed the
following conjecture (see also [C4] for a related problem on ancient solutions).

Conjecture (Cao). Let (Mm, g(t)) be a non-flat steady gradient Kähler-Ricci
soliton with bounded nonnegative bisectional curvature. Then V(g(t)) = 0.

Proving Theorem 1 for Kähler-Ricci flow on Kähler manifolds with nonnega-
tive bisectional curvature will imply Cao’s conjecture. Combining the techniques
from [P1] and [P2] with [NT2], we indeed can prove the following such general-
ization of Theorem 1.

Theorem 2. Let (Mm, g(t)) (m = dimC(M), n=2m) be a non-flat ancient solu-
tion to Kähler-Ricci flow (0.1). Assume that (M, g(t)) has bounded nonnegative
bisectional curvature. Then V(g(t)) = 0.

The only known result along this line, under the assumption of nonnegative
bisectional curvature has been only proved for the case of m = 2, and only for the
gradient Kähler-Ricci solitons, which are special ancient solutions. Please see,
for example [C4, CZ2]. Following [P1], an immediate consequence of Theorem 2
is the following compactness result.

For an fixed κ > 0, the set of κ-solution to Kähler-Ricci flow is compact
module scaling.
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Please refer to Section 2 for the definitions of the κ-solutions. A compactness
result for the elliptic case, namely the Kähler-Einstein metrics, was proved earlier
in [T] for compact manifolds under extra assumptions on an integral bound of
curvature, a volume lower bound and a diameter upper bound.

Since for the Riemannian manifolds with non-negative Ricci curvature, the
Bishop volume comparison theorem asserts that Vo(r)

ω2mr2m is monotone
non-increasing, the manifold M is called of maximum volume growth if
V(M, g) > 0. The above result simply states that the ancient solutions with
bounded nonnegative bisectional curvature (which is preserved under the Kähler-
Ricci flow, by [B, M2]) can not be of maximum volume growth. Applying Shi’s
short time existence result [Sh1], Hamilton’s singularity analysis argument in
[H5, Theorem 16.2] (or Perelman’s result in [P1, Section 11]), as well as esti-
mates from [NT1] and [N2] one can have the following corollary of Theorem
2.

Corollary 1. Let (Mm, g0) (m = dimC(M)) be a complete Kähler manifold
with bounded nonnegative bisectional curvature. Assume that M is of maximum
volume growth. Then the Kähler-Ricci flow (0.1), with g(x, 0) = g0(x) has a long
time solution. Moreover the solution has no slowly forming (Type II) singularity
as t approaches ∞. In particular, there exists a C = C(M, g0) > 0 such that the
scalar curvature R(y) satisfies

(0.2)
∫

Bx(r)

R(y) dµ ≤ C

(1 + r)2
,

where Bx(r) is the ball of radius r centered at x, Vx(r) = Vol(Bx(r)) and∫
Bx(r)

f(y) dµ = 1
Vx(r)

∫
Bx(r)

f(y) dµ. Furthermore, M is diffeomorphic (homeo-
morphic) to C

m, for m > 2 (m = 2), and is biholomorphic to a pseudoconvex
domain in C

m.

The curvature decay statement of Corollary 1 confirms a conjecture of Yau in
[Y, page 621], where he speculated that two assumptions in Shi’s main theorem
of [Sh3] can be replaced by the maximum volume growth alone. See also the
recent work of Wu and Zheng [WuZ] on various examples related to the above
corollary. Corollary 1 also provides a partial answer to a question asked in [N2,
Conjecture 3.1] on conditions equivalent to the existence of holomorphic func-
tions of polynomial growth. In fact, there the author speculated that either the
maximum volume growth or the average quadratic curvature decay is equivalent
to the existence of nonconstant polynomial growth holomorphic functions pro-
vided the manifold has quasi-positive bisectional curvature. There also exists
a related general conjecture of Yau on the non-existence of the bounded holo-
morphic functions, on which one can refer to [LW] for some recent progresses.
Using Perelman’s Theorem 1 one can conclude the similar result for the Rie-
mannian manifolds with bounded nonnegative curvature operator and maximum
volume growth. For Kähler-Ricci flow, under the stronger assumption that M is
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a Kähler manifold with bounded nonnegative curvature operator and maximum
volume growth, a similar (but slightly weaker) estimate as (0.2) was proved ear-
lier in [CZ4] by applying the dimension reduction argument of Hamilton. This
is in fact a fairly easy consequence of Perelman’s Theorem 1. (See the proof of
Corollary 1 for details. The main constraint of related results in [H5], for the
application to Kähler geometry, is that the argument of [H5] only works under
the stronger assumption on nonnegativity of curvature operator/sectional curva-
ture, which is sufficient for the study of three manifolds, but not for the study of
Kähler manifolds of complex dimension ≥ 3.) In [Sh3-4], the long time existence
result was proved under a uniform curvature decay assumption similar to (0.2),
with/without the assumption of the maximum volume growth. In Corollary 1
we have the curvature decay as a consequence instead of an assumption, exactly
as what Yau speculated in [Y]. Under certain further curvature average decay as-
sumptions, the topological conclusion in Corollary 1 was proved earlier in [CZ3].
(See also [H6, Sh4] for related earlier fundamental works. The key observation on
the improvement of injectivity radius lower bound was first observed in [Sh4].)
The last statement of Corollary 1 was proved first in [Sh4] (see also [CZ3]) under
the assumptions that the manifold has positive sectional curvature and a certain
curvature average decay condition. Note also that Corollary 4.1 of [NT2] proved
that M is Stein if M has maximum volume growth and nonnegative bisectional
curvature (which is a conjecture of H. Wu).

Corollary 2. Let (Mm, g0) be a complete Kähler manifold with bounded non-
negative holomorphic bisectional curvature and maximum volume growth. Then
the transcendence degree of the rational function field of M (see [N2] for defini-
tion) is equal to m. Furthermore, M is biholomorphic to an affine quasi-algebraic
variety. When m = 2, M is biholomorphic to C

2.

In [M1, M3], a systematic scheme on embedding/compactifying complete
Kähler manifolds with positive curvature was developed. One can also con-
sult the survey article [M4] for expositions on these methods and related results.
Originally in [M1] under the assumption that M has positive bisectional curva-
ture and certain curvature decay conditions, the conclusion that M is biholomor-
phic to C

2 in the case m = 2, and that M is biholomorphic to an affine variety in
the higher dimension were obtained. In fact in his fundamental work [M1] Mok
laid down the framework and basic line of argument of the affine embedding
and observed that one can apply the result of Ramanujam, which asserts that a
quasi-projective surface homeomorphic to R

4 must be biholomorphic to C
2, in

the case m = 2. Later, for the case m = 2 only, in [CTZ], following Mok’s com-
pactification scheme in [M1. M3], the authors improved the above result of Mok,
replacing the assumptions of [M1] by that M has bounded positive bisectional
curvature and of maximum volume growth. The result stated in [CTZ] also
assumes a mild average curvature decay condition which replaces the stronger
point-wise curvature decay assumption of [M1] via Kähler-Ricci flow. This aver-
age curvature decay condition can be removed by combining with another later



ANCIENT SOLUTIONS TO KÄHLER-RICCI FLOW 637

paper [CZ4], again assuming the positivity of the bisectional curvature and vol-
ume being of maximum growth. In this later improvement [CTZ], which is only
restricted to the case of m = 2 (also the earlier paper [CZ2]), the proof also cru-
cially relies on an observation only valid in complex dimension two, originally
due to Ivey [I], that an ancient solution to Kähler-Ricci flow with nonnegative
bisectional curvature must have nonnegative curvature operator. Namely the
method there relied crucially on the dimensional reduction results of Hamilton
in [H5]. Hence it does not work under the assumption of the nonnegativity of
bisectional curvature in higher dimensions.

In Corollary 2, when m = 2, our statement assumes only nonnegativity instead
of positivity of the bisectional curvature. Moreover, our new approach also works
for the higher dimensional case. Note that the uniform multiplicity estimates
recently proved in [N2] simplifies the steps in [M1] quite a bit. We should point
out that the m = 2 case can also be obtained by combining Corollary 4.1 of [NT2]
with the argument of [CTZ]. However the method of current paper provides an
unified direct approach which works also for higher dimensions.

In the proof of Theorem 2 we need the following result on gradient shrinking
solitons of Kähler-Ricci flow, which is of independent interests.

Theorem 3. Let (Mm, g) be a non-flat gradient shrinking soliton to Kähler-
Ricci flow.

(i) If the bisectional curvature of M is positive then M must be compact and
isometric-biholomorphic to P

m.
(ii) If M has nonnegative bisectional curvature then the universal cover M̃

splits as M̃ = N1×N2×· · ·×Nl×C
k isometric-biholomorphically, where

Ni are compact irreducible Hermitian Symmetric Spaces.
In particular, V(M, g) = 0.

Theorem 3 generalizes a corresponding recent result of [P2, Lemma 1.2], where
Perelman shows that in dimension three, any κ-noncollapsed gradient shrinking
soliton with bounded positive sectional curvature must be compact. When M is
compact and m = 2, the classification in part (ii) was obtained in [I] under even
weaker assumption on the nonnegativity of the isotropic curvature.

For recent works on Kähler-Ricci flow on compact manifolds, one should re-
fer to the survey articles [CC, Cn]. Perelman [P3] also has some important
work on the conjecture (which arises from the related works of Hamilton and
Tian) concerning the large time behavior of (normalized) Kähler-Ricci flow on
compact Kähler manifolds with c1(M) > 0 (cf. [N3]). In [CT1-2], very recent
progresses (and further applications of Corollary 1) have been made towards the
uniformization problem addressed in Corollary 2.

Finally, we should point out that when dimension m = 1 the above results
are known from the work of Hamilton [H3] and [H5, Section 26]. (See also [Ch]
and [CK, CLN].)

The method of this paper has other applications in the study of Ricci flow on
Riemannian manifolds. Please see Section 3.
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1. Proof to Theorem 2 and 3

Recall that a complete Riemannian manifold (M, g) is called a gradient shrink-
ing soliton if there exists a smooth function f such that, for some positive con-
stant a,

(1.1) ∇i∇jf + Rij − agij = 0.

The following result generalizes the result of Perelman by removing the uniform
curvature bound.

Proposition 1.1. Let (M, g) be a Ricci non-flat gradient shrinking soliton.
Assume that the Ricci curvature of M is nonnegative. Then there exists a
δ = δ(M) (1 ≥ δ > 0) such that

(1.2) R(x) ≥ δ > 0.

Proof. It is easy to see, from the strong maximum principle, that the scalar
curvature R(x) > 0. Differentiating (1.1) and applying the second Bianchi
identity, we have that

(1.3) ∇iR = 2Rijfj .

This implies that

∇iR + 2fijfj − 2afi = 2 (Rij + fij − agij) fj = 0

which further implies that there exists a constant C1 = C1(M) such that

(1.4) R + |∇f |2 − 2af = C1.

These equations are well known for the gradient shrinking solitons.
Let o ∈ M be a fixed point. For any x ∈ M we denote the distance of x

from o by r(x). Let γ(s) be minimal geodesic joining x from o, parametrized
by the arc-length. For simplicity we often also denote r(x) by s0. Let {Ei(s)}
(0 ≤ i ≤ n − 1) be a parallel transplanted orthonormal frame along γ(s) such
that E0(s) = γ′(s). If s0 ≥ 2, for s0 ≥ r0 ≥ 1, define n − 1-variational vector
fields Yi(s) (1 ≤ i ≤ n − 1) along γ(s) by

Yi(s) =




sEi(s), 0 ≤ s ≤ 1
Ei(s), 1 ≤ s ≤ s0 − r0

s0−s
r0

Ei(s), s0 − r0 ≤ s ≤ s0

.

From the second variation consideration [P1, Lemma 8.3 (b)] (see also [H5,
Theorem 17.4]), we have that

n−1∑
i=1

∫ s0

0

|Y ′
i (s)|2 − R(γ′(s), Yi(s), γ′(s), Yi(s)) ds ≥ 0.



ANCIENT SOLUTIONS TO KÄHLER-RICCI FLOW 639

In particular we can find C(M), which depends only the upper bound of the
Ricci curvature of M on Bo(1), such that

∫ s0−r0

0

Ric(γ′(s), γ′(s)) ds ≤ C(M) +
n − 1

r0
−

∫ s0

s0−r0

(
s0 − s

r0

)2

Ric(γ′(s), γ′(s)) ds

≤ C(M) +
n − 1

r0
.

(1.5)

Here we have used the fact that the Ricci curvature is nonnegative. We claim
that there exists a positive constant A = A(M), if s0 ≥ A and R(x) ≤ 1, there
exists another constant, still denoted by C(M), such that

(1.6)
∫ s0

0

Ric(γ′(s), γ′(s)) ds ≤ a

2
s0 + C(M).

Assume that we have proved the claim (1.6). Then there exists C2 = C2(M) > 0
such that

〈∇f, γ′(s)〉|γ(r(x))
o =

∫ s0

0

d

ds
(〈∇f, γ′(s)〉) ds

=
∫ s0

0

(∇i∇jf)
dγi(s)

ds

dγj(s)
ds

ds

=
∫ s0

0

(a − Ric(γ′(s), γ′(s))) ds

= ar(x) −
∫ s0

0

Ric(γ′(s), γ′(s)) ds

≥ a

2
r(x) − C2,

which implies that for every x ∈ M \ Bo(A) with R(x) ≤ 1,

〈∇f,∇r〉(x) ≥ a

2
r(x) − C2 − |∇f |(o).

It in particular implies that for every such x, with r(x) ≥ 4
a (C2 + |∇f |(o)),

∇f(x) �= 0.
Now we can prove the proposition after the claim (1.6). For any x ∈ M \

(Bo(A) ∪ Bo( 4
a (C2 + |∇f |(o)))), without the loss of generality we can assume

that R(x) ≤ 1, let σ(η) be the integral curves of ∇f , passing x with σ(0) = x.
By (1.3) we have that

(1.7) − d

dη
(R(σ(η)) = −2Rij

dσi

dη

dσj

dη
≤ 0.
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This implies that R(x) ≥ R(σ(η)), for η < 0. On the other hand,

(1.8) − d

dη
r(σ(η)) = −〈∇r,∇f〉 ≤ −(C2 + |∇f |(o)) ≤ 0

as far as r(σ(η)) ≥ max(A, 4
a (C2 + |∇f |(o))), noticing that we always have

R(σ(η)) ≤ 1. This implies that the integral curve σ exists for all η < 0 since
|∇f | is bounded inside the closed ball Bo(2r(x)). The estimate (1.8) also implies
that there exists η1 < 0 such that r(σ(η1)) = max(A, 4

a (C2+|∇f |(o))). Applying
(1.7) we have that

R(x) ≥ inf
y∈Bo(r(σ(η1)))

R(y).

This proves the proposition assuming the claim (1.6).
Now we prove the claim (1.6). First by equation (1.3) and the fact Rij ≥ 0

we have that fij ≤ agij . This implies that along any minimizing geodesic γ(s)
from o, f ′′(s) ≤ a. Hence there exists B = B(M) such that

f(x) ≤ (a + 1)r2(x)

for r(x) ≥ B. Using (1.4) and the fact that R > 0 we have that

|∇f |(x) ≤ 2(a + 1)r(x)

for r(x) ≥ B. On the other hand, (1.3) also implies that

|∇R|2 ≤ 4R2|∇f |2.

The above two inequality implies the the estimate

|∇ logR|(x) ≤ 2(a + 1)r(x)

for r(x) ≥ B. Now we adapt the notations and situations right before (1.6)
and choose r0 in (1.5) such that n−1

r0
= εs0 with some fixed positive constant

ε ≤ min(1, a
2 ). Then (1.6) implies that

(1.9)
∫ s0−r0

0

Ric(γ′(s), γ′(s)) ds ≤ C(M) + εs0.

Notice r0 = n−1
εs0

≤ n−1
ε ≤ s0

2 if s0 ≥ A for some A = A(M) ≥ max(1, 2B, 2n−1
ε ).

Now using the gradient estimate on logR above we have that

log
R(γ(s1))
R(γ(s0))

= −
∫ s0

s1

d

ds
logR(γ(s)) ds

≤
∫ s0

s1

|∇ logR| ds

≤ 2(a + 1)s0(s0 − s1)
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for s1 ≤ s0. Hence

R(γ(s)) ≤ R(γ(s0)) exp(
2(a + 1)(n − 1)

ε
) ≤ exp(

2(a + 1)(n − 1)
ε

)

for any s ≥ s0 − r0. Here we have used the assumption R(x) = R(γ(s0)) ≤ 1.
This further implies that

∫ s0

s0−r0

Ric(γ′(s), γ′(s)) ds ≤
∫ s0

s0−r0

R(γ(s)) ds

≤ r0 exp(
2(a + 1)(n − 1)

ε
)

=
n − 1
εs0

exp(
2(a + 1)(n − 1)

ε
)

≤ C(ε, M).

Together with (1.9), we prove our claim (1.6). Hence we complete the proof of
the Proposition 1.1.

Proof of Theorem 3. Case (i). By the strong maximum principle we can assume
that R > 0 everywhere, otherwise one would have that M is Ricci flat, hence
flat. By Proposition 1.1, we know that R ≥ δ > 0, for some δ. In particular, it
implies that for any x ∫

Bx(r)

R(y) dµ ≥ δ.

Here
∫

is the average integral defined in Corollary 1 of the introduction. On the
other hand, part (ii) of Theorem 4.2 in [NT2] implies that if M is not compact,
then it must satisfies

(1.10)
∫

Bx(r)

R(y) dµ ≤ C2

1 + r

for some C2(x, M) > 0. This is a contradiction! This implies that M must be
compact.

Case (ii). Let M̃ be the universal cover of M . Since M̃ is still a shrinking
soliton, we can apply Proposition 1.1 to M̃ . From part (i) of Theorem 4.2 in
[NT2], we can split M̃ as a product of two manifolds with one of the factor
being compact and the other satisfies the curvature average decay (1.10). The
classification result follows from the celebrated results of Siu-Yau [SiY] (also due
to Mori), Mok [M2] as well as an observation of Koiso [Ko, Proposition 1.3].

The conclusion V(M, g) = 0 now follows easily from (i) and (ii).

The proof of Theorem 2 requires the blow-down procedure of Perelman in
[P1, Proposition 11.2]. Since Proposition 11.2 of [P1] provided only a sketched
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proof, in the following we present in a more detailed way the blow-down proce-
dure of Perelman of [P1, 11.2] on the so-called bounded κ-solutions, which are
defined to be complete ancient solutions with bounded nonnegative bisectional
curvature and κ-noncollapsed in all scales. (See also [CLN], [KL], [STW] and
[Ye] for various expositions on this part.) A solution (to Ricci flow) is called
κ-noncollapsed if for any time t, for any ball Bx(r) (with respect to metric g(t)),
satisfying |Rm|(y) ≤ 1

r2 for all y ∈ Bx(r) one has Vx(r) ≥ κrn. One should refer
to [P1, Section 4] for more discussions on κ-noncollapsing, [P1, Section 7, 11]
for more details of the reduced distance and its properties. Now we adapt [P1,
Section 7, 11] to Kähler-Ricci flow and replace the nonnegativity of the curvature
operator by the nonnegativity of the bisectional curvature. So in the following,
we let (M, g(t)) be a complete non-flat ancient solution to Kähler-Ricci flow. We
also assume that (M, g(t)) has bounded nonnegative bisectional curvature (the
boundedness of curvature can be replaced by the differential Harnack inequality,
(1.14) below) and it is κ-non-collapsed for some κ > 0.

First we recall the definition of the reduced distance &(y, τ). Fix a space-time
point (x0, t0). Let τ = t0 − t. Define

&(y, τ) = inf
γ,γ(0)=x0,γ(τ)=y

1
2
√

τ

∫ τ

0

√
η

(
R + 4|γ′(η)|2

)
dη.

We have factor 4 here due to different convention in Kähler category. Since the
R ≥ 0 and the metrics are shrinking (since Rαβ̄ ≥ 0) along the t direction it is
easy to see that

&(y, τ) ≥ d2
t0(y, x0)

τ
.

(Sometimes we also denote dt0(y, x0) by d0(y, x0) when we think in terms of τ .)
As a consequence of above lower bound on & we know that &(y, τ) achieves its
minimum for each τ at some point finite distance away from x0. Thus we can
conclude that

Claim 1. For each τ there exists a point x(τ) such that &(x(τ), τ) = n
2 .

Proof. By the equation (7.15) in [P1], using the maximum principle it was shown
in [P1, Section 7] that miny∈M &(y, τ) ≤ n

2 . Using the continuity and the above
lower bound on &(y, τ) we know the existence of x(τ).

Let us recall the equations satisfied by &(y, τ) from [P1, Section 7]. First we
have

(1.11) |∇&|2 + R =
1
τ

& − 1
τ

3
2
K.

Here

K =
∫ τ

0

η
3
2 H(X) dη
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where H(X) = −Rτ − 2〈∇R, X〉 − 2〈X,∇R〉 + 4Ric(X, X) − 1
τ R is the trace

different Harnack (also called Li-Yau-Hamilton) expression for shrinking soli-
tons, X is (1, 0) component of the tangent vector of the minimizing L-geodesics.
Notice that 〈·, ·〉 is the Hermitian product with respect to the Kähler metric.
We also have that

(1.12) |∇&|2 + &τ = − 1
2τ

3
2
K

and

(1.13) &τ = R− &

τ
+

1
2τ

3
2
K.

Applying H.-D. Cao’s [C2] (in stead of Hamilton’s) trace differential Harnack
(also called Li-Yau-Hamilton inequality) for ancient solutions to Kähler-Ricci
flow,

(1.4) −Rτ − 2〈∇R, X〉 − 2〈X,∇R〉 + 4Ric(X, X) ≥ 0

we have that
H(X) ≥ −1

η
R.

Therefore we have that

K ≥ −
∫ τ

0

√
ηR dη ≥ −2

√
τ&.

Applying the above lower bound to (1.11)–(1.13) we have that

(1.15) |∇&|2 + R ≤ 3
τ

&,

(1.16) |∇&|2 + &τ ≤ &

τ

and

(1.17) &τ ≥ R− 2
τ

& ≥ −2
τ

&.

From (1.15), we have that

|∇&
1
2 |2 ≤ 3

4τ
,

which implies that

(1.18) &
1
2 (y, τ) ≤

√
n

2
+ dτ (x(τ), y)

√
3
4τ

.

Now we can deduce the following results on the reduced distance &(y, τ).
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Corollary 1.1. For y ∈ Bτ (x(τ),
√

τ
ε ),

(1.19) &(y, τ) ≤
(√

n

2
+

√
3
4ε

)2

.

Hence

(1.20) &(y, η) ≤ 4

(√
n

2
+

√
3
4ε

)2

.

for all 2τ ≥ η ≥ τ
2 and y ∈ Bτ (x(τ),

√
τ
ε ). And

(1.21) τR(y, η) ≤ 12

(√
n

2
+

√
3
4ε

)2

.

Moreover, on Bτ (x(τ),
√

τ
ε ) × (δτ, 1

δ τ) one has that

(1.20’) &(y, η) ≤
(

1
δ
(
√

n

2
+

√
3
4ε

)

)2

.

and

(1.21’) τR(y, η) ≤ 3

(
1
δ
(
√

n

2
+

√
3
4ε

)

)2

.

The following corollary gives relation between the κ-constant in the definition
of κ-noncollapsing and the lower bound of the reduced volume.

Corollary 1.2. There exists a constant C1(n) > 0 such that

(1.22) Ṽ (τ) ≥ e−C1(n)κ.

This in particular implies that limτ→∞ Ṽ (τ) > 0. On the other hand, for any
δ > 0, there exists a κ > 0 so that if Ṽ (τ) ≥ δ > 0 for any τ > 0 and any
(x0, t0) ∈ M × (−∞, 0). Then M × (−∞, 0) is κ-noncollapsed at all scales.

Proof. Apply the (1.21) to Bτ (x(τ), τ) to see that it satisfies the curvature
bound assumption on the ball in the non-collapsing assumption. Then the re-
sult follows from the estimate (1.20) and the definition of the reduced volume
Ṽ (τ) =

∫
M

e−�(y τ)

τ
n
2

dµτ . The converse follows from the second κ-noncollapsing
proof of Perelman in [P, Section 7].
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Let g̃τ (s) = 1
τ ḡ(sτ). Then B̃1(x(τ),

√
1
ε ) = Bτ (x(τ),

√
τ
ε ). The (1.21’) and

the κ-non-collapsing assumption implies, by Hamilton’s compactness result [H3],
that (

B̃1(x(τ),

√
1
ε
) × (δ,

1
δ
), g̃τ (s)

)
→

(
B∞(x∞,

√
1
ε
) × (δ,

1
δ
), g∞(s)

)

as solutions to Kähler-Ricci flow. This can be extended to an ancient solution
(M∞, g∞(τ)). The estimates (1.15)–(1.17) ensure that &(y, s) the reduced dis-
tance with respect to re-scaled metric survives under the limit and converges to
a function &∞(y, s). Let

V∞(s) =
∫

M∞

e−�∞(y,s)

s
n
2

dµs.

It was claimed by Perelman in [P1, 11.2] that

Claim 2.

(1.23) lim
τ→∞

Ṽ (τ) = V∞(s).

In particular, one has that V∞(s) is a constant and (M∞, g∞) is a non-flat
gradient shrinking soliton.

The claim follows if one can show that

(1.24)
∫

(Bτ (x(τ),
√

τ
ε ))c

e−�(y,τ)

τ
n
2

dµτ ≤ C(ε)

with C(ε) → 0 as ε → 0. This can be proved easily if we can get an ‘effective’
lower bound estimate of &(y, τ) in terms of d2

τ (x0,y)
τ . This last point was proved

in [Ye, Lemma 2.2]. In fact it was proved that there exists positive constant
C = C(n) such that for any y, z ∈ M .

−&(z, τ) − 1 + C
d2

τ (z, y)
τ

≤ &(y, τ).

One should consult notes [KL, Ye] for more detailed exposition on the proof of
Claim 2.

Proof of Theorem 2. Assume that (M, g(t)) is an ancient solution (non-flat)
defined on M × (∞, 0]. If M is compact, there is nothing to prove. So we
assume that M is non-compact. We prove the theorem by the contradiction. So
we assume that V(g(t0)) > 0 for some t0. By passing to it universal cover we can
also assume that M is simply-connected. Then by part (ii) of Theorem 4.2 of
[NT2] again (see also Corollary 4.1 of [NT2]), we have that the scalar curvature
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has the average decay (1.10). Now apply Theorem 2.2 of [NT1] (and its proof
for the time before t0) we conclude that for all t, V(g(t)) = V(g(t0)) > 0. This in
particular implies that (M, g(t)) is κ-noncollapsed in all scales (since the volume
is non-collapsed even without assuming the curvature bound).

Now we apply the above blow-down procedure of Perelman to obtain the limit
(M∞, g∞), which is a gradient shrinking soliton. Since (M, g(t)) is assumed to
have nonnegative bisectional curvature, the limit (M∞, g∞) also has nonnega-
tive bisectional curvature. By the definition of (M∞, g∞), it is clear that the
corresponding asymptotic volume ratio V(M∞, g∞) ≥ V(g(t0)) > 0. On the
other hand, since (M∞, g∞) is non-flat, its scalar curvature must be positive
by the strong maximum principle. Now we can apply Theorem 3 (part (ii))
to the universal cover of M∞ and conclude that M∞ can not have maximum
volume growth. This contradicts the fact that V(M∞, g∞) ≥ V(g(t0)) > 0. The
contradiction proves the theorem.

2. Applications to Kähler manifolds and Kähler-Ricci flow

Theorem 1 has nice applications to Ricci flow as shown in [P1]. Following
[P1], we can derive the compactness result on ancient solutions to Kähler-Ricci
flow out of Theorem 2.

We call an ancient non-flat solution (M, g(t)) defined on M × (−∞, 0] a κ-
solution to Kähler-Ricci flow, if (M, g(t)) has nonnegative bisectional curvature,
satisfying the trace differential Harnack inequality

(2.1) Rt + 〈∇R, X〉 + 〈X,∇R〉 + Ric(X, X) ≥ 0

for any (1, 0) vector field X, and (M, g(t)) is κ-non-collapsed on all scales for
some fixed κ > 0. Recall that κ-non-collapsed on all scales means that for any
time t and x0 ∈ M if for all y ∈ Bt(x0, r), R(y, t) ≤ 1

r2 , then V olt(Bt(x0, r)) ≥
κr2m. Notice that we do not require R being bounded. We formulate in such
way to be able to make the result hold for any dimension.

Theorem 2.1. The set of κ-solutions to Kähler-Ricci flow is compact modulo
scaling.

The proof of the result follows the same line of the argument as Theorem
11.7 of [P1]. The argument in [P1] is quite robust. The key components of the
argument in [P1] are Shi’s local derivative estimate, trace differential Harnack
and the following consequence of Theorem 2.

Corollary 2.1. For every ω > 0 there exist B = B(ω) < ∞, C = C(ω) <
∞, τ0 = τ0(ω) > 0, with the following properties.

(a) Suppose we have a (not necessarily complete) solution g(t) to the Kähler-
Ricci flow, defined on M × [t0, 0], so that at time t = 0 the metric ball B0(x0, r0)
is compactly contained in M. Suppose that at each time t, t0 ≤ t ≤ 0, the metric
g(t) has nonnegative bisectional curvature, and V olt(Bt(x0, r0)) ≥ ωrn

0 . Then
we have an estimate R(x, t) ≤ Cr−2

0 + B(t − t0)−1 whenever dt(x, x0) ≤ 1
4r0.
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(b) If, rather than assuming a lower bound on volume for all t, we assume it
only for t = 0, then the same conclusion holds with −τ0r

2
0 in place of t0, provided

that −t0 ≥ τ0r
2
0.

The corollary above is exactly the same as Corollary 11.6 of [P1] with only
the Ricci flow being replaced by Kähler-Ricci flow and curvature operator being
replaced by bisectional curvature. The proof is the also the same if one replaces
Theorem 1 of Perelman, whereever it is needed, by Theorem 2 of this paper. The
robust scaling argument in the proof of Corollary 11.6 in [P1] also resembles, to
some degree in the spirit, various curvature estimates proved by certain scaling
argument in the study of the mean curvature flow and other PDEs. See for
example, [S1, E, Wh], as well as Simon’s proof on Schauder’s estimates in [S2].
The detailed exposition on the proof of the above Theorem 2,1 and Corollary
2.1 can be found in [CLN, KL, STW] as well as author’s AIM lecture notes.

In view of the compactness result above and the general tensor maximum prin-
ciple proved in [NT2], we conjecture that H.-D. Cao’s matrix Li-Yau-Hamilton
estimate holds on any complete Kähler manifolds with non-negative bisectional
curvature. No assumption on curvature being bounded is needed. If confirmed,
one has Theorem 2.1 for all κ-noncollapsed ancient solutions with non-negative
bisectional curvature. As in [P1], the following gradient estimate is a conse-
quence of Theorem 2.1.

Corollary 2.2. There exists C = C(κ, m) such that for the κ-solution (M, g(t))
we have that

|∇R|(x, t) ≤ CR 3
2 (x, t), |Rt|(x, t) ≤ CR2(x, t).

Note that Theorem 2 also holds for ancient solutions with nonnegative bisec-
tional curvature and differential Harnack (2.1). Also notice that the κ-solution
here has different meaning from [P1. Sectiona 11]. The bounded κ-soltion defined
last section corresponds to the κ-solution in [P1].

Proof of Corollary 1. By Shi’s short time existence result we know that the
solution exists until the curvature blows up. But by Corollary 2.1 above (see
also [P1, 11.5 and 11.6]) one has the estimate

(2.2) R(x, t) ≤ C1

t + 1
,

for some C1 = C1(n,V(g(0))) > 0. Therefore, the solution exists for all time
and is of Type III. Namely there is no slowly forming singularity at infinity. The
result can also be shown using Hamilton’s blow-up argument in [H5]. In order
to get the curvature decay estimate (0.2) we first apply Theorem 2.1 of [NT1]
to conclude that there exists C2 = C2(m) with

∫ √
t

0

sk(x, s) ds ≤ −C2F (x, t)
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where k(x, r) =
∫

Bx(r)
R(y, 0) dµ, with respect to the initial metric and

F (x, t) = log
[

det(gαβ̄(x, t))
det(gαβ̄(x, 0))

]
.

(The above estimate follows easily from that facts −F (x, t) ≥ 0 and(
∆0 − ∂

∂t

)
(−F )(x, t) ≤ −R(x, 0), where ∆0 is the Laplace operator with re-

spect to g(x, 0). This is indeed the proof on page 125 of [NT1].) Since − ∂
∂tF =

R(x, t) ≤ C1
1+t , for 1 � t, one has that

(2.3)
∫ r

0

sk(x, s) ds ≤ C3 log(r + 2),

for some C3 = C3(m,V(g(0))).
Using the curvature decay estimate (2.2) together with the fact that the as-

ymptotic volume ratio V(t) is a constant function of t, one can apply the local
injectivity radius estimate of Cheeger-Gromov-Taylor [CGT, Theorem 4.3] (see
also [CLY] for earlier similar works) to conclude that the injectivity radius of
(M, g(t)) has the lower bound C

√
t, where C is a constant independent of t.

This implies that M can be exhausted by open subdomains which diffeomorphic
to Euclidean balls. From this one can conclude the topological type of M from
by-now standard result from topology. The above is the observation in [CZ3],
which follows the earlier construction in [Sh4, Section 9] and [H6]. Note that
the Steinness of M has been proved for any complete Kähler manifolds with the
maximum volume growth and nonnegative bisectional curvature in [NT2, Corol-
lary 4.2] (Please see also [WZ] for the even easier positive case.) One then can
adapt the construction of [Sh4, Section 9] to conclude that M is biholomorphic
to a pseudoconvex domain in C

m.
To obtain (0.2), by [NT2, Theorem 6.1], we first solve the Poincaré-Lelong

equation to obtain u such that ∂α∂̄β̄u = Rαβ̄ , and u is at most of logarithmic
growth. By considering its heat equation deformation and adding a function
of the form log(|z|2 + 1) in the case M splits some factors of C, noticing that
M is diffeomorphic to R

n, we can obtain a strictly plurisubharmonic function
of logarithmic growth on M. More precisely, let v(x, t) be the heat equation
deformation of u(x) (without Kähler-Ricci flow). By [NT2], v(x, t) has the same
growth as u(x) and M splits as M = M1 × M2, where on M1 the complex
Hessian vαβ̄(x, t) is positive definite and on M2, vαβ̄(x, t) ≡ 0. By the result of
Cheng-Yau we know that v(x, t) must be a constant on M2, which then implies
that u(x) is a constant on M2. This implies that M2 = C

k for some 0 ≤ k ≤ m.
On M2 one can construct a strictly plurisubharmonic function of logarithmic
growth by taking φ(z) = log(|z|2 + 1). Adding this to v(x, t) we have a strictly
plurisubharmonic function of logarithmic growth on M . Now (0.2) follows from
the proof of Corollary 3.2 in [N2].

Proof of Corollary 2. By the above proof of Corollary 1 we know that M supports
a strictly plurisubharmonic function of logarithmic growth. The conclusion on
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the transcendence degree of rational function field follows from the L2-estimate
of ∂̄ and the dimension estimate proved in Theorem 3.1 of [N2]. See, for example,
[N2, Theorem 5.2] for the constructions of holomorphic functions of polynomial
growth, forming a local holomorphic coordinate for any given point in M . The
construction via the well-known Hörmander’s L2-estimates provides the exis-
tence of plenty holomorphic functions of polynomial growth, which provides a
lower bound on the transcendence degree. The multiplicity estimates in Theorem
3.1 of [N2] gives the upper bound on the transcendental elements of the rational
functions. The assertion that M is an affine quasi-algebraic variety follows from
the construction in [M1]. See also [De] as well as [CTZ]. Notice that we now also
have uniform multiplicity estimates, thanks to the new monotonicity formula
and Theorem 3.1 in [N2], which simplifies the steps of [M1] quite a bit. Here by
an affine quasi-algebraic variety we mean an affine algebraic variety with some
codimension one algebraic varieties removed.

The part M is biholomorphic to C
2 also follows as in [M1, page 256] by appeal-

ing to the result of Ramanujam that any quasi-projective surface homeomorphic
to R

4 is biholomorphic to C
2.

Remark 2.1. The fact that maximum volume growth implies the ampleness
of holomorphic functions of polynomial growth was conjectured in [N2]. It has
been shown in [NT2] that the positivity of Ricci curvature together with some
average curvature decay assumption also implies the same result on holomorphic
function of polynomial growth. In fact, this also implies that M is an affine
quasi-algebraic variety as in Corollary 2.

The existence of harmonic functions of polynomial growth was obtained in [D]
under the assumption of nonnegative Ricci curvature, maximum volume growth
and the uniqueness of the tangent cone at infinity. The result here seems to
indicate that the assumption on the uniqueness of the tangent cone may not be
needed.

After the completion of current paper, H.-D. Cao informed the author that
the part of result in Corollary 2, on the special case that the complex dimension
m = 2, assuming the maximum volume growth and nonnegativity of bisectional
curvature, was also obtained by B.-L. Chen earlier in his thesis.

3. Applications to Ricci flow

The proof of Proposition 1.1 can be used in some other situations. For exam-
ple we can prove the following results.

Proposition 3.1.

(i) Let (M, g) be a compete steady gradient soliton. Assume that the Ricci
curvature is pinched in the sense that Rij ≥ εRgij, for some ε > 0 with
the scaler curvature R(x) > 0. Then there exist C > 0, a > 0 such that

(3.1) R(x) ≤ C exp(−a(r(x) + 1)).
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Here r(x) is the distance function to some fixed point in M .
(ii) Let (M, g) be a compete expanding gradient soliton. Assume that the

Ricci curvature is pinched as above. Then (3.1) holds.

Corollary 3.1. Assume that n ≥ 3.

(i) There is no steady gradient soliton with pinched Ricci curvature as in
Proposition 3.1;

(ii) There is no expanding gradient soliton with pinched Ricci curvature (as
in Proposition 3.1) and nonnegative sectional curvature.

In particular, any non-flat complete three manifolds with pinched Ricci curva-
ture and bounded nonnegative sectional curvature must be compact, therefore
spherical. Same result holds for any higher dimensional complete Riemannian
manifolds with pinched curvature operator in the sense that

(3.2) |
o

Rm|2 = |W |2 + |V |2 ≤ δn(1 − ε)2|U |2 = δn(1 − ε)2
2

n(n − 1)
R2

where ε > 0, δ3 > 0, δ4 = 1
5 , δ5 = 1

10 and δn = 2
(n−2)(n+1) , and W , V and U

denote the Weyl curvature tensor, traceless Ricci part and the scalar curvature
part, respectively, according to the curvature operator decomposition in [Hu].

Proof. The first part follows from Theorem 20.2 of [H5] and (i) of Proposition
3.1. Notice that the proof there works under the weaker assumption Rij > 0.

For part (ii), one just needs to recall the gap theorem of Greene-Wu [GW]
(see also [PT]) asserting that a simply-connected complete Riemannian mani-
fold with nonnegative sectional curvature and (3.1) must be flat, noticing that
under the assumption of expanding gradient soliton and nonnegativity of the
Ricci curvature, M is diffeomorphic to R

n (which in particular implies that the
new expanders examples constructed in [FIK] can not have nonnegative Ricci
curvature), since f is a strictly convex function with only one critical point.

By (i) and (ii), the singularity analysis of Ricci flow implies that curvature
pinched manifolds must be compact. This is the main result proved in [CZ1].
Now the last claim in the corollary just restates the fundamental results of
Hamilton [H1] and Huisken [Hu].

Note that when n = 2, (3.1) is automatic and the examples of Hamilton’s
cigar and the expanding soliton exhibited in [CLN] show that the exponential
decay proved in Proposition 3.1 is sharp.

Remark 3.1. We speculate that there is no complete noncompact Riemannian
manifold with the pinched Ricci as in Proposition 3.1 (according to B. Chow,
this was speculated earlier, in the case that n = 3, by R. Hamilton). If true, this
should be the right Bonnet-Meyers type theorem since that (3.2) is too strong to
allow any other topology. Due to the page limit, the details on the proof of results
in this section will appear somewhere else.
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