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In this paper we prove classification results for gradient shrinking Ricci solitons
under two invariant conditions, namely nonnegative orthogonal bisectional curvature
and weakly PIC1, without any curvature upper bound. New results on ancient
solutions for the Ricci and Kähler-Ricci flow are obtained. Applications to Kähler
manifolds with almost nonnegative orthogonal bisectional curvature are derived as
consequences. The main new feature is that no curvature upper bound is assumed.

© 2019 Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cet article, nous établisons des résultats de classification pour des solitons
contractants de Kähler-Ricci sous deux conditions invariantes, á savoir, sous une
condition de courbure bisectionnelle orthogonale non négative, et sous une condition
faiblement PIC1 sans limite supérieure de courbure. Nous obtenons de nouveaux
résultats sur des solutions anciennes pour les flots de Ricci et de Kähler-Ricci. Des
applications aux variétés de Kähler á courbure bisectionnelle orthogonale presque
non négative sont dérivées comme corollaires. La principale nouveauté est qu’aucune
limite supérieure de courbure n’est supposée.

© 2019 Elsevier Masson SAS. All rights reserved.

1. Introduction

Let Mn be a Kähler manifold and R denotes the curvature tensor. The orthogonal bisectional curvature

(B⊥ for short) is defined for a pair of X,Y ∈ T ′
xM with 〈X,Y 〉 = 0 as R(X, X̄, Y, Ȳ ). This curvature arises

naturally in the Bochner formula involving (1, 1)-forms on a Kähler manifold [18,15].

For the compact manifolds, there exist classification results [10,16] (cf. [33] for alternative arguments)

under B⊥ > 0 and B⊥ ≥ 0 (abbreviated as NOB) conditions. When the manifold is compact and B⊥ > 0,

* Corresponding author.

E-mail addresses: xiaolol1@uci.edu (X. Li), lni@math.ucsd.edu (L. Ni).
1 The research is partially supported by “Capacity Building for Sci-Tech Innovation-Fundamental Research Funds”.
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0021-7824/© 2019 Elsevier Masson SAS. All rights reserved.
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the manifold has to be biholomorphic to the complex projective space P
n ([16,33]). However a complete

classification of compact Kähler manifolds with B⊥ ≥ 0 is still hinged upon the understanding of non-

compact Kähler manifolds with B⊥ ≥ 0 (cf. [16] Theorem 1.3 part (2)). On the other hand even under

the stronger condition of positive bisectional curvature it is still unknown whether or not such a complete

noncompact Kähler manifold is Stein except some special cases [28]. Hence understanding the structure

of Kähler manifolds with NOB is an interesting area of research. In view of the examples constructed in

[19], [27] and [31] the orthogonal bisectional curvature B⊥ is completely independent of the holomorphic

sectional curvature, or the Ricci curvature. Recently there is a joint work of second author [27] proving a

Liouville theorem for plurisubharmonic functions, which complements a recent result of Liu [21] under the

nonnegaivity of the holomorphic sectional curvature, and a gap theorem for Kähler manifolds with B⊥ ≥ 0

and Ric ≥ 0. A comparison theorem of the orthogonal complex Hessian of the distance function was also

obtained recently in [31] for Kähler manifolds with B⊥ ≥ 0.

The B⊥ ≥ 0 condition is also related to Kähler-Ricci flow. First B⊥ ≥ 0 is a Kähler analogue of the

nonnegative isotropic curvature (please see [33] for this connection via the Lie algebraic point of view, and

Section 3 of this paper for the definition of non-negativity of the isotropic curvature). More importantly

B⊥ ≥ 0 is invariant under the Kähler-Ricci flow (cf. [10], [16]). In complex dimension two, B⊥ ≥ 0 is

equivalent to isotropic curvature being nonnegative. However, as it was pointed out in [16] that when the

complex dimension is at least three, B⊥ ≥ 0 is a much weaker condition than the isotropic curvature being

nonnegative. Gradient shrinking Kähler-Ricci (Ricci) solitons (abbreviated as shrinkers) naturally arise in

the study of Kähler-Ricci (Ricci) flow as the singularity models. A Kähler-Ricci shrinker is a triple (M, g, f)

consisting of a complete Kähler manifold (M, g) together with a potential function f such that the Ricci

curvature, the Hessian of f , and metric tensor g satisfy that Rαβ̄ + fαβ̄ − gαβ̄ = 0 and fαβ = 0. The

soliton structure is a generalization of Einstein (Kähler-Einstein) metrics. Classification results on shrinking

Kähler-Ricci solitons are important/useful to understand the flow. We first prove the following theorem in

Section 2.

Theorem 1.1. Let (Mn, g, f) be a complete gradient shrinking Kähler-Ricci soliton. Suppose M has B⊥ ≥ 0

and its universal cover does not contain a flat factor of C. Then M is compact.

Clearly one can not expect such a result for general Kähler manifolds. For example, in [31] a complete

unitary symmetric metric was constructed on C
n with B⊥ > 0 and Ric > 0. Apart from the motivation from

the study of complex structure of Kähler manifolds with B⊥ ≥ 0, the above result is motivated by a recent

work of Munteanu-Wang [22], where a similar statement was proved for gradient shrinking Ricci solitons

under the assumption that the sectional curvature is nonnegative and Ricci is positive. In comparison, our

result does not make any assumption on the Ricci curvature, although a quasi-positivity of Ricci curvature

assumption can ensure the non-existence of the a flat C factor in the universal cover. In fact we prove that

the Ricci curvature is nonnegative as a consequence of soliton equation even though the Ricci curvature a

priori has nothing to do with B⊥. Since in general B⊥ ≥ 0 is a condition completely independent of Ric,

nor the holomorphic sectional curvature, not mentioning the sectional curvature, one can not derive our

result from [22].

Theorem 1.1 implies a complete classification of Kähler-Ricci shrinkers with B⊥ ≥ 02 as a corollary.

Theorem 1.2. Let (Mn, g, f) be a complete gradient shrinking Kähler-Ricci soliton with B⊥ ≥ 0. Then the

universal cover M̃ of M splits isometrically-holomorphically as N1 × N2 × · · · × Nl × C
k, where Ni are

compact irreducible Hermitian symmetric spaces.

2 Soon after this paper appeared as arXiv:1903.02615 we were informed by Dr. Shijin Zhang that he obtained this result inde-
pendently. His paper recently appeared as arXiv:1906.00415.
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A classification for gradient shrinking Ricci solitons with nonnegative curvature operator was obtained

in [22] by reducing it to the compact case. There is also an earlier related result of the second author [25]

(see also [34] for an alternative proof) asserting the compactness under the assumption that the bisectional

curvature is positive, and a classification of Kähler-Ricci shrinkers with nonnegative bisectional curvature.

Theorem 1.2 is a generalization of these two previous results in the Kähler category. Both the work of [22]

and [25] were motivated by Perelman’s result [32] asserting that any three-dimensional shrinking solitons

with bounded positive sectional curvature must be compact. This result of Perelman together with the work

of Hamilton (as well as Hamilton-Ivey pinching) provides a complete classification of shrinkers in three

dimensions. See also [30] for a proof of a generalization of this result of Perelman via a PDE approach. As

the compactness results of [22] and [25], Theorem 1.1 provides another high-dimensional generalization of

Perelman’s above statement for the Kähler case.

The method employed in proving Theorem 1.2 can also be adapted to prove a classification result,

Theorem 3.1, for shrinkers with weakly PIC1 condition (hence also gives a similar result for shrinkers with

2-nonnegative curvature operator since 2-nonnegativity of the curvature operator is stronger than PIC1). In

fact what is proved in Section 3 is a bit more general. In Section 4, the method is extended further to prove

that any shrinkers with weakly PIC must have 2-nonnegative Ricci curvature. In dimension four, joint with

K. Wang, a classification result for shrinkers under weakly PIC condition [20] has been obtained. Hence in

this paper, for the discussion of shrinkers of weakly PIC, n = dimR(M) ≥ 5 is assumed. Note that in a

recent work [2], it was shown that for n ≥ 7, R being of weakly PIC implies that the Ricci curvature is

3-nonnegative. There have been many works on gradient shrinking solitons since [32]. One can refer to [22]

and the book [12] for some comprehensive descriptions of gradient Kähler-Ricci (Ricci) solitons and some

known results on shrinkers other than the ones mentioned here.

In the later sections we extend some of results proved for shrinkers in the earlier sections to ancient

solutions of the Ricci and Kähler-Ricci flow. In particular we show that

Theorem 1.3. Assume that (M, g(t))t∈(−∞,0) is an ancient solution to the Ricci flow or Kähler-Ricci flow.

Then

(i) If B⊥ ≥ 0, then (M, g(t)) has nonnegative bisectional curvature;

(ii) If (M, g(t)) has weakly PIC1, then it has nonnegative complex sectional curvature;

(iii) If (M, g(t)) has weakly PIC, then Ric is 2-nonnegative.

Note that the part (i) was known for compact manifolds [33], and the part (ii) of the above was proved

under additional assumption of bounded curvature recently in [2]. The main feature of our results is that

no upper curvature bound is assumed. This new feature could be desirable in applications. To achieve the

result without curvature bound we apply PDE arguments via differential inequalities on various geometric

quantities and the viscosity consideration, since the approach via the dynamic version of Hamilton’s maxi-

mum principle reducing the PDE to an ODE by dropping the diffusion term, as done in Section 1 of [3] and

Theorem 12.38 of [11], has limited effect that a curvature bound assumption is always needed.

Finally as an application of part (i) of the above result, we extend the recent important result of Balmer-

Cabezas-Rivas-Wilking on the Ricci flow under almost nonnegative curvature conditions to include the

case of the Kähler-Ricci flow under the almost nonnegative orthogonal bisectional curvature (the bounded

curvature is needed here).

Theorem 1.4. For any n ≥ 2, 6= 3 and ν0, there exist positive constants C = C(n, ν0) and τ = τ(n, ν0) such

that if (M, g) is Kähler manifold with bounded curvature, dimC(M) = n,

V olg(Bg(p, 1)) ≥ ν0,∀p ∈ M,



ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E
D

 P
R

O
O

F

Please cite this article in press as: X. Li, L. Ni, Kähler-Ricci shrinkers and ancient solutions with nonnegative orthogonal
bisectional curvature, J. Math. Pures Appl. (2019), https://doi.org/10.1016/j.matpur.2019.09.007

JID:MATPUR AID:3148 /FLA [m3L; v1.261; Prn:12/09/2019; 7:24] P.4 (1-18)

4 X. Li, L. Ni / J. Math. Pures Appl. ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

and Rm +ǫ id has NOB for some ǫ ∈ [0, 1], then the Kähler-Ricci flow exists on [0, τ ] with Rmg(t) +Cǫ id

has NOB and | Rm | ≤ C
t

for all t ∈ (0, τ ].

As a consequence of the above one can have a similar result as Corollary 3 of [2]. Namely for given D > 0,

v0 > 0, there exists an ǫ = ǫ(D, v0, n) such that if a Kähler manifold (Mn, g) satisfies that V ol(M) ≥ v0,

Diam(M) ≤ D, and Rm +ǫ id has NOB, then M admits a Kähler metric with NOB. In particular any such

a Kähler manifold with b2 = 1 must be diffeomorphic to a Hermitian symmetric space of compact type. For

bisectional curvature, the topological consequence of almost nonnegative Kähler manifolds was obtained

earlier in [14] under additional assumption of a uniform bound on the sectional curvature. The Corollary

3 of [2] has a similar topological consequence for Kähler manifolds with almost nonnegative bisectional

curvature satisfying the same diameter and volume conditions. As consequences of the classifications of

shrinkers we also derive some classification results on closed type-I noncollapsing ancient solutions. These

result generalize the previous mentioned results on shrinkers since shrinkers are special type-I ancient

solutions.

2. Proof of Theorem 1.1

We refer the reader to [12] and Munteanu-Wang’s paper [22] for basic equations concerning the gradient

shrinking solitons. We make the normalization on f so that

Scal +|∇f |2 = f,

where Scal denotes the scalar curvature. Let ∆f (·) = ∆(·)−〈∇(·),∇f〉. The key of the proof is the following

result.

Proposition 2.1. Let (M, g, f) be a complete shrinking Kähler-Ricci soliton with B⊥ ≥ 0. Let λ(x) be the

minimum eigenvalue of the Ricci tensor at x. Then

∆fλ ≤ λ− λ2, (2.1)

in the barrier or viscosity sense.

Proof. Recall [17] that on a Kähler-Ricci shrinker, the Ricci tensor satisfies

∆fRαβ̄ = Rαβ̄ −Rαβ̄γδ̄Rδγ̄ .

For any p ∈ M , choosing unitary frame {eα}nα=1 at p such that Rαβ̄ = λαδαβ with λ1 ≤ λ2 ≤ · · · ≤ λn gives

at p,

∆fR11̄ ≤ R11̄ −R11̄γγ̄Rγγ̄

= R11̄ −R11̄11̄R11̄ −
n
∑

γ=2

R11̄γγ̄Rγγ̄

≤ R11̄ −R11̄11̄R11̄ −
n
∑

γ=2

R11̄γγ̄R11̄

= R11̄ − (R11̄)2.

Applying a barrier argument in case R11̄ is not smooth we have the result.
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The next step is to use the equation satisfied by λ, namely (2.1), to show that λ ≥ 0. The proof given

below for a shrinking soliton follows a localization technique which of course has a long root in the study of

PDEs. Recent adaptation of this technique can be found in [9,35] etc. An exposition of it can also be found

in the book [12] (Chapter 27, Theorem 27.2). For shrinking solitons, our proof below is a bit cleaner.

Proposition 2.2. Let (M, g, f) be a complete gradient shrinking Kähler-Ricci soliton with B⊥ ≥ 0. Let λ(x)

be minimum eigenvalue of Ricci tensor at x. Then λ ≥ 0 on M . In particular, M has Ric ≥ 0.

Proof. We may assume M is noncompact since the result follows immediately from the maximum principle

for the compact case. We prove the result by contradiction. Assume that supK λ ≤ −a < 0 for a compact

subset K sufficiently large with a being a positive constant. The potential function f is an exhaustion

function with the estimate [8] in terms of distance function r(x) to a fixed point:

1

4
(r(x) − c1)

2 − C3 ≤ f(x) ≤ 1

4
(r(x) + c2)

2
. (2.2)

Hence for sufficiently large constant R, D(R) = {x | f(x) ≤ R} contains K.

Let η : [0,∞) → [0, 1] be a smooth nonincreasing cutoff function with η(s) = 1 for 0 ≤ s ≤ 1, η(s) = 0 for

s ≥ 2, and |η′′| + 2 (η′)2

η
≤ C, where C is a universal constant. Let ψ = η

(

f(x)
R

)

. Consider Q = ψ(x) · λ(x).

For R large enough, minD(R) Q ≤ −a. We shall derive a contradiction by applying the maximum principle

with a cut-off.

First direct calculation shows that

∆fψ =
η′′

R2
|∇f |2 +

η′

R
∆ff ; |∇ψ|2 =

(η′)2

R2
|∇f |2.

Now applying the maximum principle at x0 where the minimum of Q (which is ≤ −a as we have seen above)

is attained, we have at x0 that

0 ≤ ∆fQ = λ∆fψ + ψ∆fλ− 2
|∇ψ|2
ψ

λ

≤ λ

(

η′′

R2
|∇f |2 +

η′

R
∆ff

)

+ ψ(λ− λ2) − 2λ
(η′)2

R2
|∇f |2

≤ (−Cλ)
|∇f |2
R2

+ (η′λ)
n
2 − f

R
+ ψ(λ− λ2)

≤ −Cλ
R

+ (−λ)
n
2 + ‖f−‖∞

R
+ ψ(λ− λ2).

Here f− denotes the negative part of f . Multiplying both sides of the above estimate by ψ we have that

0 ≤ Q

(−C ′

R
+ ψ −Q

)

(2.3)

with C ′ independent of R. Letting R → ∞, this implies that −a ≥ −C′

R
→ 0, which is a contradiction.

Now evoking the strong maximum principle proved for general (1, 1)-form η ≥ 0 in [27], under the

assumption of B⊥ ≥ 0, we have that the kernel of Ric is invariant under the parallel transport. Hence the

corresponding distribution (of dimension k) will split off a factor of C
k isometrically. If we also apply the

argument of Munteanu-Wang we can have the following corollary, from which Theorem 1.1 follows.
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Corollary 2.1. Let (Mn, g, f) be complete Kähler-Ricci shrinker with B⊥ ≥ 0. Then the finite covering

universal cover M̃ = Mn−k
1 × C

k with M1 being a Kähler-Ricci shrinker of Ric > 0 and compact.

Proof. The first part follows from that Ric ≥ 0 and the strong maximum principle for Ric under the

condition B⊥ ≥ 0. After the splitting, the non-Euclidean factor M1 must have Ric > 0. To show that M1

is compact, we adapt the second part of Munteanu-Wang’s argument to the Kähler setting. First, observe

that ∆fλ ≤ λ− λ2 is all one needs to apply the result of Chow-Lu-Yang [13] and obtain the lower estimate

Ric ≥ b

f
.

Here the constant 0 < b ≤ 1. For this estimate one can also use the argument in [22].

Now we can repeat the argument of Munteanu-Wang [22] on pages 503-504, only observing that

− Ric

( ∇f
|∇f | ,

∇f
|∇f |

)

= − Ric(E1, Ē1) ≤ − b

f

where E1 = 1√
2

(

∇f
|∇f | −

√
−1J

(

∇f
|∇f |

))

. This implies the lower estimate of scalar curvature S ≥ b log f(x),

which then induces a contradiction due to the upper average estimate of the scalar curvature for shrinkers

of nonnegative Ricci curvature.

A result of [33] (Section 4) asserts that the Kähler-Ricci flow evolves the B⊥ ≥ 0 cone into the cone of

curvatures of nonnegative bisectional curvature on any compact Kähler manifold as t → the singular time. In

particular, any compact ancient solution with B⊥ ≥ 0 must have nonnegative bisectional curvature, which

implies that M1 admits nonnegative bisectional curvature. Hence a complete classification with B⊥ ≥ 0 can

be obtained by appealing to an earlier result of the second author [25].

Theorem 2.2. Let (Mn, g, f) be a complete gradient shrinking Kähler-Ricci soliton with B⊥ ≥ 0. Then the

universal cover M̃ of M split isometrically-holomorphically as N1 ×N2 × · · · ×Nl × C
k, with each Ni being

a compact irreducible Hermitian symmetric space.

The result on the compact factors being Hermitian symmetric spaces can also be seen via the fact that if

a C factor exists, then by the observation of [33] the compact factor has nonnegative bisectional curvature.

Otherwise, M̃ itself is compact, thus having nonnegative bisectional curvature by [16] as well as [33].

3. Weakly PIC1 shrinkers

Here we prove a similar result for gradient shrinking Ricci solitons with weakly PIC1. Recall that a

shrinker is a triple (Mn, g, f) satisfying that Rij + fij − 1
2fij = 0. We say that (Mn, g) has PIC1 if for any

p ∈ M , for any orthonormal four-frame {e1, e2, e3, e4} in TpM and any λ ∈ [0, 1],

R1313 + λ2R1414 +R2323 + λ2R2424 − 2λR1234 > 0. (3.1)

Here n = dimR(M), unlike in the previous section where n = dimC(M) of a complex manifold. We say

(M, g) has weakly PIC1 if “> 0” in (3.1) is replaced by “≥ 0”. We say that R has PIC if (3.1) holds only

for λ = 1. The PIC condition was first proven to be invariant under the Ricci flow in [23] and [6]. The

weakly PIC1 condition was first introduced by Brendle-Schoen [6]. It was proved later in [4] that the Ricci

flow evolves a compact manifold with a PIC1 metric into a round spherical metric. Hence any compact

shrinker with PIC1 metric must be the round sphere or its quotient. Our focus is to classify all the shrinkers
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with weakly PIC1 without any curvature bound assumption. Since (3.1) or weakly PIC1 does not imply the

nonnegativity of sectional curvature, the Munteanu-Wang result [22] can not be applied directly. Because

the shrinkers with weakly PIC in dimension four has been classified by works of [29,20], we assume n ≥ 5

for this discussion.

Lemma 3.1. Let R be an algebraic curvature operator.

(1) If R is of weakly PIC1, then for all orthonormal three-frame {e1, e2, e3}, we have

R1313 +R2323 ≥ 0. (3.2)

In particular, R has nonnegative Ricci curvature. If (3.2) holds “>”, it implies Ric > 0.

(2) Assume n = 5 and R is weakly PIC1, or n ≥ 6 and R is weakly PIC, then

Scal −2Rnn − 2R11 = −2R1n1n +
n−1
∑

k,l=2

Rklkl ≥ −2R1n1n. (3.3)

Proof. For part (1), choose λ = 0 in (3.1). For part (2), observe that by (1),
∑n−1
k,l=2 Rklkl ≥ 0. The claim

then follows.

Theorem 3.1. Let (Mn, g, f) be a complete gradient shrinking Ricci soliton.

(i) Suppose that M has Ric > 0 and weakly PIC1, or slightly weak condition (3.2). Then M must

be compact. In particular, any shrinker with PIC1 must be compact, hence isometric to S
n or its quo-

tient.

(ii) Suppose M has weakly PIC1 (or has 2-nonnegative curvature operator). Then the universal cover M̃

splits isometrically as N1 × N2 × R
k, where N1 is a product of irreducible compact Hermitian symmetric

spaces and N2 being the product of irreducible compact Riemannian symmetric spaces.

Proof. Let λ(x) be the minimum eigenvalue of the Ricci tensor at x. By Lemma 3.1, weakly PIC1 implies

λ ≥ 0 on M . The key is to show that λ satisfies

∆fλ ≤ λ.

Once this holds we can proceed as in Munteanu-Wang [22] to conclude the compactness for part (i) if Ric is

assumed to be positive. For PIC1 shrinker, the first part implies that it must be compact. Then Brendle’s

result implies that it must be spherical.

Choose orthonormal frame {e1, · · · , en} at p such that Ric(ei, ej) = λiδij with λ1 ≤ λ2 ≤ · · · ≤ λn. Using

∆fRij = Rij − 2RikjlRkl, we obtain

∆fR11 ≤ R11 − 2
n
∑

k=2

R1k1kRkk.

We show below that
∑n
k=2 R1k1kRkk ≥ 0 under weakly PIC1 condition.

Case 1: R1k1k ≥ 0 for all 2 ≤ k ≤ n. There is nothing to prove.

Case 2: R1k1k < 0 for some 2 ≤ k ≤ n − 1. Since for j 6= k, we have R1j1j + R1k1k ≥ 0 by Lemma 3.1, for

j 6= k, R1j1j ≥ 0. Let m = k + 1,

n
∑

j=2

R1j1jRjj ≥ R1k1kRkk +R1m1mRmm ≥ (R1k1k +R1m1m)Rmm ≥ 0.
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Case 3: R1n1n < 0. The weakly PIC1 condition implies R1j1j + R1n1n ≥ 0 for all 2 ≤ j ≤ n − 1. We can

estimate, using part (2) of Lemma 3.1,

n
∑

k=2

R1k1kRkk =
n−1
∑

k=2

R1k1kRkk +R1n1nRnn

≥ −
n−1
∑

k=2

R1n1nRkk +R1n1nRnn = −R1n1n

(

n−1
∑

k=2

Rkk −Rnn

)

= −R1n1n (Scal −R11 − 2Rnn)

≥ −R1n1n (R11 −R1n1n) ≥ 0

Thus we have proved that
∑n
k=2 R1k1kRkk ≥ 0 and ∆fλ ≤ λ.

For part (ii), we can apply the splitting result in [24], which in turn models the argument in [28]. Precisely

the strong maximum principle, namely Theorem 2.2 of [24] can be applied under the condition

n
∑

k=j+1

R1k1kRkk ≥ 0 (3.4)

if R11 = R22 = · · · = Rjj = 0. One can refer pages 483-484 of [28] (cf. [25]) for details of the proof that the

distribution associated with the kernel of Ric is invariant under the parallel transport. It then follows that

the universal cover M̃ splits as M1 × R
k. The Euclidean factor is obtained from the fact that the kernel of

Ric is invariant under parallel transport and De Rham’s theorem. The factor M1 must have positive Ricci,

hence must be compact by the part (i). The above proof of part (i) can be adapted to show (3.4) verbatim.

It is not hard to see that the two-nonnegativity of the curvature operator implies (3.2). Hence the proof

applies to that case as well.

Remark 3.2. The above argument works under the condition: for all orthonormal three-frame {e1, e2, e3},

R1212 +R2323 ≥ 0.

This condition is slightly weaker than PIC1. It was shown in [2] that weakly PIC1 ancient solution with

bounded curvature must have nonnegative complex sectional curvature. Hence if the curvature is assumed

to be bounded, Theorem 3.1 is a consequence of Munteanu-Wang’s result. Our result has the advantage

that it applies to a weaker condition (3.2), and does not assume any curvature bound.

4. Weakly PIC shrinkers

Here we show a partial result towards understanding the shrinkers with weakly PIC. We assume that

dim ≥ 5 since the four-dimensional shrinkers with weakly PIC have been classified completely [20]. Alge-

braically, weakly PIC condition immediately implies that the Ricci curvature is 4-nonnegative. If n ≥ 7,

weakly PIC implies Ricci is 3-nonnegative (see for example [2, pages 10-11]). By adapting arguments of

the previous two sections we show here that for shrinkers with weakly PIC, the Ricci curvature is in fact

2-nonnegative.

Proposition 4.1. Let (Mn, g, f) be a complete gradient shrinking Ricci soliton with weakly PIC. Then the

Ricci curvature is 2-nonnegative.
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Proof. Apply the cut-off argument of Section 2 to the function λ(x) in Proposition 4.2. Then we can conclude

that M has 2-nonnegative Ricci curvature.

Remark 4.1. The proof remains valid if one replaces weakly PIC by the weaker condition that for all

orthonormal four-frame {e1, e2, e3, e4},

R1313 +R1414 +R2323 +R2424 ≥ 0. (4.1)

The result above can also be extended to ancient solutions with weakly PIC. There is a strong maximum

principle associated with the proposition below.

Proposition 4.2. 3 Let (Mn, g, f) be a complete gradient shrinking Ricci soliton with weakly PIC. Denote

by λ1(x) ≤ λ2(x) ≤ · · · ≤ λn(x) the eigenvalues of the Ricci tensor at x. Then the function λ(x) =

min{λ1(x) + λ2(x), 0} satisfies

∆fλ ≤ λ− λ2, (4.2)

in the barrier or viscosity sense.

Proof. Recall that on a shrinker, ∆fRij = Rij − 2RikjlRkl. Choose orthonormal frame {ei}ni=1 at p such

that Ric(ei, ej) = λiδij and λ1 ≤ λ2 ≤ · · · ≤ λn. The result follows from the estimate below:

∆f (R11 +R22) ≤ R11 +R22 − 2
n
∑

k=1

(R1k1k +R2k2k)Rkk

= R11 +R22 − 2R1212(R11 +R22) − 2
n
∑

k=3

(R1k1k +R2k2k)Rkk

= R11 +R22 − (R11 +R22)2 −
n
∑

k=3

(R1k1k +R2k2k)(2Rkk −R11 −R22)

≤ R11 +R22 − (R11 +R22)2

where we have used 2R1212 = R11 +R22 −
∑n
k=3(R1k1k +R2k2k) and Lemma 4.1 to be proved next.

Lemma 4.1. Let R be an algebraic curvature operator with weakly PIC. Let {e1, e2, · · · , en} be an orthonormal

frame such that Ric(R) is diagonal with R11 ≤ R22 ≤ · · · ≤ Rnn being the eigenvalues of Ric(R). Suppose

R11 +R22 ≤ 0. Then

n
∑

k=3

(R1k1k +R2k2k)(2Rkk −R11 −R22) ≥ 0.

Proof. Consider two cases:

Case A: R1k1k +R2k2k ≥ 0 for all 3 ≤ k ≤ n. In this case, given Rkk ≥ max{R11, R22}

n
∑

k=3

(R1k1k +R2k2k)(2Rkk −R11 −R22) ≥ 0.

3 Professor Brendle informed us that in [5], he also obtained a similar, but different, evolution equation on the sum of the two
smallest eigenvalues of Ricci curvature.
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Case B: R1p1p+R2p2p < 0 for some 3 ≤ p ≤ n. Since R is weakly PIC, we have that for all 3 ≤ k ≤ n, k 6= p,

R1k1k +R2k2k ≥ −(R1p1p +R2p2p) > 0.

Hence if p < n, let m = p+ 1 we have that

n
∑

k=3

(R1k1k +R2k2k)(2Rkk −R11 −R22) ≥ (R1p1p +R2p2p) (2Rpp −R11 −R22)

+ (R1m1m +R2m2m) (2Rmm −R11 −R22)

≥ (R1p1p +R2p2p +R1m1m +R2m2m)(2Rpp −R11 −R22) ≥ 0.

If p = n as before we have

n−1
∑

k=3

(R1k1k +R2k2k)(2Rkk −R11 −R22) + (R1n1n +R2n2n)(2Rnn −R11 −R22)

≥ −(R1n1n +R2n2n)

(

2
n−1
∑

k=3

Rkk − 2Rnn − (n− 4)(R11 +R22)

)

= −(R1n1n +R2n2n) (2 Scal −4Rnn − (n− 2)(R11 +R22)) ≥ 0.

In the last step we have used the assumption R11 + R22 ≤ 0 and the fact that for n ≥ 5 Scal −2Rnn =
∑n−1
k,l=1 Rklkl ≥ 0.

5. Ancient solutions with B
⊥ ≥ 0

In this section, for simplicity, n denotes the real dimension for a Riemannian manifold, and the complex

dimension for a Kähler manifold. First, we extend the argument in the previous discussion to show that

Proposition 5.1. Any ancient solution of Kähler-Ricci flow with B⊥ ≥ 0 must have Ric ≥ 0.

Again the virtue of this result is that no curvature upper bound is assumed. Also as pointed out before

such a result can not be true in general due to the examples constructed in [27]. Below is a proof of this

statement.

As in [17] we apply the Uhlenbeck’s trick of gauge fixing by introducing the map u : E → T ′M which is

an identity at t = −1 (say the ancient solution is defined on (−∞, 0)) satisfying the ODE

∂uij
∂t

=
1

2
gik̄Rsk̄u

s
j .

Then define the bundle metric h(X, Ȳ ) = g(u(X), u(Y )). It is easy to check that ∂
∂t
h = 0. One can pull-back

the complex structure (from TCM = T ′M ⊕ T ′′M to E ⊕ Ē via u), the connection and the curvature to E

via u. The pull back curvature satisfies the PDE:

∂Rij̄kl̄
∂t

− ∆Rij̄kl̄ = Rij̄qp̄Rpq̄kl̄ +Ril̄qp̄Rpq̄kj̄ −Rip̄kq̄Rpj̄ql̄. (5.1)

Tracing it we have

∂Rij̄
∂t

− ∆Rij̄ = Rij̄qp̄Rpq̄. (5.2)
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The covariant derivative and Laplacian are computed with respect to the changing metric (along with the

induced Levi-Civita connection) on the manifold and the induced time-dependent connection on E. The

nonnegativity of Ric stay invariant under pulling back by u.

To prove the claimed result for the ancient solutions we first observe that the argument of Proposition 2.1

implies the following lemma.

Lemma 5.1. Let (M, g(t))t∈(−∞,0) be an ancient solution to the Kähler-Ricci flow with B⊥ ≥ 0. Then

the minimum of the Ricci curvature, denoted as λ, satisfies in the barrier or viscosity sense, the partial

differential inequality:

∂λ

∂t
− ∆λ ≥ λ2. (5.3)

For ancient solutions it is convenient to introduce a parameter τ := −t and consider the M × (0,∞). To

prove our assertion on the Ricci curvature we also need a result of Perelman on the time dependent distance

function (cf. Lemma 8.3 of [32]).

Lemma 5.2 (Perelman). (a) Assume that Ric(·, τ0) ≤ (2n − 1)K on the ball Bτ0
(x0, r0). Then outside of

Bτ0
(x0, r0),

(

∂

∂τ
+ ∆g(τ0)

)

dτ0
(·, x0) ≤ (2n− 1) ·

(

2

3
Kr0 + r−1

0

)

. (5.4)

The inequality is understood in the barrier sense.

(b) Assume that Ric(·, τ0) ≤ (2n− 1)K on the union of the balls Bτ0
(x0, r0) and Bτ0

(x1, r0). Then

d+

dτ
dτ0

(x0, x1)

∣

∣

∣

∣

τ=τ0

≤ 2(2n− 1) ·
(

2

3
Kr0 + r−1

0

)

. (5.5)

Here, d+f
dτ

= lim supǫ→0+
f(τ+ǫ)−f(τ)

ǫ
denotes the upper Dini derivative.

Now we assume that λ(x0, τ0) < 0 and use (5.3) and (5.4) to derive a contradiction. First we need to

construct an auxiliary function.

Let η be a smooth nonincreasing function on the real line satisfying: (i) η(s) = 1 for s ∈ (−∞, 1
2 ] and

η(s) = 0 for s ∈ [1,∞); (ii) η′′ − 2(η′)2

η
≥ −A√

η with A > 0 being an absolute constant. This kind of

function can be easily constructed and was also employed by Perelman in [32] (Chapter 10). By translating

the time we may assume that τ0 = 0. We shall construct an auxiliary function ψ which has compact support,

and apply the maximum principle to Q := ψλ to derive a contradiction.

First pick a T0 such that 8|λ|−1(x0, 0) ≤ T0. Now we find a r0 such that Ric ≤ 2n−1
r2

0

for any x ∈ Bτ (x0, r0)

and τ ∈ [0, T0]. This clearly can be done since as r0 → 0, the upper bound expression 2n−1
r2

0

→ ∞.

On the other hand the Ricci has a fixed upper on a fixed compact subset K × [0, T0], which contains

Bτ (x0, r0) × [0, T0]. Now we choose a constant B such that B2 ≥ 2A
|λ|(x0,0)·r2

0

. Now let

ψ(x, τ) = η

(

dτ (x, x0) − 5
3 (2n− 1) τ

r0

Br0

)

, Q := ψλ.

For any τ ≥ 0, ψ has compact support in Bτ (x0, Br0 + 5
3 (2n − 1) τ

r0
). Let Q(τ) denote the minimum of

Q(x, τ) at the time slice M × {τ}. It is negative for τ close to 0 (and stay negative as τ increases as shown

below) and it is attainted somewhere within finite distance away from x0, which we denote as xτ . We shall

derive the changing rate estimate of Q(τ).
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Case 1): The point xτ satisfies d(xτ , x0) ≤ r0, then by the construction ψ(xτ ) = 1 in the small neighbor-

hood of xτ , hence we have that

d+

dτ
Q(τ) =

d+

dτ
λ(τ) ≤ −∆λ− λ2 ≤ −Q2(τ). (5.6)

In the above we have used that ∆λ = ∆Q ≥ 0 at the local minimum point.

Case 2): The negative minimum is attained at some point xτ outside of the ball Bτ (x0, r0). This allows

us to apply the distance comparison result in part (a) of Lemma 5.2, namely (5.4) to obtain the estimate:

(

∂

∂τ
+ ∆

)

ψ = η′ ·
(

∂
∂τ

+ ∆
)

dτ − 5
3 (2n− 1)r−1

0

Br0
+ η′′ · 1

(Br0)2

≥ η′′ · 1

(Br0)2
. (5.7)

By (5.3) that
(

∂
∂τ

+ ∆
)

Q ≤ λ
(

∂
∂τ

+ ∆
)

ψ − λ2ψ + 2〈∇ψ,∇λ〉. And observe that at (xτ , τ), 〈∇ψ,∇λ〉 =

− |∇ψ|2

ψ
λ. Putting the three estimates above together we have that as long as λ(xτ , τ) ≤ 0,

d+

dτ
Q(τ) ≤

(

∂

∂τ
+ ∆

)

Q ≤ η′′ · 1

(Br0)2
λ+ ψ

(

∂

∂τ
+ ∆

)

λ− 2
|∇ψ|2
ψ

λ

≤
(

η′′ − 2
(η′)2

η

)

· λ

(Br0)2
− ψλ2

≤ − A

(Br0)2

√

ψλ− ψλ2 ≤ −1

2
ψλ2 +

1

2

(

A

(Br0)2

)2

≤ −1

2
Q2 +

1

2

(

A

(Br0)2

)2

.

By the choice of B we have that Q(τ) is nonincreasing near τ = 0 and keep being so by the above estimate

and (5.6), in views of the choices of A and B such that |λ|(x0, 0) ≥ 2A
(Br0)2 . Applying this back to the above

estimate, and combining the result with (5.6) we have the estimate

d+

dτ
Q(τ) ≤ −1

4
Q2(τ) (5.8)

which, after integration, implies the estimate

Q(τ) ≤ Q(0)

1 +Q(0) τ4
→ −∞

as τ → T1 := − 4
Q(0) , which is clearly less than T0. The contradiction then proves that λ ≥ 0.

Combining the fact that Ric ≥ 0, the splitting result of [27], together with the fact that B⊥ ≥ 0 and

Ric = 0 imply that the manifold is flat (see pages 8-9 of [27]) we have the following splitting theorem.

Theorem 5.1. Let (M, g(t))t∈(−∞,0) be a nonflat ancient solution of the Kähler-Ricci flow with B⊥ ≥ 0.

Then the flow on its universal cover M̃ splits into (M1, g1(t))× (Ck, geuc) such that (M1, g1(t)) has Ric > 0,

and nonnegative bisectional curvature.

For the last statement we may appeal to the observation of [33] (page 226) stating that M × C has

B⊥ ≥ 0 if and only if M has nonnegative bisectional curvature. In the next section we show that in fact
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any ancient solution with B⊥ ≥ 0 has nonnegative bisectional curvature. The same argument of the above

discussion proves the following result regarding the ancient solutions with weakly PIC.

Proposition 5.2. Let (M, g(t))t∈(−∞,0) be a nonflat ancient solution of the Ricci flow with weakly PIC. Then

Ric is 2-nonnegative.

To prove this, we simply need to observe that the argument of the proof of Lemma 4.1 implies that

(∂t − ∆)(R11 +R22) ≥ (R11 +R22)2 −K(R11 +R22) (5.9)

and K can be taken to be zero if R11 +R22 ≤ 0, otherwise K is a constant, locally depends on ‖R‖.

This also allows us to evoke the strong maximum principle to conclude that if R11 + R22 attains zero

somewhere at (x0, t0), then all the orthonormal two-frame {e1, e2} satisfying that R11 + R22 = 0 must

be invariant under the parallel transport. It is also easy to show that such e1, e2 must belong to a set of

four-frame {e1, e2, e3, e4} such that

R1313 +R1414 +R2323 +R2424 − 2R1234 = 0.

By [6] we have thatM can not have the holonomy group being SO(n) if it is simply-connected and irreducible.

Thus we have

Proposition 5.3. Let (M, g(t))t∈(−∞,0) be a simply-connected ancient solution of the Ricci flow with weakly

PIC. Assume further that M is irreducible. Then one of the following three holds: (i) Ric is 2-positive, (ii)

(M, g) is a symmetric space, (iii) (M, g) is an ancient solution to Kähler-Ricci flow with weakly PIC and

Ric > 0 (hence with nonnegative bisectional curvature by Proposition 6.1).

6. Kähler-Ricci flow under almost NOB condition

First by combining the argument of the proof of Proposition 5.1 and a modification of the argument in

[2], we strengthen Proposition 5.1 to show that in fact the ancient solution with B⊥ ≥ 0 has nonnegative

bisectional curvature. This result is needed in extending a recent result of [2] to Kähler manifolds with

negative lower bound of B⊥. We start with a lemma.

Lemma 6.1. Let (M, g(t))t∈(−∞,0) be a nonflat ancient solution of the Kähler-Ricci flow with B⊥ ≥ 0. Let

u(x, t) be the function defined by

u(x, t) = inf{Rm(x,t)(v, v̄)| v ∈ Σ}, (6.1)

where Σ = {v ∈ gl(n,C)|rank (v) = 1, and eigenvalues of norm ≤ 1}. Then the function µ(x, t) =

min{u(x, t), 0} satisfies the partial differential inequality

∂µ

∂t
− ∆µ ≥ µ2 (6.2)

in the barrier or viscosity sense.

Proof. By perturbation we may assume that Rm has B⊥ > 0. By [33], we know that u(x, t) ≥ 0 if and

only if Rm(x, t) has nonnegative bisectional curvature. So it suffices to consider the case µ(x, t) < 0 as the

inequality (6.2) follows from the proof of the fact that nonnegative bisectional curvature is preserved by

Kähler-Ricci flow when µ(x, t) = 0. In the rest of the proof, we fix a spacetime point (x, t) and Rm(x, t)
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is abbreviated as Rm. We claim the infimum in (6.1) is attained and finite. There are two cases, the first

is that u is −∞. Then we may have vi ∈ Σ such that limi→∞ Rm(vi, v̄i) = −∞. From this it is clear that

|vi| → ∞. Moreover Rm( vi

|vi| ,
vi

|vi| ) converges to say −a for some finite a > 0 by passing to a subsequence.

On the other hand, since vi

|vi| → v∞ by passing to a subsequence, with v∞ being nilpotent, we also have

Rm(v∞, v̄∞) > 0, a contradiction.

If 0 > u > −∞, let vi ∈ Σ be a minimizing sequence such that limi→∞ Rm(vi, v̄i) = u(x, t). If |vi| remains

bounded, then by compactness, we can pass to a subsequential limit v∞ with Rm(v∞, v̄∞) = u(x, t). In case

|vi| → ∞, let w be a subsequential limit of the sequence vi/|vi|. Then Rm(w, w̄) = 0. At the mean time

w has rank 1 and eigenvalues all zero. Thus w2 = 0 and Rm(w, w̄) > 0 by [33] in view of B⊥ > 0. The

contradiction shows that the case |vi| → ∞ does not occur.

Let v ∈ Σ be the matrix such that u(x, t) = Rm(v, v̄). Now assume that v = x ⊗ ȳ. Since the scaling

x → λx and y → λ−1y for some λ > 0 does not change x ⊗ y, we may assume that x has the norm of

|〈x, ȳ〉|, namely the norm of the eigenvalue of v. Now let E = x
|x| be the unitary vector of x direction and

write y = aE + y⊥, with y⊥ ∈ {E}⊥. It is easy to see that |x|ā = 〈x, ȳ〉. Hence a = e−
√

−1θ with θ being

the argument of 〈x, ȳ〉. Write v = u+w = x⊗ āĒ + x⊗ y⊥. Then |u| = |〈x, ȳ〉|, the norm of the eigenvalue

of v. Moreover u+ sw has rank one and has the eigenvalue ā|x|, which has the norm of |u|.
As in [2], the first variation gives that

Rm(u, w̄) + Rm(w, ū) + 2 Rm(w, w̄) = 0.

This then implies that µ(x, t) = Rm(u, ū) + 1
2 Rm(u, w̄) + 1

2 Rm(w, ū) = ℜ (Rm(v, ū)). Using that |u| ≤ 1,

we have

Rm2(v, v̄) = 〈Rm(v),Rm(v)〉 = | Rm(v)|2 ≥ | Rm(v, ū)|2 ≥ µ(x, t)2.

By [33] we also have Rm#(v, v̄) ≥ 0. Hence we have proved that ∂µ
∂t

− ∆µ ≥ µ2 in the barrier sense.

Proposition 6.1. Let (M, g(t))t∈(−∞,0) be a nonflat ancient solution of the Kähler-Ricci flow with B⊥ ≥ 0.

Then it has nonnegative bisectional curvature. Furthermore, if the curvature is bounded, then the volume

growth is non-Euclidean, namely the asymptotic volume ratio V(M, g(t)) = 0.

Proof. By the same argument as in the proof of Proposition 5.1, we obtain that u(x, t) ≥ 0 on M×(−∞, 0).

This proves that (M, g(t))t∈(−∞,0) has nonnegative bisectional curvature. The second statement now follows

from Theorem 2 of [25].

Note that the above result generalizes Theorem 2 of [25]. The same argument shows that Lemma 4.2 in

[2] holds without the bounded curvature assumption.

Proposition 6.2. Let (M, g(t))t∈(−∞,0) be a nonflat ancient solution of the Ricci flow with weakly PIC1. Then

it has nonnegative complex sectional curvature.

The argument of the proof of Proposition 5.1 effectively proved the following result.

Corollary 6.1. Let (M, g(t))t∈(0,T ) be a solution of the Kähler-Ricci flow with NOB. Then

R
g(t)

XX̄Y Ȳ
≥ −8

t

∣

∣〈X, Ȳ 〉
∣

∣

2
, ∀X,Y.

Applying the argument of [2], in view of the above Proposition 6.1 we have the following result as the

corollary.
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Theorem 6.2. For any n ≥ 2, 6= 3 and ν0, there exist positive constants C = C(n, ν0) and τ = τ(n, ν0) such

that if (M, g) is an n-dimensional Kähler manifold with bounded curvature, and

V olg(Bg(p, 1)) ≥ ν0,∀p ∈ M,

and Rm +ǫ id has NOB for some ǫ ∈ [0, 1], then Kähler-Ricci flow exists on [0, τ ] with Rmg(t) +Cǫ id has

NOB and | Rm | ≤ C
t

for all t ∈ (0, τ ].

Proof. As in Section 2.3 of [2] define ℓ(x, t) as

ℓ(x, t) := inf{α|(Rm +α id)(X ∧ Ȳ ,X ∧ Ȳ ) ≥ 0, ∀X,Y ∈ T ′
xM, |X| = |Y | = 1, 〈X, Ȳ 〉 = 0}.

Here id is the curvature operator of P
n, namely the one corresponding to gij̄gkl̄+gil̄gkj̄ . In view of the proof

of Theorem 1 of [2], particularly Sections 3 and 4, to prove the theorem, given Proposition 6.1 it suffices to

show that

(

∂

∂t
− ∆

)

ℓ ≤ Scal ℓ+ Cℓ2. (6.3)

Here C = C(n) is a dimensional constant. It is easy to see that if ℓ(x, t) > 0, then

−ℓ(x, t) = inf{RXX̄Y Ȳ | ∀X,Y ∈ T ′
xM, |X| = |Y | = 1, 〈X, Ȳ 〉 = 0}.

Hence we can apply a similar computation as above to this setting. Pick a unitary frame {Ei} such that

E1 = X and E2 = Y . By (5.1) we have that

(

∂

∂t
− ∆

)

(−ℓ) =
2
∑

p,q=1

R11̄qp̄Rpq̄22̄ + |R12̄qp̄|2 − |R1p̄2q̄|2

+





∑

p=1,2;q≥3

+
∑

q=1,2;p≥3





(

R11̄qp̄Rpq̄22̄ + |R12̄qp̄|2 − |R1p̄2q̄|2
)

+
∑

p,q≥3

(

R11̄qp̄Rpq̄22̄ + |R12̄qp̄|2 − |R1p̄2q̄|2
)

.

For the last term on the right above, the second variational consideration based on the fact that R11̄22̄ attains

the minimum of B⊥ among all orthonormal two frame {X,Y } (as in [16]) shows that
∑

p,q≥3 R11̄qp̄Rpq̄22̄ −
|R1p̄2q̄|2 ≥ 0. Thus

III =
∑

p,q≥3

(

R11̄qp̄Rpq̄22̄ + |R12̄qp̄|2 − |R1p̄2q̄|2
)

≥
∑

p,q≥3

|R12̄qp̄|2 ≥ 0.

The second last term can be written as

II =
∑

j≥3

R11̄1j̄R22̄j1̄ + |R12̄1j̄ |2 − |R11̄2j̄ |2 +R11̄2j̄R22̄j2̄ + |R12̄2j̄ |2 − |R12̄2j̄ |2

+
∑

j≥3

R11̄j1̄R22̄1j̄ + |R12̄j1̄|2 − |R1j̄21̄|2 +R11̄j2̄R22̄2j̄ + |R12̄j2̄|2 − |R1j̄22̄|2.

By considering the first variation of f(θ) = R(cos θE1 +sin θEj , cos θE1 + sin θEj , E2, Ē2) with the fact that

f(0) attains the minimum we have ℜRj1̄22̄ = 0. Replacing Ej by
√

−1Ej we also have ImRj1̄22̄ = 0. Hence

Rj1̄22̄ = 0. Similarly Rj2̄11̄ = 0. Using these equations and symmetries of the curvature we have that
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II =
∑

j≥3

|R12̄1j̄ |2 + |R12̄j2̄|2 ≥ 0.

Applying a similar first variational consideration we also have R12̄22̄ = R11̄12̄. Using this equation in the

first sum of the right hand side of the equation for
(

∂
∂t

− ∆
)

(−ℓ)

I = R11̄11̄R22̄11̄ +R11̄22̄R22̄22̄ + 2|R11̄12̄|2 + |R12̄12̄|2 − |R11̄22̄|2

≥ R11̄22̄ (R11̄11̄ +R22̄22̄ −R11̄22̄)

= R11̄22̄ Scal −3(R11̄22̄)2 −R11̄22̄





∑

j≥3

2(R11̄jj̄ +R22̄jj̄) +
∑

i,j≥3

Rīijj̄



 .

To get our estimate we only need to estimate
∑

Rīiīi from below. For i 6= j, let E′
i = 1√

2
(Ei − Ej) and

E′′
i = 1√

2
(Ei − Ej). We have that

4RE′Ē′E′′Ē′′ = Rīiīi +Rjj̄jj̄ −Rij̄ij̄ −Rjījī ≥ 4R11̄22̄.

Replacing Ej by
√

−1Ej we can get rid of the last two terms on the left hand side of the above inequality

and obtain that

Rīiīi +Rjj̄jj̄ ≥ 4R11̄22̄, hence
∑

i≥3

Rīiīi ≥ 2(n− 2)R11̄22̄.

This implies the estimate (6.3) for n ≥ 4.

An alternative approach for n 6= 3 in the last part of argument for estimating I (following Lemma 2.3 in

[2]) is as follows. Apply instead the following two estimates:

R11̄11̄ +R22̄22̄ = R11̄ +R22̄ − 2R11̄22̄ −
∑

α≥3

(R11̄αᾱ +R22̄αᾱ)

≤ R11̄ +R22̄ − 2(n− 1)R11̄22̄;

R11̄ +R22̄ ≤ Scal −(n− 2)(n+ 1)R11̄22̄, if n 6= 3.

The first one above is trivial. For the second one, recall that R∗ = R + ℓ Ĩ has NOB and R∗
11̄22̄

= 0. Since

NOB implies two-nonnegative Ricci (algebraically), we have for n 6= 3, R∗
11̄

+R∗
22̄

≤ Scal(R∗). It then follows

that

R11̄ + (n+ 1)ℓ+R22̄ + (n+ 1)ℓ ≤ Scal +n(n+ 1)ℓ.

7. Closed type-I ancient solutions

In this section, we prove some classification results on closed Type I κ-noncollapsed ancient solutions, as

consequences of the classification of shrinkers achieved in previous sections. Recall that an ancient solution

(M, g(t)) to the Ricci flow defined on M × (−∞, 0) is called of type-I if there exists a constant A such that

| Rm |(x, t) ≤ A

|t| .

We first give a complete classification of compact κ-noncollapsed Type I ancient solutions to the Ricci

flow with strictly/weakly PIC1, generalizing the second author’s work [26].
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Theorem 7.1. Assume that (Mn, g(t)) is a compact type I, κ-noncollapsed (for some κ > 0) ancient solution

to the Ricci flow with (strictly) PIC1. Then (M, g(t)) must be a quotient of S
n.

Proof. We follow the argument in [26]. Firstly, (M, g(t)) has nonnegative complex sectional curvature by

Proposition 6.2. This allows us to apply the blow-down procedure to (M, g(t)) as t → −∞ using Proposition

11.2 of Perelman [32] and get an asymptotic shrinker (M∞, g∞) with weakly PIC1. Moreover, the same

argument as Lemma 0.3 in [26] shows that (M∞, g∞) must be compact and topologically a quotient of S
n,

thus a metric quotient of S
n by Theorem 3.1. However, by [4], we also have that (M, g(t)) → (M∞, g∞)

as t → 0. The fact that (M, g(t)) must be a shrinker follows from the equality case of the monotonicity of

Perelman’s entropy ν(M, g(t)) as explained in [26].

The following corollary follows immediately from the strong maximum principle in [7,33].

Corollary 7.2. Assume that (Mn, g(t)) is a compact type I, κ-noncollapsed (for some κ > 0) ancient solution

to the Ricci flow with weakly PIC1. Then (M, g(t)) must be quotients of products of symmetric spaces.

We also give a complete classification of compact κ-noncollapsed Type I ancient solutions to the Kähler-

Ricci flow with B⊥ ≥ 0.

Theorem 7.3. Assume that (Mn, g(t)) is a compact type I, κ-noncollapsed (for some κ > 0) ancient solution

to the Kähler-Ricci flow with B⊥ > 0. Then (M, g(t)) must be, up to scaling, isometric to P
n with its

Fubini-Study metric.

Proof. By Proposition 6.1, we know that (M, g(t)) has nonnegative bisectional curvature. So we can apply

the blow-down procedure to (M, g(t)) as t → −∞ using Proposition 11.2 of Perelman [32] and its adaption

to the Kähler case in [25], to get a limiting shrinker (M∞, g∞) with B⊥ ≥ 0. By similarly arguments as

Lemma 0.3 in [26], we can conclude that (M∞, g∞) must be compact. Thus it is forced to be topologically

P
n, thus isometric to P

n by Theorem 2.2.

On the other hand, by the work of [10,16,33], we also know that (M, g(t)) → (M∞, g∞) as t → 0. The fact

that (M, g(t)) must be a shrinker follows from the equality case of the monotonicity of Perelman’s entropy

ν(M, g(t)) as illustrated in [26].

The strong maximum principle in [7] and its extension in [16,33] imply

Corollary 7.4. Assume that (Mn, g(t)) is a compact type I, κ-noncollapsed (for some κ > 0) ancient solution

to the Kähler-Ricci flow with B⊥ ≥ 0. Then (M, g(t)) must be quotients of products of Hermitian symmetric

spaces.

The examples in [1] seem to suggest that the results no longer hold if we drop the assumption of the

non-collapsing. However, since the example of [1] is the Ricci flow of Hermitian metrics, it remains interesting

to construct examples of the Kähler-Ricci flow.
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