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Kähler-Ricci flow on complete manifolds

Lei Ni

Abstract. This is a paper based on author’s lectures delivered at the 2005
Clay Mathematics Institute summer school at MSRI. It serves as an overview
on the Kähler-Ricci flow over complete noncompact manifolds.

1. Introduction

The 2005 Clay Mathematics Institute summer school at MSRI focused on Perel-
man’s work on Ricci flow. The author was asked to give two lectures about Kähler-
Ricci flow on complete noncompact manifolds. This paper is the written version
of the lectures. Since Perelman did not make any specific claims on this subject,
we lectured on materials mostly related to some of the author’s recent research
results in this subject. The connection with Perelman’s work does exist in some
of the results, in which the new techniques introduced by Perelman in [P1] [P2]
played important roles. When the manifold is compact, Perelman did talk about
the results of bounding the scalar curvature and diameter for Kähler-Ricci flow on
compact manifolds with positive first Chern class during his MIT visit in 2003, and
claimed some convergence results. Even the author did not attend his MIT lectures,
after we learned about the result we did independently work out a complete proof
(with limited circulation) on his claimed results on bounding the scalar curvature
and the diameter, soon after his Stony-Brook visit of 2003. For readers interested
in learning more on this part of Perelman’s work, please see Tian’s lectures [T] (in
this volume) for a detailed exposition.

Even on Kähler-Ricci flow over complete noncompact manifolds, the choices
of the topics in these lectures are only restricted to those related to author’s own
research. Efforts have been made, both in re-organizing the results so that they
appears in the most natural order, and in the choice of the cleanest proof. Since the
subject is still in the middle of rapid development the presentation/proofs here may
not be in their ultimate best forms. The lectures mainly serve as an introduction,
especially to graduate students who are interested in the subject. Due to our
limited knowledge and restricted length of the lectures, we could not cover many
important works on the subject in the lectures. For example we did not discuss in
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details about the recent important progress made by Chau and Tam [CT] on the
uniformization problem. We apologize for many such omissions. The interested
readers are encouraged to study the other related literatures for a more complete
overview on this subject.

2. A maximum principle

The maximum principle probably is the most useful tool in the study of the
geometric flow. When the manifold is not compact, it is well-known that the
maximum principle does not always hold. In this section we show a maximum
principle for the time-dependent heat equation on a family of complete Riemannian
manifolds (M, gij(t)) satisfying certain conditions. By comparing with the special
case that the metric is a fixed one, it is easy to see that the result in the section is
optimal.

Assume that the family of metric gij(x, t) on M × [0, T ] satisfying the equation

∂

∂t
gij(x, t) = −2Υij(x, t)

with R(x, t) := gij(x, t)Υij(x, t). We assume that Rm := infx∈M R(x, t) > −∞
for all t and R∗(t) := 1

2 min{0, Rm} is integrable on [0, T1]. We also assume that
gij(x, t) ≥ g∗ij(x), where g∗ij(x) is a complete Riemannian metric. This setting
certainly covers the case when the metrics are deformed by the corresponding Ricci
tensor (namely Ricci flow) and the Ricci tensors are bounded uniformly.

Let r∗(x, y) be the distance between x and y, with respect to g∗ij . Consider the
time-dependent heat equation ( ∂

∂t −∆) (where the ∆ is with respect to g(t)). We
formulate a general maximum principle in the following theorem.

Theorem 2.1. Let f(x, t) be a Lipschitz function satisfying
(

∆− ∂

∂t

)
f(x, t) ≥ 0 whenever f(x, t) ≥ 0.

Assume that there exists a constant b > 0 such that for some fixed o ∈ M
∫ T1

0

∫

M

exp(−b r2
∗(o, x))f2

+(x, t) dµt(x) dt < ∞,

where f+ = max{f, 0}. If f(x, 0) ≤ 0, then f(x, t) ≤ 0 on M × [0, T1].

Proof. Let h(x, t) = exp(
∫ t

0
R∗(s) ds)f(x, t). It is easy to see that

(2.1)
(

∆− ∂

∂t
+ R∗

)
h(x, t) ≥ 0

whenever h(x, t) ≥ 0. For any T with 0 < T ≤ T1, let

η(x, t) = − r2
∗(o, x)

4(2T − t)
.

Without the loss of the generality we may assume that T ≤ 1
8b , since we can always

split [0, T ] into smaller intervals (such that each has the length less than 1
8b ) and

apply the induction. Therefore we have that
∫ T

0

∫

M

h2
+eη dµt dt < ∞.
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Using the fact that gij(x, t) ≥ g∗ij(x) we have that

(2.2) |∇η|2 +
∂

∂t
η ≤ 0.

Let ψ(t) : [0,∞) → [0, 1] be a cut-off function so that ψ(t) = 0 for t ≥ 1 and
ψ(t) = 1 for t ≤ 1

2 . Let ϕ(x) = ψ( r∗(o,x)
a ). It is easy to see that there exists a

constant C > 0 independent of a such that |∇ϕ|2 ≤ C
a2 , using again the assumption

that gij(x, t) ≥ g∗ij(x). By (2.1) and (2.2) we have that

0 ≤
∫ T

0

∫

M

ϕ2eηh+

(
∆− ∂

∂t
+ R∗

)
h dµt dt

=
∫ T

0

∫

M

(−2〈∇ϕ,∇h+〉h+eηϕ− 〈∇h,∇η〉eηϕ2h+ − |∇h+|2eηϕ2
)
dµt dt

+
∫ T

0

∫

M

(
−1

2

(
∂

∂t
h2

+

)
ϕ2eη + R∗ϕ2eηh2

+

)
dµt dt

≤
∫ T

0

∫

M

(
2|∇ϕ|2h2

+eη +
1
2
|∇η|2eηϕ2h2

+ +
1
2
h2

+ϕ2eηηt

)
dµt dt

−
∫

M

h2
+ϕ2eη dµt|T0 +

∫ T

0

∫

M

(
h2

+eηϕ2(−1
2
R + R∗)

)
dµt dt

≤ 2
∫ T

0

∫

M

|∇ϕ|2h2
+eηdµt dt−

(
1
2

∫

M

h2
+eηϕ2 dµt

)
(T ).

(2.3)

Letting a →∞, we have that(
1
2

∫

M

h2
+eη dµt

)
(T ) ≤ 0.

This implies that f(x, T ) ≤ 0. Since T is arbitrary we have the claimed result. ¤

Despite of the simplicity of its proof, the theorem is in the most general form
comparing with all the previous known maximum principles (cf. [Sh1] [Sh2]
[NT2]).

3. A long time existence result

From this section on, we shall focus on the case that M has bounded non-
negative bisectional curvature. There are also works under different assumptions.
Most of them reduce the problem to a single Monge-Ampère equation and apply
the parabolic version of the earlier established elliptic techniques for solving the
Monge-Ampère equation, which is originated from the fundamental work of Yau
[Y1]. Let us start with the following result, which was first proved by Shi [Sh2].

Theorem 3.1. Let (M, g(x)) be a complete Kähler manifold with bounded non-
negative bisectional curvature. Assume that there exist 2 ≥ θ > 0 and C > 0 such
that for any x ∈ M ,

(3.1)
1

V (x, r)

∫

B(x,r)

R(y) dµy ≤ C

(1 + r)θ
,

where B(x, r) is the ball of radius r centered at x and V (x, r) is the volume of such
a ball. Then the Kähler-Ricci flow with initial data g(x, 0) = g(x) has long time
solution on M × [0,∞).
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In the following we are going to present a simplified (different from [Sh2]) proof
of the above theorem for the case θ > 1. The original work of Shi mainly adapted
the techniques from the study of the Monge-Ampère equation. While the proof
here makes only a simple use of the maximum principle for the linear parabolic
equation. For the general case, there also exists a simplification of Shi’s work in
[NT2]

The proof is based on the existence of a ‘good’ solution to the so-called Poincaré-
Lelong equation whose existence was proved in [NST]. The following one is the
further refined result from [NT1].

Theorem 3.2. Let (M, g(x)) be a complete Kähler manifold with nonnegative
bisectional curvature. Let ρ be a real closed (1, 1) form with trace f . Let o ∈ M be
a fixed point. Assume that f ≥ 0 and ρ satisfies

(3.2)
∫ ∞

0

(
1

V (o, s)

∫

B(o,s)

‖ρ‖ dµ

)
ds < ∞,

and

(3.3) lim inf
r→∞

(
exp(−ar2)

∫

B(o,r)

‖ρ‖2dµ

)
< ∞

for some a > 0, where B(o, r) is the ball of radius r centered at o and V (o, r) is its
volume. Then there exists a solution u to the Poincaré-Lelong equation

√−1∂∂̄u =
ρ. Moreover, there exists estimate

(3.4) |∇u|(x) ≤ C(n)
∫ ∞

0

kf (x, s) ds

with kf (x, s) = 1
V (x,s)

∫
B(x,s)

f dµ.

The proof of the above result uses a simple idea originally due to Mok, Siu
and Yau, by which one solves the Poisson equation first and then to show that
the solution in fact also solves the over-determinate Poincaré-Lelong equation. The
original result was improved in the author’s thesis later. The more refined result
was later proved in [NST]. The reader may want to consult [NST] and [NT1] for
the detailed account on this approach.

By Theorem 3.2 we know that there exists a solution to the Poincaré-Lelong
equation

(3.5)
∂2u0

∂zα∂zβ̄
(x) = Rαβ̄(x)

where Rαβ̄(x) is the Ricci tensor of g(x). Moreover under the assumption that
θ > 1, the gradient estimate (3.4) implies that

(3.6) |∇0u0|(x) ≤ C1

for some C1 > 0, where C1 = C1(m, θ). Here we use ∇0 to denote the gradient
with respect to the initial metric g(x) and reserve ∇ for the time-dependent metric
g(x, t). The same convention applies to the distance function rt(x, y) (r0(x, y))
between two points x, y ∈ M as well as the volume element dµt (dµ0). Let

F (x, t) = log
(

det(gαβ̄(x, t))
det(gαβ̄(x, 0))

)
.
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Then for the solution of Kähler-Ricci flow

(3.7) dµt = eF dµ,

(3.8) F (x, t̄) = −
∫ t̄

0

R(x, t)dt

where R(x, t) is the scalar curvature of the metric g(x, t).
First by [Sh1], there exists a short time solution with the existence time span

depending on the C0-bound of the curvature tensor such that for any fixed time slice
the curvature tensor is bounded. By the results of Bando [B] and Mok [M] we know
that the short time solution (M, g(t)) to the Kähler-Ricci flow still has nonnegative
bisectional curvature. Therefore, in order to prove the long time existence, we only
need to obtain a uniform estimate on the scalar curvature, therefore a uniform upper
bound on the curvature tensor, which rules out the possibility of finite singularities.
This can be proved by applying the general maximum principle, Theorem 2.1 after
checking the following lemma.

Lemma 3.3. Suppose there is a function u0(x) such that

(3.9)
√−1∂∂̄u0 = Ric(g(·, 0))

where Ric(g(0)) is the Ricci form of the initial metric g(0). Let F be the ratio of
the volume element as above and let u(x, t) = u0(x)− F (x, t). Then

(3.10)
√−1∂∂̄u = Ric(g(t)),

(3.11)
(

∆− ∂

∂t

)
u(x, t) = 0,

(3.12)
(

∆− ∂

∂t

)
|∇u|2 = ‖uαβ‖2 + ‖uαβ̄‖2,

(3.13)
(

∆− ∂

∂t

) (|∇u|2 + 1
) 1

2 ≥ 0,

and

(3.14)
(

∆− ∂

∂t

)
R =

(
∆− ∂

∂t

)
ut = −‖uαβ̄‖2.

Here ‖uαβ̄‖2(x, t) = gαβ̄(x, t)gγδ̄(x, t)uαδ̄(x, t)uγβ̄(x, t), ‖uαβ‖2(x, t) = gαβ̄(x, t)
gγδ̄(x, t) uαγ(x, t) uβ̄δ̄(x, t).

The proof of lemma is tedious but routine computations. We leave them as
exercises. The reader can consult [NT2] for the details. Now combining (3.12) and
(3.14) we have that (

∆− ∂

∂t

) (|∇u|2 + R
)

= ‖uαβ‖2 ≥ 0.

One can also check that |∇u|2(x, t) + R(x, t) satisfies the growth control condition
needed for the maximum principle in Theorem 2.1. For this sake one only needs
to estimate the growth of

∫
B(x,r)

|∇u|2 dµ0 (in terms of r, which can be bounded
by the growth of R and u itself). The complete detailed estimate was written in
[NT2]. We then have the following slightly stronger result.
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Theorem 3.4. Let (Mm, gαβ̄(x, t)) be a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature such that its scalar curvature
R0 is bounded and satisfies

1
V (x, r)

∫

B(x,r)

R(y) dµy ≤ C1

(1 + r)θ

for some constants θ > 1 and C1 > 0 for all x and r. Then the Kähler-Ricci flow
∂
∂tgαβ̄ = −Rαβ̄ has long time existence. Moreover, there is a function u(x, t) such
that √−1∂∂̄u(·, t) = Ric(g(t)),

|∇u| ≤ C(m)C1,

and

(3.15) R(x, t)+|∇u|2(x, t) ≤ sup
x∈M

(
R0(x) + |∇0u0|2(x)

) ≤ sup
x∈M

R0(x)+(C(m)C1)
2

for some constant positive C(m) depending only on m and for all (x, t). Moreover,
the equality holds in (3.15) for some (x0, t0), with t0 > 0 if and only if gαβ̄(x, t) is
a Kähler-Ricci soliton.

4. Uniqueness

The solution obtained in Theorem 3.4 can also be shown unique. This is a
result of Fan [F]. In fact, the result in [F] is more general than the uniqueness on
the solution constructed by Theorem 3.4. We present the argument of [F] in this
section.

Assume that g(x, t) and g̃(x, t) are two solutions to the Kähler-Ricci flow. Since
the curvature of both solution are uniformly bounded, at least on M × [0, T ] for
some small T > 0, it is easy to see that

(4.1) C−1gαβ̄(x) ≤ gαβ̄(x, t), g̃αβ̄(x, t) ≤ Cgα,β̄(x)

for some C > 0. We also denote by R̃αβ̄(x, t) the Ricci tensor of metric g̃(x, t). By
the proof (especially, Lemma 3.3) above we know that there exist potential function
u(x, t) and ũ(x, t) for the Ricci form of the metrics g(x, t) and g̃(x, t). Form the
equation of Kähler-Ricci flow we have that

gαβ̄(x, t̄) = gαβ̄(x, 0)−
∫ t̄

0

uαβ̄(x, t) dt.

If we denote ϕ(x, t̄) = − ∫ t̄

0
u(x, t) dt, we have that gαβ̄(x, t) = gαβ̄(x, 0)+ϕαβ̄(x, t).

Now we can write the Kähler-Ricci flow as a single parabolic equation exactly as
in the compact case:

(4.2)
∂

∂t
ϕ = log

(
det(gαβ̄(x, 0) + ϕαβ̄(x, t))

det(gαβ̄(x, 0))

)
− u0(x).

Exactly the same we also have ϕ̃(x, t) for g̃(x, t) and the equation (4.2) for ϕ̃.
Now let ψ(x, t) = ϕ(x, t)− ϕ̃(x, t). Then the uniqueness would follow if we can

show that ψ(x, t) ≡ 0. It is easy to see that

∂

∂t
ψ(x, t) = log

(
det(gαβ̄(x, 0) + ϕαβ̄(x, t))
det(gαβ̄(x, 0) + ϕ̃αβ̄(x, t))

)
.



KÄHLER-RICCI FLOW ON COMPLETE MANIFOLDS 7

While the righthand side can be written as

log
(
det(gαβ̄(x, 0) + (sϕ + (1− s)ϕ̃)αβ̄(x, t))

) |s=1
s=0

which can be further written as
∫ 1

0

gαβ̄
(s)

(
ϕαβ̄(x, t)− ϕ̃αβ̄(x, t)

)
ds =

(∫ 1

0

gαβ̄
(s) ds

)
ψαβ̄(x, t)

where gαβ̄
(s)(x, t) is the inverse of the definite matrix (in local coordinate)

(
sgαβ̄(x, t) + (1− s)g̃αβ̄(x, t)

)
.

If we denote

∆g,g̃ =
(∫ 1

0

gαβ̄
(s) ds

)
(x, t)

∂2

∂zα∂zβ̄

the above computation gives
∂

∂t
ψ = ∆g,g̃ψ.

Theorem 2.1 can be applied to the family of metrics

ḡαβ̄(x, t) =
(∫ 1

0

(sg + (1− s)g̃)αβ̄ ds

)
(x, t)

since we do have that uniform lower bound for ḡ(x, t) and −ḡαβ̄ ∂
∂t ḡαβ̄ ≥ 0. Since

one can also verify the growth condition on ψ, the maximum principle implies that
ψ ≡ 0, therefore the uniqueness of the solution.

The above argument in fact proves a slightly more general result than [F] since
we only need to assume the lower bound on the Ricci curvature for g and g̃, instead
of the curvature tensor being bounded.

5. Long time existence without curvature decay assumption

The assumption (3.1) requires the information both on the volume growth and
the curvature growth. It is desirable to replace the uniform average curvature decay
assumption in Theorem 3.1 by a single geometric condition. In this direction we
have the following result [N3], which seems to be the first long time existence result
without assuming any curvature decay.

Theorem 5.1. Let (Mm, g0) (m = dimIC(M)) be a complete Kähler manifold
with bounded nonnegative bisectional curvature. Assume that M is of maximum
volume growth. Then the Kähler-Ricci flow ∂

∂tgαβ̄ = −Rαβ̄, with g(x, 0) = g0(x)
has a long time solution. Moreover the solution has no slowly forming (Type II) sin-
gularity as t approaches ∞ (namely the solution is nonsingular). Furthermore, M
is diffeomorphic (homeomorphic) to ICm, for m > 2 (m = 2), and is biholomorphic
to a pseudoconvex domain in ICm.

The following general result on complete Kähler manifolds with nonnegative
bisectional curvature was proved in Theorem 0.1 of [NT1]. We do not need the full
strength of the above result for the sake of Theorem 5.1. However since it provides
an effective tool to do the reduction for the study of complete Kähler manifolds
with nonnegative bisectional curvature we present its most general form with the
hope that it may be useful for other purposes.
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Theorem 5.2. Let (M, g(x)) be a complete Kähler manifold with nonnegative
bisectional curvature and let u be a continuous plurisubharmonic function on M
satisfying

|u|(x) ≤ C exp(ar2(x))
for some positive constants a and C, where r(x) is the distance function to some
fixed point. There exists a positive constants T0 and T1 so that the heat equation(

∂
∂t −∆

)
v(x, t) = 0 with v(x, 0) = u(x) has a plurisubharmonic solution v(x, t) on

M × [0, T0]. Moreover, the null space

K(x, t) =
{
w ∈ T 1,0

x (M)|vαβ̄(x, t)wα = 0
}

is a distribution on M for all 0 < t < T1. K(x, t) is also invariant under the parallel
translation.

Applying this general result to the Busemann function, which has been known
to be a Lipschitz continuous plurisubhamonic function, we can have the following
corollary [NT1].

Corollary 5.3. Let Mm be a complete noncompact Kähler manifold with
nonnegative bisectional curvature. Suppose that M is simply-connected. Then M =
N×M ′, isometric-biholomorphically, where N is compact and M ′ supports a smooth
strictly plurisubharmonic function with bounded gradient. Moreover, for any x ∈
M ′, there exists C > 0 (may depends on x) such that

(5.1)
1

V (x, r)

∫

B(x,r)

R(y) dµy ≤ C

r

where R(y) is the scalar curvature function, Bx(r) is the ball of radius r centered
at x and Vx(r) is the volume of such ball. If M has positive bisectional curvature
somewhere then (5.1) still holds on M without assuming the simply-connectedness.

We omit the proof of the above two results since they are not results on Ricci
flow even though the proof is certainly motivated by Hamilton’s work on tensor
maximum principle. The interested readers can consult the original paper [NT1]
for the details. The curvature decay information is obtained through understanding
the solution (sub-solution) to the Poisson equation ∆u = −R(y), which goes back
to the papers [NST] and [N1]. There exists a splitting of M according to the
minimal order of nonconstant holomorphic functions. The interested reader may
consult [N2] for the statement of such a result.

A direct consequence from this result is that on a Kähler manifold of maximum
volume growth, whose Busemann function can be easily shown to be exhaustion,
there can not be a compact factor N in the splitting provided through Corollary
5.3. Therefore the estimate (5.1) always holds on M . (Strictly speaking one has to
work on the universal coever of M . Since the fundamental group of a complete Rie-
mannian manifold with nonnegative Ricci curvature and maximum volume growth
is finite, the estimate (5.1) descends to M .) In general, when we study the Kähler-
Ricci flow, we may as well assume that (5.1) holds since the Kähler-Ricci flow pre-
serves the product structure and the Kähler-Ricci flow on the compact manifolds
has been better understood.

The following lemma, making use of the decay (5.1), is useful. For example
it implies that the asymptotical volume ratio is preserved under Ricci flow. The
result stated in the lemma is considerably more general than that the asymptotical
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volume ratio is preserved under the Kähler-Ricci flow. (Under some point-wise
decay assumption on the curvature tensor, the asymptotical volume ratio being
preserved by Ricci flow was proved by Hamilton first in Theorem 18.3 of [H]).

Lemma 5.4. Assume that (M, g(t)) be a solution to Kähler Ricci flow on M ×
[0, T ] with bounded curvature so that g(x, 0) satisfies (5.1). Then

(5.2) lim
r→∞

Vt(o, r)
V0(o, r)

= 1

for any t > 0. Here Vt(o, r) is the volume (with respect to g(t)) of Bt(o, r) (the ball
with respect to g(t) again).

Proof. We first show that lim supr→∞
Vt(o,r)
V0(o,r) ≤ 1. By Theorem 17.1 of [H],

(or Lemma 8.2 of [P1]), we know that rt(o, x) ≥ r0(o, x)−Ct for some C depending
on the Ricci curvature bound. This implies that

Bt(o, r) ⊂ B0(o, r + Ct)

Noticing that the metric is shrinking we have that

Vt(0, r) ≤ Vt(B0(o, r + Ct)) ≤ V0(B0(o, r + Ct))

which implies that

lim sup
r→∞

Vt(o, r)
V0(o, r)

≤ lim
r→∞

V0(B0(o, r + Ct))
V0(o, r)

≤ 1.

To prove the result we only need to show that lim infr→∞
Vt(o,r)
V0(o,r) ≥ 1. We first

observe that B0(o, r) ⊂ Bt(o, r). Hence

Vt(o, r) ≥
∫

B0(o,r)

dµt.

Therefore, for any t̄ > 0,

Vt̄(o, r)− V0(o, r) ≥
∫

B0(o,r)

(
eF (x,t̄) − 1

)
dµ0,

The right hand side above can be written as
∫

B0(o,r)

eF (x,t)|t=t̄
0 dµ0 =

∫ t̄

0

∫

B0(o,r)

∂

∂t

(
eF (x,t)

)
dµ0dt.

Direct computation shows that
(5.3)

∂

∂t

(
eF (x,t)

)
= eF Ft = −eF R(x, t) ≥ −gαβ̄(x, 0)Rαβ̄(x, t) = ∆0F (x, t)−R(x, 0).

Combining the above we have that

Vt̄(o, r)− V0(o, r) ≥
∫ t̄

0

∫

B0(o,r)

(∆0F (x, t)−R(x, 0)) dµ0 dt.

Therefore,

Vt̄(o, r)
V0(o, r)

−1 ≥ − t̄

V0(o, r)
sup

0≤t≤t̄

∫

∂B0(o,r)

|∇0F |(x, t) dA− t̄

V0(o, r)

∫

B0(o,r)

R(x, 0) dµ0.
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It is easy to see that ∂
∂zγ F = Γβ

βγ(t) − Γβ
βγ(0). Differentiate the equation Γα

βγ =

gαδ̄ ∂gβδ̄

∂zγ we have that
∂

∂t
Γγ

αβ = −gγδ̄∇αRβδ̄.

By Shi’s derivative estimate [Sh1] we have that |∇0F | ≤ C for some constant
depending on the initial bound of the curvature tensor. It is now easy to see that

t̄

V0(o, r)
sup

0≤t≤t̄

∫

∂B0(o,r)

|∇0F |(x, t) dA ≤ Ct̄
A0(o, r)
V0(o, r)

≤ Ct̄

r

and
t̄

V0(o, r)

∫

B0(o,r)

R(x, 0) dµ0 ≤ Ct̄

r
.

The claimed result follows by letting r →∞. ¤
Notice that the proof presented here is technically easier than the proof of

[NT2].
Under the assumption of maximum volume growth, the above lemma together

with the local injectivity radius estimate of Cheeger-Gromov-Taylor, in terms of
the volume (cf. Theorem 4.3 in [CGT]), ensures the injectivity radius lower bound
estimate in the case that the curvature is locally bounded. This is enough for
applying the singularity analysis of Hamilton in Section 16 of [H]. Since both Type
I and II singularity models are ancient solutions, the first half part of Theorem 5.1
follows from the following result on ancient solutions, which was proved originally
in [N3].

Theorem 5.5. Let (Mm, g(t)) (m = dimIC(M), n = dimIR(M) = 2m) be a
non-flat ancient solution to Kähler-Ricci flow. Assume that (M, g(t)) has bounded
nonnegative bisectional curvature. Then the asymptotic volume ratio V(g(t)) = 0.

Once we have the longtime existence result one can obtain the further geometric
information by adapting the techniques of [Sh2]. This gives the second part of
Theorem 5.1. Interested readers please refer to [N3] for more details.

6. Ancient solutions and shrinking solitons

The proof to Theorem 5.5 needs the following classification result on the gra-
dient shrinking solitons. The similar result for the Riemannian case under the
stronger assumption on the positivity of the sectional curvature was proved by
Perelman for dimension 3 [P2] (See also [CLN]).

Theorem 6.1. Let (Mm, g) be a non-flat gradient shrinking soliton to Kähler-
Ricci flow.
(i) If the bisectional curvature of M is positive then M must be compact and
isometric-biholomorphic to (IPm, ωFS).
(ii) If M has nonnegative bisectional curvature then the universal cover M̃ splits as
M̃ = N1×N2×· · ·×Nl× ICk isometric-biholomorphically, where Ni are compact ir-
reducible Hermitian Symmetric Spaces equipped with the canonical Kähler-Einstein
metrics.

The following proposition on the gradient shrinking solitons, which is used in
the proof of the above theorem, may be of other uses in the study of gradient
shrinking solitons.
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Recall that a complete Riemannian manifold (M, g) is called a gradient shrink-
ing soliton if there exists a smooth function f such that, for some positive constant
a,

∇i∇jf + Rij − agij = 0.

The following result generalizes the result of Perelman by removing the uniform
curvature bound.

Proposition 6.2. Let (M, g) be a Ricci non-flat gradient shrinking soliton.
Assume that the Ricci curvature of M is nonnegative. Then there exists a δ =
δ(M) (1 ≥ δ0) such that

(6.1) R(x) ≥ δ > 0.

Proof. It is easy to see, from the strong maximum principle, that the scalar
curvature R(x) > 0. Differentiating the defining equation of the solitons and ap-
plying the second Bianchi identity, we have that

(6.2) ∇iR = 2Rijfj .

This implies that

∇iR + 2fijfj − 2afi = 2 (Rij + fij − agij) fj = 0

which further implies that there exists a constant C1 = C1(M) such that

(6.3) R + |∇f |2 − 2af = C1.

These equations are well known for the gradient shrinking solitons.
Let o ∈ M be a fixed point. For any x ∈ M we denote the distance of x from o

by r(x). Let γ(s) be minimal geodesic joining x from o, parametrized by the arc-
length. For simplicity we often also denote r(x) by s0. Let {Ei(s)} (0 ≤ i ≤ n− 1)
be a parallel frame along γ(s) such that E0(s) = γ′(s). If s0 ≥ 2, for s0 ≥ r0 ≥ 1,
define n− 1-variational vector fields Yi(s) (1 ≤ i ≤ n− 1) along γ(s) by

Yi(s) =





sEi(s), 0 ≤ s ≤ 1
Ei(s), 1 ≤ s ≤ s0 − r0

s0−s
r0

Ei(s), s0 − r0 ≤ s ≤ s0

.

From the second variation consideration in Lemma 8.3 (b) of [P1] (see also Theorem
17.4 of [H]), we have that

n−1∑

i=1

∫ s0

0

|Y ′
i (s)|2 −R(γ′(s), Yi(s), γ′(s), Yi(s)) ds ≥ 0.

In particular we can find C(M), which depends only the upper bound of the Ricci
curvature of M on Bo(1), such that
∫ s0−r0

0

Ric(γ′(s), γ′(s)) ds ≤ C(M) +
n− 1

r0
−

∫ s0

s0−r0

(
s0 − s

r0

)2

Ric(γ′(s), γ′(s)) ds

≤ C(M) +
n− 1

r0
.

Here we have used the fact the Ricci curvature is nonnegative. We claim that there
exists a positive constant A = A(M), if s0 ≥ A and R(x) ≤ 1, there exists another
constant, still denoted by C(M), such that

(6.4)
∫ s0

0

Ric(γ′(s), γ′(s)) ds ≤ a

2
s0 + C(M).
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Assume that we have proved the claim (6.4). Then there exists C2 = C2(M) > 0
such that

〈∇f, γ′(s)〉|γ(r(x))
o =

∫ s0

0

d

ds
(〈∇f, γ′(s)〉) ds

=
∫ s0

0

(∇i∇jf)
dγi(s)

ds

dγj(s)
ds

ds

=
∫ s0

0

(a−Ric(γ′(s), γ′(s))) ds

= ar(x)−
∫ s0

0

Ric(γ′(s), γ′(s)) ds

≥ a

2
r(x)− C2,

which implies that for every x ∈ M \Bo(A) with R(x) ≤ 1,

〈∇f,∇r〉(x) ≥ a

2
r(x)− C2 − |∇f |(o).

It in particular implies that for every such x, with r(x) ≥ 4
a (C2+ |∇f |(o)), ∇f(x) 6=

0.
Now we first prove the proposition assuming the claim (6.4). For any x ∈

M \ (Bo(A) ∪ Bo( 4
a (C2 + |∇f |(o)))), without the loss of generality we can assume

that R(x) ≤ 1, let σ(η) be the integral curves of ∇f , passing x with σ(0) = x. By
(6.3) we have that

(6.5) − d

dη
(R(σ(η)) = −2Rij

dσi

dη

dσj

dη
≤ 0.

This implies that R(x) ≥ R(σ(η)), for η < 0. On the other hand,

(6.6) − d

dη
r(σ(η)) = −〈∇r,∇f〉 ≤ −(C2 + |∇f |(o)) ≤ 0

as far as r(σ(η)) ≥ max(A, 4
a (C2+|∇f |(o))), noticing that we always have R(σ(η)) ≤

1. This implies that the integral curve σ exists for all η < 0 since |∇f | is bounded
inside the closed ball Bo(2r(x)). The estimate (6.6) also implies that there exists
η1 < 0 such that r(σ(η1)) = max(A, 4

a (C2 + |∇f |(o))). Applying (6.5) we have that

R(x) ≥ inf
y∈Bo(r(σ(η1)))

R(y).

This proves the proposition assuming the claim (6.4).
Now we prove the claim (6.4). First by soliton equation and the fact Rij ≥ 0

we have that fij ≤ agij . This implies that along any minimizing geodesic γ(s) from
o, f ′′(s) ≤ a. Hence there exists B = B(M) such that

f(x) ≤ (a + 1)r2(x)

for r(x) ≥ B. Using (6.3) and the fact that R > 0 we have that

|∇f |(x) ≤ 2(a + 1)r(x)

for r(x) ≥ B. On the other hand, (6.2) also implies that

|∇R|2 ≤ 4R2|∇f |2.
The above two inequality implies the the estimate

|∇ log R|(x) ≤ 2(a + 1)r(x)
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for r(x) ≥ B. Now we adapt the notations and situations right before (6.4) and
choose r0 in the second variational computation right before (6.4) such that n−1

r0
=

εs0 with some fixed positive constant ε ≤ min(1, a
2 ). Then the second variational

computation right before (6.4) implies that

(6.7)
∫ s0−r0

0

Ric(γ′(s), γ′(s)) ds ≤ C(M) + εs0.

Notice that r0 = n−1
εs0

≤ n−1
ε ≤ s0

2 if s0 ≥ A for some A = A(M) ≥ max(1, 2B, 2n−1
ε ).

Now using the gradient estimate on log R above we have that

log
R(γ(s1))
R(γ(s0))

= −
∫ s0

s1

d

ds
log R(γ(s)) ds

≤
∫ s0

s1

|∇ log R| ds

≤ 2(a + 1)s0(s0 − s1)

for s1 ≤ s0. Hence

R(γ(s)) ≤ R(γ(s0)) exp(
2(a + 1)(n− 1)

ε
) ≤ exp(

2(a + 1)(n− 1)
ε

)

for any s ≥ s0 − r0. Here we have used the assumption R(x) = R(γ(s0)) ≤ 1. This
further implies that∫ s0

s0−r0

Ric(γ′(s), γ′(s)) ds ≤
∫ s0

s0−r0

R(γ(s)) ds

≤ r0 exp(
2(a + 1)(n− 1)

ε
)

=
n− 1
εs0

exp(
2(a + 1)(n− 1)

ε
)

≤ C(ε,M).

Together with (6.7), we prove our claim (6.4). Hence we complete the proof of the
proposition. ¤

The first statement of Theorem 6.1 follows from Proposition 6.2 and the last
part of Corollary 5.3 immediately since the noncompactness of M would result
in two contradicting conclusions on the behavior of the scalar curvature. For the
second statement, first observe that the gradient shrinking soliton equation pre-
serves after lifting to the universal cover M̃ . By Corollary 5.3, the manifold M̃
splits into two factors. One of them is compact and the other is noncompact. By
the uniformization theorem of Mori, Siu-Yau and Mok (cf. [Zh]) we can conclude
that the compact factor can be written as product of the Hermitian symmetric
spaces. They also are equipped with the canonical metrics except the ones of rank
one. It is also easy to see that the restriction (of the metric and the potential
function f) to the compact factor still satisfying a shrinking soliton equation. We
deduce from this that the potential functions are constant on those factors of rank
greater than one. So we only have to take care of the compact factors of rank
ones. However, since those factors of rank one are biholomorphic to the complex
projective spaces, the existence of a Kähler-Einstein metric in its Kähler class re-
sulting the vanishing of the Futaki invariants [Fu]. This further implies that f is
a constant function, since that ∇f is a holomorphic vector field and the Futaki
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invariant F (ω, f) =
∫

M
∇f(f)ωm =

∫
M
|∇f |2dµ = 0. On the noncompact factor,

since the restriction is still a gradient shrinking soliton, we can conclude that it
must be Ricci flat by Proposition 6.2 and the curvature decay estimate (5.1). This
completes the proof of Theorem 6.1.

The proof of Theorem 5.1 follows from Theorem 6.1 since by Proposition 11.2
of [P1] by which one can blow down a non-collapsed (which is the case if we assume
that the asymptotical volume ratio is positive) ancient solution to obtain (as the
limit) a shrinking soliton. While Theorem 6.1 implies that the limiting shrinking
soliton can not have positive asymptotical volume ratio. This proves that the
ancient solution can not have positive asymptotical volume ratio. There are other
consequences of Theorem 5.1 including the following corollary.

Corollary 6.3. For a fixed κ > 0, the set of κ-solution to Kähler-Ricci flow
is compact module scaling.

For a more detailed account on the above result please consult [N3]. Theorem
6.1 make the argument work for all dimensions while the earlier similar results
of [P1] [P2] (in the Riemannian case) are only valid for dimension three. It is
an interesting question whether such result still hold in high dimension for the
Riemannian case, where the lack of a result similar to Corollary 5.3 is the main
difficulty.

7. Large time behavior

The following result on the asymptotical behavior of Kähler-Ricci flow is useful
in the recent work of Chau and Tam [CT].

Proposition 7.1. Let (M, g(t)) be the solution to Kähler-Ricci flow provided
by Theorem 5.1. Then for any (xj , tj) with tj → ∞ and r2

0(xj ,x0)
tj

≤ C for some
fixed point x0 ∈ M and C > 0 (where r0(x, y) is the distance function with re-
spect to the initial metric g(0)), define gj(t) = 1

tj
g(tjt). Then the pointed se-

quence (M,xj , gj(x, t)) sub-sequentially converges to a gradient expanding Kähler-
Ricci soliton (M∞, x∞, g∞(t)).

Notice that by a result of H.-D. Cao [C], if the blow-down is taken places at
the points where the re-scaled curvature tR(x, t) assumes the maximum over some
space-time region. In a recent work [CT], Chau and Tam have further proved that
the manifold M in Theorem 7.1 is biholomorphic to ICm. The above Proposition
7.1 is useful (the above mentioned result of H.-D. Cao will not be enough) in [CT]
for obtaining the compactness on the constructed biholomorphic maps. In fact, in
their paper, Chau and Tam proved a special case (for space-time points (p, tj)) of
Proposition 7.1 independently.

Motivated by the work of Kodaira and Hirzebruch on the compact case, we
propose the following question on the complex structure of complete Kähler mani-
folds.

Problem 7.2. Assume that M is a complete Kähler manifold which is diffeo-
morphic (homeomorphic) to the Euclidean space ICm. Also assume that M does
not support any nonconstant bounded holomorphic functions. Is M biholomorphic
to ICm?
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It is still unknown that if a complete Kähler manifold with positive bisectional
curvature is homeomorphic to ICm. It is even still unknown if the manifold with
positive bisectional curvature is Stein (this is a conjecture in [GW]). The above
problem is differently formulated from the the well-known one [Y2] (see also [GW])
assuming the positivity on the curvature. It is simply a natural question about
the uniqueness of the complex structure on a differentiable manifold with a fixed
differential structure. Notice that without assuming that the manifold is Kähler,
the question on the uniqueness of complex structure on the (topological) projective
spaces is still open and the answer to the corresponding question for noncompact
manifolds, namely Problem 7.2 without Kählerity, is negative.

The proof of Proposition 7.1 is based on a new ‘reduced volume’ monotonicity
observed in [N4], which is dual to Perelman’s reduced volume. The result is in
certain sense a dual statement of Proposition 11.2 of [P1].

More precisely, for a fixed x0, let γ be a path (x(η), η) joining (x0, 0) to (y, t).
Following [P1] (see also [FIN]) we define

L̃(γ) =
∫ t

0

√
η

(
R + 4|γ′(η)|2) dη.

Let X = γ′(t) = dzα(t)
dt

∂
∂zα and let Y be a variational vector field along γ. Here

|γ′(t)|2 = gαβ̄
dzα(t)

dt
dzβ̄(t)

dt . Using L̃ as energy we can define the L̃-geodesics and we
denote L+(y, t) to be the length of a shortest geodesics jointing (x0, 0) to (y, t). We
also define

`+(y, t; x0, 0) :=
1

2
√

t
L+(y, t).

Following the first and second variation calculation of [P1] (see also [FIN] [N4])
we have that

|∇`+|2 = −R + `+
t + K

t3/2 ,(7.1)
∂`+
∂t

= R− K
2t3/2 − `+

t ,(7.2)

∆`+ ≤ R + n
2t − K

2t3/2 .(7.3)

Here

K :=
∫ t

0

η3/2H(X) dη,

where H(X) := ∂R/∂t + 2〈∇R, X〉+ 2〈X,∇R〉+ 4Rc(X, X) + R/t, is exactly the
traced Li-Yau-Hamilton differential Harnack expression of H.-D. Cao [C] applying
to the (1, 0) vector field 2X.

Proposition 7.3. Let (Mm, g(t)) be a complete solution to Kähler-Ricci flow
with bounded nonnegative bisectional curvature (or a complete solution to Ricci
flow with bounded and nonnegative curvature operator). Let H(x, t; x0, 0) be the
fundamental solution to the forward conjugate heat equation

(
∂
∂t −∆−R

)
u = 0,

centered at (x0, 0). Then

ũ(x, t; x0, 0) :=
1

(πt)m
exp (−`+(x, t;x0, 0))

satisfies

(7.4)
(

∂

∂t
−∆−R

)
ũ(x, t) ≤ 0.
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In particular,

(7.5) ũ(x, t; x0, 0) ≤ H(x, t;x0, 0)

and
θ̃
(x0,0)
+ (t) :=

∫

M

ũ(x, t) dµt

is monotone non-increasing in t. Moreover, the equality in (7.4), or (7.5) implies
that M is a gradient expanding soliton.

Proof. First (7.1)–(7.3) imply that
(7.6)(

∂

∂t
−∆−R

) (
1

(πt)m
exp (−`+(y, t))

)
= −K

t
3
2

(
1

(πt)m
exp (−`+(y, t))

)
≤ 0.

Here we have used fact that K ≥ 0 under the assumption that M has bounded non-
negative bisectional curvature. Also if the equality holds it implies that K ≡ 0.
This further implies that M is an expanding soliton from the computation in [FIN].
In order to prove (7.5) one just needs to apply the maximum principle as before
and notice that limt→0

1
(πt)m exp(−`+(y, t)) = δx0(y). The equality case follows

from the consideration of the equality in [FIN]. ¤

The proof of Proposition 7.1 follows from (7.6) and a similar argument as in
the mean curvature flow case [Hu] was first done by Huisken. Interested reader
should consult [Hu] [N4] for more details.
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Geom. 12 (2004), 111–141.

[NST] L. Ni, Y.-G. Shi and L.-F.Tam, Poisson equation, Poincaré-Lelong equation and curvature
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