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Abstract Viscosity solutions are suitable notions in the study of nonlinear PDEs jus-
tified by estimates established via the maximum principle or the comparison principle.
Here we prove that the isoperimetric profile functions of Riemannian manifolds with
Ricci lower bound are viscosity supersolutions of some nonlinear differential equa-
tions. From these one can derive the isoperimetric inequalities of Lévy-Gromov and
Bérard–Besson–Gallot, as well as an upper bound of Morgan–Johnson.
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1 Introduction

Viscosity solutions are solutions with usually less regularity. However, this flexibility
is important in the development and the study of nonlinear PDEs. For motivation,
examples and techniques, see, e.g., [7,11]. One particular advantage of the concept is
that it allows effective uses of the comparison principle so that crucial estimates can
be established for existence and uniqueness even though the viscosity solutions are a
much broader class of solutions.
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Let (Mn, g) be a compact Riemannian manifold. The isoperimetric profile function
is defined as follows. For any β ∈ (0, 1), consider smooth regions � ⊂ M such that
the volume |�| satisfies |�| = β|M |, and let h1(β, g) = inf�

|∂�|
|M| . Here |∂�| denotes

the n − 1-dimensional area of ∂�, and the infimum is taken over all � satisfying the
volume constraint. The profile function generally is not smooth, but is continuous.

In this short note we shall prove that isoperimetric profile functions are viscosity
supersolutions of some nonlinear differential equations. From these one can derive
the isoperimetric inequalities of Lévy-Gromov [8] and Bérard–Besson–Gallot [5], as
well as some new comparison results.

The consideration here is motivated by a paper of Andrews–Bryan [2], where the
authors established some comparisons for the isoperimetric profile functions for met-
rics on a two-sphere deformed by the Ricci flow motivated by the earlier work of
Hamilton [9]. The comparison here is for static metrics satisfying some conditions on
the Ricci curvature. There are two differential equations involved (see Theorem 2.2 in
Sect. 2 and Theorem 4.1 in Sect. 4). One is of second order, which can be viewed as
a stability result for the isoperimetric profile function. This equation has more or less
been shown previously in the works of [3,14] (see [13] and [4] as well). The other is
of first order, which can be viewed as a Hamilton–Jacobi type equation. The consid-
eration also leads to an alternate proof of a comparison theorem in Sect. 3, which was
originally proved in [14].We hope to investigate further in the future the application of
this approach to the study of the isoperimetric profile functions. The interested reader
should consult the survey article [1] and the references therein for related and more
recent developments.

2 Isoperimetric Profile Function as a Viscosity Supersolution

Let (Mn, g) be a compact Riemannian manifold. The isoperimetric profile function
is defined as follows. For any β ∈ (0, 1), consider smooth region � ⊂ M such that
its volume |�| satisfies |�| = β|M |, and let h1(β, g) = inf�

|∂�|
|M| . Here |∂�| denotes

the n − 1-dimensional area of ∂�, and the infimum is taken for all � satisfying the
volume constraint. It is known (cf. [16, Chapter VI]) that h1(β, g) is continuous (in
fact Hölder continuous), satisfying the symmetry h1(β, g) = h1(1−β, g). Moreover,
it has the asymptotics (cf. [16, Proposition 1.3 of Chapter VI]):

lim
β→0

h1(β, g)

β
n−1
n

= n
σ
1/n
n

|M |1/n , (2.1)

where σn denotes the volume of the unit ball in the Euclidean space Rn .
The isoperimetric inequality of Lévy-Gromov [8] asserts the following:

Theorem 2.1 (Lévy-Gromov) Assume that the Ricci curvature of (M, g), Ricg ≥
(n − 1)κg for some κ > 0. Then

h1(β, g) ≥ h1(β, gκ),

where (Mk, gk) is the space form of constant sectional curvature k.
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We prove the following result which implies the above inequality via a maximum
principle for viscosity solutions. This argument avoids the estimate of Heintze–
Karcher.

Theorem 2.2 Assume that the Ricci curvature of the compact manifold (Mn, g),
Ricg ≥ κ(n − 1)g. The isoperimetric profile function h1(β, g), as a function of
β, is a positive viscosity supersolution (over (0, 1)) of the differential equation:

− ψ ′′ψ = (n − 1)

(
k +

(
ψ ′

n − 1

)2
)

. (2.2)

Before we prove the result we first derive Theorem 2.1 from the above. First observe
that h1(β, g1) is a smooth solution to (2.2) on (0, 1). By scaling, it suffices to prove
it for k = 1. Assume that the claimed estimate in Theorem 2.1 fails. Then by the
asymptotics and the symmetry, there exists β0 ∈ (0, 1) such that h1(β, g)− h1(β, g1)
attains its negative minimum. Now in a small neighborhood of β0, there exists a
smooth ϕ(β) such that ϕ(β) ≤ h1(β, g) and ϕ(β0) = h1(β0, g). This support function
can be constructed easily from h1(β, g1), which is smooth, as follows. Let −α �
minβ∈[0,] h1(β, g)−h1(β, g1). Thenonemaychooseϕ(β) = h1(β, g1)−α.Moreover,
we have that

− ϕ′′ϕ ≥ (n − 1)

(
1 +

(
ϕ′

n − 1

)2
)

. (2.3)

On the other hand, by the above ϕ(β)− h1(β, g1) attains a local negative minimum at
β0. Hence we have that h1(β0, g1) > ϕ(β0) > 0, ϕ′(β0) = h′

1(β0, g1) and ϕ′′(β0) ≥
h′′
1(β0, g1). By writing h1(β, g1) as h1,g1(β), this implies that at β0,

−ϕ(β)ϕ′′(β) ≤ −ϕ(β)h′′
1,g1(β)

= ϕ(β)

h1,g1(β)
(−h1,g1(β)h′′

1,g1(β))

= ϕ(β)

h1,g1(β)
· (n − 1)

(
1 +

(
ϕ′(β)

n − 1

)2
)

,

which contradicts (2.3), by noting that ϕ(β0)
h1,g1 (β0)

< 1.

Now we prove Theorem 2.2. By definition, we need to verify that for any β0, and
a small neighborhood U of it, a smooth function 0 < ψ(β) ≤ h1(β, g) in U with
ψ(β0) = h1(β0, g), the equation (2.3) holds at β = β0. Let � be the domain mini-
mizing |∂�| with |�| = β0|M |. Let ∂� denote the boundary of �. By the regularity
theorem [17], ∂� is a smooth hypersurface except for a singular set of Hausdorff codi-
mension 7. The mean curvature of N , the smooth part, is defined and is a constant. For
a small region D of N , we may consider the variation given by expx (tη(x)ν(x)) with
ν being the unit outward normal, η being a function supported in D. Let Nt be this
variation of N and let �t be the domain bounded by Nt (together with the irregular
part of ∂�, which is not altered). Recall that expN ((x, t)) = expx (tν(x)). Simple
calculation shows that if J (expN )|(x,s) = a(x, s) with a(x, 0) = 1,
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|�t | = |�| +
∫
D

∫ tη

0
a(x, s) dsdμgN ,

d

dt
|�t |

∣∣∣∣
t=0

=
∫
N

η dμgN .

Recall that the first variation formula for the submanifolds also gives

d

dt
|Nt |

∣∣∣∣
t=0

= (n − 1)
∫
N

ηH dμgN .

Let β(t) = |�t |
|M| . It is easy to see that ψ(β(t)) ≤ |Nt |

|M| and ψ(β(0)) = ψ(β0) = |N0||M| .
Now let F(t) = |Nt |

|M| − ψ(β(t)) which attains a local minimum at t = 0. The first
variation formula yields that

(n − 1)H = ψ ′(β0). (2.4)

Note that d
dt |t=0ψ(β(t)) = ψ ′(β0)

1
|M|

∫
N η. The fact that F ′′(0) ≥ 0 and the second

variational formula (cf. [12, p. 8]) yields at t = 0 (β = β0)

1

|M |
∫
N

|∇η|2 + (η(n − 1)H)2 − η2h2i j − η2 Ric(ν, ν)

≥ ψ ′′
(

1

M

∫
N

η

)2

+ ψ ′ (n − 1)H

|M |
∫
N

η. (2.5)

The smallness of the singular set allows η = 1, via approximations. Hence we have
that for β = β0

− ψ ′′ψ2 ≥ (n − 1)ψ

(
ψ ′

n − 1

)2

+ 1

|M |
∫
N
Ric(ν, ν). (2.6)

This proves the claimed differential inequality by cancelation and using Ric(ν, ν) ≥
k(n − 1).

Consequences include the following result for the case of κ = 0 and κ = −1.

Corollary 2.3 (i) Assume that the Ricci curvature of (M, g), Ricg ≥ 0. The isoperi-
metric profile function h1(β, g), as a function of β, is a positive supersolution of
the differential equation:

− ψ ′′ψ = (n − 1)

(
ψ ′

n − 1

)2

. (2.7)

(ii) Assume that the Ricci curvature of (M, g), Ricg ≥ −(n− 1)g. The isoperimetric
profile function h1(β, g), as a function of β, is a positive supersolution of the
differential equation:
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− ψ ′′ψ = (n − 1)

(
−1 +

(
ψ ′

n − 1

)2
)

. (2.8)

3 Comparisons from Above on Manifolds with Ricci Lower Bound

Motivated with the consideration of the last section we consider (M, g) with Ricg ≥
(n − 1)κ , where κ is a constant, but not necessarily satisfying κ > 0. This of courses
allows manifolds with infinite volume. Now we define h2(β, g), another profile func-
tionwhich is natural for this setting, as inf |∂�| among all� such that |�| = β. Clearly
h2(β, g) is now defined for (0, |M |). When |M | < ∞, h2(β, g) = |M |h1( β

|M| , g).
The following comparison result holds for the profile function h2(β, g).

Theorem 3.1 Let (M, g) be a complete Riemannian manifold with Ricg ≥ (n − 1)κ .
Then

h2(β, g) ≤ h2(β, gκ)

for β ∈ (0, |M |). If the equality ever holds somewhere, (M, g) must be isometric to
the space form (M, gκ).

Note that the famous Cartan–Hadamard conjecture asserts the opposite estimate if
(M, g) is a Cartan–Hadamard manifold with the sectional curvature KM ≤ κ ≤ 0.
The result is an analogue of the eigenvalue comparison result of Cheng [6]. This result
was first proved in [14]. Below is an alternate argument.

This profile function satisfies the scaling law h2(β, cg) = c
n−1
2 h2(c− n

2 β, g). Hence
it suffices to prove for cases κ = −1, 0, 1. For the proof, we need the following simple
lemma (one can find its proof, for example, in [15]).

Lemma 3.1 Let ρ(t) be a continuous function on [0, b]. Assume that ρ(0) ≤ 0 and
there exist some positive constants ε,C such that D−ρ ≤ Cρ, whenever 0 < ρ(t) ≤ ε.
Then ρ(b) ≤ 0. The same result holds if D− is replaced by D+, D− or D+.

To prove Theorem 3.1, let p ∈ M be a fixed point and introduce Ip(β, g) =
|∂Bp(r)|with |Bp(r)| = β. Clearly h2(β, g) ≤ Ip(β, g)while h2(β, gκ) = I p̄(β, gκ)

where p̄ ∈ Mκ is a fixed point in the space form Mκ . The claimed result follows if
we can establish that Ip(β, g) ≤ h2(β, gκ). Let f (β) = Ip(β, g) − I p̄(β, gκ). Since
f (0) = 0 it suffices to show that f ′ ≤ 0 by Lemma 3.1. Let Bp̄(r̄) be the ball in Mk

such that |Bp̄(r̄)| = β. Now direct calculation shows that

I ′
p = n − 1

|∂Bp(r)|
∫

∂Bp(r)
H(r, θ); I ′̄

p = n − 1

|∂Bp̄(r̄)|
∫

∂Bp̄(r̄)
H̄(r̄) = (n − 1)H̄(r̄).

Here H(r, θ) denotes the mean curvature of ∂Bp(r) in terms of polar coordinates and
H̄(r̄) is themean curvature of ∂Bp̄(r̄) in the space formMκ . By the volume comparison
theorem |Bp(r)| ≤ |Bp̄(r)|, which implies that r̄ ≤ r since β = |Bp(r)| = |Bp̄(r̄)|.
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Also by the Laplacian comparison theorem H(r, θ) ≤ H̄(r). Noting that H̄(s) (mean
curvature of the spheres in Mκ ) is a monotone non-increasing function. We then have

n − 1

|∂Bp(r)|
∫

∂Bp(r)
H(r, θ) ≤ (n − 1)H̄(r)

≤ (n − 1)H̄(r̄).

This proves f ′ ≤ 0, hence the claimed inequality in Theorem 3.1. The equality case
follows from the equality in the volume comparison (applying to balls with varying
centers).

Combining Theorem 2.1 and Theorem 3.1 we have the two-sided bounds below.

Corollary 3.2 Assume that the Ricci curvature of (M, g), Ricg ≥ (n − 1)g. Then

h1(β, g1) ≤ h1(β, g) ≤ |Sn|
|M | · h1

( |M |
|Sn|β, g1

)
.

The scaling relation between h2(β, g) and h1(β, g)yields that h2(β, g) also satisfies
Theorem 2.2 when κ = 1. Namely, on (0, |M |), h2(β, g) is a viscosity supersolution
of (2.2). This implies the following corollary.

Corollary 3.3 Let (M, g) be a compact Riemannian manifold with Ricg ≥ (n − 1)κ .

Then if κ > 0, h2(β,g)
h2(β,gκ )

is a monotone non-increasing function on (0, |M |).

Proof For κ > 0, without loss of generality we assume κ = 1. Now notice that
h2(β, gκ) is a smooth solution of (2.2) and h2(β, g) is a viscosity supersolution of
(2.2). By Theorem 3.1 we have that h2(β,g)

h2(β,gκ )
≤ 1. If the claimed result does not hold,

then one can find 0 < β1 < β2 < |M | such that

h2(β1, g)

h2(β1, gκ)
<

h2(β2, g)

h2(β2, gκ)
.

Then h2(β,g)
h2(β1,gκ )

achieves minimum in (0, β2) which is strictly smaller than 1, by
Theorem 3.1. Now one can repeat the argument in the proof of the Lévy-Gromov
isoperimetric estimate to arrive at a contradiction! Precisely, assume that the minimum
is attained at β0, for a neighborhood U and a support function ψ > 0 of h2(β, g), we
have that ψ(β)

h2(β1,g1)
attains a local minimum at β0. Then at β0

ψ ′(β)

h′
2(β, g1)

= ψ(β)

h2(β, g1)
� λ < 1 (3.1)

ψ ′′(β)

h2(β, g1)
− ψ(β)h′′

2(β, g1)

h22(β, g1)
≥ 0. (3.2)
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Combining (3.1), (3.2) and that ψ satisfies (2.3) we have

(n − 1)

(
1 +

(
ψ ′

n − 1

)2
)

≤ −ψ ′′ψ

≤ λ2
(−h2h

′′
2

)
= (n − 1)

(
λ2 +

(
λh′

2

n − 1

)2
)

= (n − 1)

(
λ2 +

(
ψ ′

n − 1

)2
)

.

This is a contradiction since λ < 1. 
�

4 Bérard–Besson–Gallot Comparison via the Viscosity

Here using the ideas from Sect. 2, we derive some first order equation satisfied by
the profile function. This together with the maximum principle argument implies the
improved lower estimate of Bérard–Besson–Gallot [5]. As in [5] we need to use the
Heintze–Karcher estimates (cf. [16, Theorem 3.8 of Chapter IV]), unlike in the case
for Lévy-Gromov’s estimate.

For manifold (M, g) with Ric(g) ≥ (n − 1)κ , let

sκ(t) =

⎧⎪⎨
⎪⎩

1√
κ
sin

√
κt, κ > 0,

t, κ = 0,
1√|κ| sinh

√|κ|t, κ < 0;
cκ(t) =

⎧⎨
⎩

cos
√

κt, κ > 0,
1, κ = 0,

cosh
√|κ|t, κ < 0.

Let d denote the diameter of the manifold. Since for the consideration in this section,
one only gets the sharp result for κ > 0, we shall focus on this case first. Define

λκ
n,d =

∫ d
2

− d
2

cn−1
κ (t) dt = 1√

κ

∫ √
κd
2

−
√

κd
2

cosn−1(t) dt.

Theorem 4.1 Assume that the Ricci curvature of (M, g), Ricg ≥ (n − 1)κg, with
κ > 0. Let d be the diameter of (M, g). The isoperimetric profile function h1(β, g),
as a function of β, is a positive viscosity supersolution of the differential equation:

ψ

(
1 + 1

κ

(
ψ ′

n − 1

)2
) n−1

2

= 1

λκ
n,d

. (4.1)

Proof The derivation follows essentially the argument in [5]. By scaling invariance
of the result, we may assume that κ = 1. By definition, we need to verify that for any
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β0, and a small neighborhood U of it, a smooth function 0 < ψ(β) ≤ h1(β, g) in U
with ψ(β0) = h1(β0, g), the inequality

ψ

(
1 +

(
ψ ′

n − 1

)2
) n−1

2

≥ 1

λ1n,d

(4.2)

holds at β = β0. Let � be the domain minimizing |∂�| with |�| = β0|M |. Let ∂�

denote the boundary of �. Let η, D, Nt ,�t be as those quantities in the proof of
Theorem 2.2. Similarly as before we have that

(n − 1)H = ψ ′(β0), (4.3)

where H is the mean curvature of the regular part of ∂�. As in [5], let

r0 = max{dist(x, ∂�) | x ∈ �}.

It is easy to see that

r1 � max{dist(x, ∂�) | x ∈ M \ �} ≤ d − r0.

In fact, for any x1 ∈ � and x2 ∈ M \ �, let γ (s) be the minimum geodesic joining
from x1 = γ (0) to x2 = γ (l). Hence l = L(γ ) ≤ d. On the other hand, assume that
s1 > 0 is the first time γ (s) ∈ ∂� and s2 is the last time γ (s) ∈ ∂�. Then

d ≥ l = L(γ ) ≥ s1 + l − s2 ≥ r0 + r1.

Now we use Heintze–Karcher’s estimate (cf. [16, Theorem 3.8 of Chapter IV]) to
conclude that

|�| ≤ |N |
∫ r0

0
(cos t − H sin t)n−1+ dt;

|M \ �| ≤ |N |
∫ d−r0

0
(cos t + H sin t)n−1+ dt.

Putting them together we have that

1 ≤ ψ(β0)

∫ r0

r0−d
(cos t − H sin t)n−1+ dt. (4.4)

Writing cos θ0 = 1√
1+H2 , sin θ0 = H√

1+H2 , we have that

1 ≤ ψ(β0)(1 + H2)
n−1
2

∫ r0

r0−d
[cos(t + θ0)]

n−1+ dt
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≤ ψ(β0)

(
1 +

(
ψ ′

n − 1

)2
) n−1

2 ∫ d
2

− d
2

cosn−1 t dt.

This implies the claimed result. 
�
A direct consequence is the Bérard–Besson–Gallot’s estimate. By scaling, without

loss of generality we may assume k = 1. It is well known that the diameter of the
manifold d is bounded from above by π . Define

γn �
∫ π

2

− π
2

cosn−1 t dt, α(n, d) �
(

γn

λ1n,d

) 1
n

.

Theorem 4.2 (Bérard–Besson–Gallot) Let (Mn, g) be a compact Riemannian mani-
fold with Ric ≥ (n − 1)g, and γn, λ

1
n,d , α be as above. Then

h1(β, g) ≥ α · h1(β, g1). (4.5)

This improves Lévy-Gromov’s Theorem 2.1 since α ≥ 1 with the equality if and only
if M is isometric to the round sphere.

To prove (4.5) we first observe that h1(β, g1) is a solution of (4.1) with d = π
2 . For

simplicity we denote h1(β, g1) by ϕ(β). Hence ϕ satisfies

ϕ

(
1 +

(
ϕ′

n − 1

)2
) n−1

2

= 1

γn
. (4.6)

Assume that the claimed result fails. By the asymptotics we conclude that h1(β,g)
αϕ(β)

attains the minimum λ < 1 at some interior point β0. At this point apply Theorem 4.1
to the support function ψ(β) > 0 with ψ(β0) = λαϕ(β0) we conclude that at β0

ψ ′ = λαϕ′,

and

λαϕ

(
1 +

(
λαϕ′

n − 1

)2
) n−1

2

= ψ

(
1 +

(
ψ ′

n − 1

)2
) n−1

2

≥ γn

λn
ϕ

(
1 +

(
ϕ′

n − 1

)2
) n−1

2

= (αϕ)

(
α2 +

(
αϕ′

n − 1

)2
) n−1

2

.

The above estimate yields a contradiction since λ < 1, and α ≥ 1, ϕ(β0) > 0.
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When κ = 0, a similar argument proves the following result.

Corollary 4.3 Let (Mn, g) be a compact Riemannian manifold with Ric ≥ 0. Let

λ0n,d �
∫ d

0
(1 + t2)

n−1
2 dt, α′(n, d) �

(
γn

λ0n,d

) 1
n

.

Then h1(β, g) is a viscosity positive supersolution of the equation

ψ

(
1 +

(
ψ ′

n − 1

)2
) n−1

2

= 1

λ0n,d

. (4.7)

In particular, it implies that h1(β, g) ≥ α′(n, d) · h1(β, g1).

It seems natural to formula the third profile function h3(β, g) � inf�
|∂�|

|M| n−1
n

for all

�withβ = |�|
|M| and hope that h3(β, g) ≥ h3(β, gκ) as before. Indeed such an estimate

would improve the result in Theorem 4.2. However, such a result turns out to be false.
The example can be found even for dimension two. Recall the so-called Rosenau
solution of the Ricci flow equation on the Riemann sphere: g(t) = u(x, t)(dx2+dθ2)

with u(x, t) = sinh(−t)
cosh x+cosh t . The solution tends to the geometry obtained by gluing

two cigar solutions arbitrarily far out (cf. [10]) as t → −∞.
Note that h3(β, λg) = h3(β, g). Hence for t < 0 one can rescale the metric g(t)

such that its Ricci curvature would satisfy Ricλg(t) ≥ (n − 1). But on the other hand
h3(

1
2 , g(t)) → 0 as t → ∞, while h3( 12 , g1) is a fixed definite positive constant.
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