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Kähler manifolds and cross quadratic bisectional
curvature

Abstract. In this article we continue the study of the two curvature notions for Kähler manifolds
introduced by the first named author earlier: the so-called cross quadratic bisectional curvature
(CQB) and its dual (3CQB) (which is a Hermitian form on maps between ) ′" and ) ′′") . We first
show that compact Kähler manifolds with CQB1 > 0 (CQB1 is the restriction on rank one maps)
or 3CQB1 > 0 are Fano, while nonnegative CQB1 or 3CQB1 leads to a Fano manifold as well,
provided that the universal cover does not contain a flat de Rham factor. For the latter statement we
employ the Kähler-Ricci flow to deform the metric. We conjecture that all Kähler C-spaces will have
nonnegative CQB and positive 3CQB. By giving irreducible such examples with arbitrarily large
second Betti numbers we show that the positivity of these two curvature put no restriction on the
Betti number. A strengthened conjecture is that any Kähler C-space will actually have positive CQB
unless it is a P1 bundle. Finally we give an example of non-symmetric, irreducible Kähler C-space
with 12 > 1 and positive CQB, as well as compact non-locally symmetric Kähler manifolds with
CQB< 0 and 3CQB< 0.

Keywords. Kähler homogenous spaces, Cross quadratic bisectional curvature, Generalized
Hartshorne conjecture, Kähler-Ricci flow

1. Introduction

In a recent work [22] by the first named author, the concept of cross quadratic bisectional
curvature (denoted as CQB from now on) and its dual notion (denoted by 3CQB) for
Kähler manifolds were introduced (they shall be defined shortly below). Both concepts
are closely related to the notion of quadratic bisectional curvature (abbreviated as QB,
see [31], [6], [32], [14], [7], [23], and [22] for the definition and results related to it).
One of the reasons for the consideration of these different notions of curvature is to find
suitable differential geometric characterizations for the Kähler C-spaces motivated by the
generalized Hartshorne conjecture as illustrated below.
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First recall that a simply connected compact complex manifold is called a C-space
(following H. C. Wang [29]) if its group of biholomorphisms acts transitively. A Kähler
C-space is such a manifold which admits a Kähler metric such that the group of the holo-
morphic isometries also acts transitively. Namely it is Kähler homogenous [2]. It was
proved that [17] any Kähler homogenous manifold is a product of a torus with a Kähler
C-space. The Hartshorne conjecture (Mori’s theorem [19]) asserts that a compact com-
plex manifold with ample tangent bundle must be biholomorphic to P=. A weaker result
is the so-called Frankel’s conjecture (a theorem of Siu-Yau [26]) asserts that any Kähler
manifold with positive bisectional curvature must be P=. These works together with [18]
provide a curvature characterization of Hermitian symmetric spaces. As an attempt of
providing a curvature characterization of homogenous Kähler manifolds, the generalized
Hartshorne conjecture asserts that A Fano manifold has nef tangent bundle if and only if
it is a Kähler C-space. This was proposed in [5] (Conjectures 11.1 and 11.2), and in his
Harvard thesis [33] by the second author. The conjecture is only known for dimensions 2
and 3 by appealing to the classification theory of low dimensions.

In [22], inspired partially by the connection between the positive orthogonal Ricci
(denoted by Ric⊥ > 0, and studied in [24, 25]) and QB > 0, and partially by the work
of Calabi-Vesentini [3], among other things the first named author proved that CQB
> 0 implies Ric⊥ > 0, which leads to the vanishing of holomorphic (?, 0)- forms and
simply-connectedness of the compact Kähler manifolds. The positivity of 3CQB, on the
other hand, leads to the vanishing of the first cohomology group of the holomorphic tan-
gent bundle, thus the manifold must be infinitesimally rigid, i.e., without nontrivial small
deformations. It is also proved in [22] that, any classical Kähler C-space "= with 12 = 1
and = ≥ 2 its canonical Einstein metric admits positive CQB and positive 3CQB. This
makes the two conditions (namely CQB> 0 and 3CQB> 0) better candidates than QB in
terms of describing Kähler C-spaces, as only about eighty percent of the above spaces
have positive or nonnegative QB by the calculation (cf.[13]) in the excellent work of Chau
and Tam [7].

Inspired by the perspective of a curvature characterization of the Kähler C-spaces, in
this paper we continue the effort of understanding (with the aim of classifying) compact
Kähler manifolds with positive or nonnegative CQB (or 3CQB). Recall that by [22], on
a Kähler manifold ("=, 6), if we denote by ) ′" and ) ′′" the holomorphic and anti-
holomorphic tangent bundle of " , then CQB is a Hermitian quadratic form on linear
maps � : ) ′′" → ) ′":

CQB' (�) =
=∑

U,V=1
'(�(� U), �(� U), �V , �V) − '(�U, �V , �(� U), �(�V)) (1.1)

where ' is the curvature tensor of " and {�U} is a unitary frame of ) ′" . The expression
is independent of the choice of the unitary frame. When the meaning is clear we simply
write CQB or CQB(A). The manifold ("=, 6) is said to have positive (nonnegative) CQB,
if at any point G ∈ " , and for any non-trivial linear map � : ) ′′G " → ) ′G" , the value
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CQB(�) is positive (nonnegative). We say that �&�: > 0 if (1.1) holds for all � with
rank no greater than : .

Similarly, the dual notion (3CQB) introduced in [22] is a Hermitian quadratic form on
linear maps � : ) ′" → ) ′′":

3CQB' (�) =
=∑

U,V=1
'(�(�U), �(�U), �V , �V) + '(�U, �V , �(�U), �(�V)) (1.2)

where ' again is the curvature tensor of " and {�U} is a unitary frame of ) ′" . The
manifold ("=, 6) is said to have positive (nonnegative) 3CQB, if 3CQB(�) > 0 (≥ 0) at
any point in G ∈ " , and for any non-trivial linear map � : ) ′G" → ) ′′G " . Related to this
there is a tensor analogous to the Ricci: Ric+ (-, -) = Ric(-, -) + � (-)/|- |2, where �
is the holomorphic sectional curvature. We say that 3CQB: > 0 if (1.2) holds for all �
with rank no greater than : .

It is proved in [22] that compact Kähler manifold "= with Ric+ > 0 is projective and
simply connected. Also, if 3CQB> 0, then �1 (",) ′") = {0}, so " is locally deforma-
tion rigid. Moreover 3CQB1 > 0 implies Ric+ > 0.

Serving as a further step of the study our first result of this article is that the positivity
of either CQB1 (or 3CQB1) implies the positivity of the Ricci curvature. Thus a compact
manifold with either CQB1 > 0 or 3CQB1 > 0 is Fano, answering positively a question
asked in [22].

Theorem 1.1. Let (", 6) be a Kähler manifold with either CQB1 > 0 or 3CQB1 > 0.
Then its Ricci curvature is positive. So compact Kähler manifolds with positive CQB1 or
3CQB1 are Fano.

As a corollary, the above theorem implies that a product Kähler manifold has positive
(or nonnegative) CQB or 3CQB if and only if each of its factors is so:

Corollary 1.2. Let " = "1 × "2 be a product Kähler manifold. Then " has CQB > 0
(or ≥ 0) if and only if both "1 and "2 are so. Also, for any positive integer : , " has
CQB: > 0 (or ≥ 0) if and only if both "1 and "2 are so. The same statements hold for
3CQB or 3CQB: as well.

By deforming the metric via the Kähler-Ricci flow we further show that if " has
CQB1 ≥ 0 (or 3CQB1 ≥ 0) and its universal cover does not contain a flat de Rham factor
then " is Fano as well. Note that the finiteness of the fundamental group of " implies
the nonexistence of the flat de Rham factor. Namely in particular, if " has CQB1 ≥ 0 (or
3CQB1 ≥ 0) and c1 (") is finite, then " is a Fano manifold:

Theorem 1.3. Let (", 6) be a compact Kähler manifold with CQB1 ≥ 0 (or 3CQB1 ≥ 0)
and its universal cover does not contain a flat de Rham factor. Then " is Fano. In fact,
the Kähler-Ricci flow will evolve the metric 6 to ones with positive Ricci curvature.

To prove this we adopt a nice technique of Böhm-Wilking [1] of deforming the metric
via the Kähler-Ricci flow into 6(C) with positive Ricci curvature to our curvature con-
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ditions. In [1], the authors deformed a Riemannian metric with nonnegative sectional
curvature (also assuming finiteness of the fundamental group) into one with positive
Ricci via the Ricci flow. Since CQB1 ≥ 0 (or 3CQB1 ≥ 0) is different from the sectional
curvature being nonnegative, a different collection of invariant time-dependent convex
sets is constructed to serve the purpose. We also need somewhat different estimates to
show that Ric(6(C)) > 0 for C > 0, where 6(C) is a short time solution of the Kähler-
Ricci flow. In fact our curvature conditions here are much weaker than the bisectional
curvature being nonnegative (which is weaker than the sectional curvature), since the res-
ult of Mok [18] asserts that the nonnegativity of bisectional curvature of an irreducible
compact Kähler manifold must be locally Hermitian symmetric, and that the first author
proved in [22] that all classical Kähler �-spaces with 12 = 1 admits Einstein metrics with
CQB> 0 and 3CQB> 0 (see also further examples with 12 > 1 in this paper).

As suggested by R. Hamilton, the condition CQB≥ 0 and 3CQB≥ 0 have their ana-
logous versions for Riemannian manifolds, and the above theorem also holds in that case.
See §3 for more details.

By the structure theorem of [4] for compact Kähler manifolds with nonnegative Ricci,
we have the following:

Corollary 1.4. Let (",6) be a compact Kähler manifold with CQB1 ≥ 0 (or 3CQB1 ≥ 0).
Then there exists a finite cover of " ′ of " , such that " ′ is a holomorphic and metric fiber
bundle over its Albanese variety, which is a flat complex torus, with the fiber being a Fano
manifold.

Note that for a compact Kähler manifold with nonnegative QB, any harmonic (1, 1)
form is parallel, and the positivity of QB implies that 12 = 1. The positivity/nonnegativity
of CQB or 3CQB however does not put any restrictions on 12 (see Theorem 1.6 below).
On the other hand, since CQB> 0 implies positive Ric⊥ by [22], while P1 bundles do not
admit any Kähler metric with positive Ric⊥ by [24], so for Kähler C-spaces with 12 > 1,
we could only hope for nonnegative CQB instead of positive CQB in general. We propose
the following:

Conjecture 1.5. Any Kähler C-space (with the canonical Kähler-Einstein metric) has
nonnegative CQB and positive 3CQB.

As a supporting evidence to Conjecture 1.5, we prove the following:

Theorem 1.6. There are irreducible Kähler C-spaces with arbitrarily large 12 which
have nonnegative CQB and positive 3CQB.

To prove this result as an initial study towards the conjecture, we look into the simplest
kind of irreducible Kähler C-spaces with 12 > 1, namely, Type � flag manifolds: "= =

(* (A + 1)/T, where T is a maximal torus in (* (A + 1). The complex dimension is = =
1
2A (A + 1) and 12 = A . Equip "= with the canonical Kähler-Einstein metric 6, we show
that it has nonnegative CQB and positive 3CQB. This answers negatively another question
asked in [22] regarding 12.
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As shown in [24], any P1 bundle cannot admit a Kähler metric with positive ortho-
gonal Ricci curvature, thus cannot have positive CQB. We speculate that any Kähler
C-space which is not a P1 bundle has a metric with positive CQB.

For compact Hermitian symmetric spaces, this speculation holds true (see Corollary
2.3 in the next section). For non-symmetric Kähler C-spaces, result below gives at least
an example of irreducible Kähler C-space of 12 > 1 with positive CQB. Such a space is
necessarily not a P1 bundle.

Consider irreducible Kähler C-spaces of Type � in general, namely, (* (A + 1)/ ,
where  is the centralizer of some sub-torus of T. The smallest dimensional such space
which is not a P1 bundle nor symmetric is "12 = (* (6)/((* (2)×* (2)×* (2)). It has
12 = 2. Equip it with the Kähler-Einstein metric, we show that it indeed has positive
CQB:

Theorem 1.7. Let "12 = (* (6)/((* (2) ×* (2) ×* (2)) be the irreducible Kähler C-
space which is non-symmetric, with 12 = 2, and equip it with the Kähler-Einstein metric.
Then it has positive CQB and positive 3CQB.

We should point out that understanding the curvature behavior of Kähler C-spaces is
a nontrivial matter, despite the fact that such spaces are classical objects of study since
1950s and are fully classified from the Lie algebraic point of view. As an illustrating
example, recall the following folklore conjecture:

Conjecture 1.8. Any Kähler C-space (with the canonical Kähler-Einstein metric) has
positive holomorphic sectional curvature �.

This question is still widely open. For Kähler C-spaces with 12 = 1, all the classical
types plus a few exceptional ones are known to have � > 0 by the work of Itoh [13]. In a
recent thesis [16], Simon Lohove underwent a highly sophisticated approach and was able
to show that all irreducible Kähler C-spaces of classical type with rank less than or equal
to 4 have � > 0. Note that the rank here means that of the group, so all such spaces have
12 ≤ 4 in particular. Through isometric embedding, he also reduced the question largely
to the case of flag manifolds with Kähler-Einstein metrics.

In the more challenging opposite direction, we propose the following:

Conjecture 1.9. Let (", 6) be a Kähler (Kähler-Einstein) manifold with CQB ≥ 0 and
3CQB > 0. Then " is biholomorphic (isometric) to a Kähler C-space (with the canonical
Kähler-Einstein metric).

This conjecture, if affirmed, would be the first curvature characterization of compact
homogeneous Kähler manifolds, which has been long missing but hoped for, in relation to
the generalized Hartshorne conjecture (cf. [5]). A more general conjecture is to drop the
Kähler-Einstein assumption above. The simply-connectedness, projectivity, and deforma-
tion rigidity result proved recently in [22], and Theorem 1.3 above are positive evidences
towards this conjecture. Theorem 1.3 and Corollaries 1.2 and 1.4 also serve an initial step
towards the classification conjecture as the main result of [12] towards the classification of
Kähler manifolds with nonnegative bisectional curvature. The examples in Theorems 1.6
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and 1.7 indicate that the situation here is more delicate. There are also attempts of invest-
igating the generalized Hartshorne conjecture by a Hermitian curvature flow (cf. [28]),
which aims to classify Hermitian Fano manifolds with Griffiths nonnegative curvature.

Note that most results mentioned above, except the construction of examples, hold for
the non-positive cases by flipping the sign of the curvature. These results are summarized
in the last section. In the last section we also show that the two dimensional Mostow-Siu
example [20] had CQB< 0 and 3CQB< 0. This is a non-Hermitian symmetric example to
which Theorem 4.1 of [22] can be applied, hence is locally deformational rigid (it is in fact
strongly rigid by the work of Siu [27]). The existence of non-symmetric examples with
CQB< 0 and 3CQB< 0 also shows that the local rigidity result of [22] is in deed more
general than that of [3]. The examples naturally lead to the question of the role played by
CQB and 3CQB in the strong rigidity and holomorphicity of harmonic maps. We leave
this to a future study.

2. Cross quadratic bisectional curvature and its dual

It is proved in [22] that positive CQB1 implies that the orthogonal Ricci curvature Ric⊥

is positive, and CQB2 > 0 implies that the Ricci curvature Ric is 2-positive, namely, the
sum of any two of its eigenvalues is positive. We first show that the Ricci curvature is also
positive under the CQB1 > 0 assumption:

Theorem 2.1. Let ("=, 6) (= ≥ 2) be a Kähler manifold with positive (or nonnegative)
CQB1, then its Ricci curvature is also positive (or nonnegative). Moreover Ric(-, -) ≥

1
=−1 Ric⊥ (-, -).

Proof. First we claim that, under the assumption that CQB1 is positive, then for any unit
vectors - , . in ) ′" such that - ⊥ . , we must have Ric(-, -) > '(-, -, ., . ). To see
this, let � be a unitary frame for ) ′" with - = �1 and . = �2, and let � be the map such
that �(�2) = �1 and �(� 8) = 0 for any 8 ≠ 2. Applying (2, 1) we get Ric11 > '2211. By
the same token, Ric11 > '8811 for any 8 > 1. Add up these inequalities for 8 from 2 to =, we
get (= − 1) Ric11 > Ric⊥

11
, so the Ricci curvature is positive since the orthogonal Ricci is

known to be positive by [22]. The nonnegative case goes similarly. �

The proof also implies that

Corollary 2.2. Let ("=, 6) (= ≥ 2) be a Kähler manifold with positive (or nonnegative)
CQB1, then Ric=−1 is also positive (or nonnegative).

Corollary 2.3. Let "= ="1 ×"2 be a product Kähler manifold. Then " has positive (or
nonnegative) CQB: if and only if both "1 and "2 have positive (or nonnegative) CQB:
for any 1 ≤ : ≤ =.

Proof. Since CQB is independent of the choice of the unitary frames � we take the unitary
frame � to be compatible with the product structure:

� = {�1, . . . , �A ; �A+1, . . . , �=},
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where A is the dimension of "1 and the first A elements give a frame for "1. We will use
the index convention that 8, 9 , . . . run from 1 and A , while U, V, . . . run from A + 1 and =.
Denote by '′, '′′ the curvature tensor of "1, "2, respectively, and write

�(� 8) = �′(� 8) + �(� 8), �(� U) = � (� U) + �′′(� U)

for the decomposition into ) ′" = ) ′"1 × ) ′"2, then by definition, we have

CQB" (�) =

=∑
0,1,2=1

Ric
01
�20�21 −

=∑
0,1,2,3=1

'
0123

�02�13

=
∑
8, 9 ,2

Ric8 9 �28�2 9 +
∑
U,V,2

Ric
UV
�2U�2V −

=∑
0,1,2,3=1

'
0123

�02�13

= CQB"1 (�′) + CQB"2 (�′′) +
∑
8, 9 ,U

Ric8 9 �U8�U 9 +
∑
U,V,8

Ric
UV
�8U�8V ,

so the conclusion follows. Note that the positivity of �&�: implies that the dimension of
the manifold must be at least 2. �

Since every irreducible compact Hermitian symmetric space with dimension bigger
than one has positive CQB and 3CQB by [22], the above corollary allows us to conclude
that

Corollary 2.4. Every compact Hermitian symmetric has positive 3CQB and nonnegative
CQB, and it has positive CQB if and only if it does not have any P1 factor.

If ("=, 6) is a compact Kähler manifold with nonnegative Ricci curvature, then by the
work of Campana, Demailly and Peternell [4], the universal cover "̃ of " is holomorph-
ically and isometrically the product C: × "1 × "2, where the first factor (if : > 0) is the
flat de Rham factor, and "1 is Calabi-Yau (simply connected with trivial canonical line
bundle), while "2 is rationally connected. Also, there exists a finite cover " ′ of " , such
that the Albanese map c : " ′ → Alb(" ′) is surjective and is a holomorphic and metric
fiber bundle with fiber "1 × "2. Here the bundle being metric means that any point in
the base is contained in a neighborhood over which the bundle is isometric to the product
of the fiber with the base neighborhood.

Now if ("=, 6) is a compact Kähler manifold with CQB1 ≥ 0, then since it has non-
negative Ricci, the above structure theorem applies. We claim that the Calabi-Yau factor
cannot occur in this case:

Theorem 2.5. Let ("=, 6) be a compact Kähler manifold with CQB1 ≥ 0. Then a finite
cover " ′ of " is a holomorphic and metric fiber bundle over its Albanese torus, with fiber
being a rationally connected manifold. In particular, if " has no flat de Rham factor, then
it is rationally connected.

Proof. The goal is to rule out the Calabi-Yau factor, namely, to show that if"1 is a simply-
connected compact complex manifold with 21 = 0, then it cannot admit any Kähler metric
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with CQB1 ≥ 0. To see this, notice that we have shown that (= − 1) Ric ≥ Ric⊥ ≥ 0. So
if Ric(-, -) = 0 for - ∈ ) ′"1, then Ric⊥ (-, -) = 0 and '(-, -, -, -) = 0. Let [ be the
Ricci (1, 1)-form of "1, then by

21 · [l]=−1 =

∫
"1

[ ∧ l=−1 =
1
=

∫
"1

(l=,

where l is the Kähler form and ( the scalar curvature, we see that the vanishing of the
first Chern class 21 plus the nonnegativity of Ricci imply that "1 has to be scalar flat
hence Ricci flat. So the holomorphic sectional curvature is identically zero, contradicting
the fact that "1 is simply connected. �

In fact for any pair of - and . by choosing {�8} such that �1 =
-
|- | , and letting � be

the map with �(�1) = . , �(� 8) = 0 for 8 ≥ 2 the argument above implies the following
corollary.

Corollary 2.6. The assumption CQB1 ≥ 0 is equivalent to that for any - and . ,

|- |2 Ric(.,. ) − '(-, -,.,. ) ≥ 0. (2.1)

If CQB1 > 0, then the above holds as a strict inequality if -,. are nonzero.

Remark: It is not hard to see that under the CQB ≥ 0 assumption, any tangent vector
- ∈ ) ′" with Ric(-, -) = 0 must be in the kernel of the curvature tensor ', namely,
'(-,., /,,) = 0 for any . , / ,, ∈ ) ′" .

Next, let us recall the notion of dual cross quadratic bisectional curvature (3CQB)
introduced in [22]. It is a Hermitian quadratic form on linear maps � : ) ′" → ) ′′":

3CQB(�) =
=∑

U,V=1
'(�(�U), �(�U), �V , �V) + '(�U, �V , �(�U), �(�V)) (2.2)

where ' again is the curvature tensor of " and {�U} is a unitary frame of ) ′" . The
manifold ("=, 6) is said to have positive (or nonnegative) 3CQB, if at any point in " , for
any unitary frame � of ) ′" at ?, and for any non-trivial linear map � : ) ′" → ) ′′" ,
the value 3CQB� (�) is positive (or nonnegative). Related to this there is a Ric+ (-, -) =
Ric(-, -) + � (-)/|- |2.

It is proved in [22] that compact Kähler manifold "= with positive Ric+ > 0 is pro-
jective and simply connected. If 3CQB> 0 it also satisfies �1 (", ) ′") = {0}, so it is
locally deformation rigid. Moreover 3CQB1 > 0 implies Ric+ > 0. Strictly analogous to
the nonnegative CQB case, we have the following

Theorem 2.7. A Kähler manifold with positive (or nonnegative) 3CQB1 > 0 will have
positive (or nonnegative) Ricci. A compact Kähler manifold with nonnegative 3CQB1 ≥ 0
and without flat de Rham factor is rationally connected. Moreover

Ric(-, -) ≥ 1
= + 1

Ric+ (-, -).
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In fact 3CQB1 ≥ 0 is equivalent to the estimate:

|- |2 Ric(.,. ) + '(-, -,.,. ) ≥ 0 (2.3)

for any pair of (1, 0)-type vectors -, . . If 3CQB1 > 0, then the above holds as a strict
inequality if -,. are nonzero.

Corollary 2.8. Let "= = "1 ×"2 be a product Kähler manifold. Then for any 1 ≤ : ≤ =,
" has positive (or nonnegative) 3CQB: if and only if both "1 and "2 have positive (or
nonnegative) 3CQB: .

As noted in [22], when ("=, 6) is Kähler-Einstein, the CQB or 3CQB conditions are
given by the eigenvalue information for the curvature operator & introduced by Calabi-
Vessentini [3] and Itoh [13], which is the adjoint operator from (2 () ′") into itself,
defined by

〈&(- ·. ), / ·,〉 = '(-, /,.,,)

for any type (1, 0) tangent vectors - , . , / , , in ) ′" , where - ·. = 1
2 (- ⊗ . + . ⊗ -)

and the induced metric on (2 () ′") is given by

〈- ·., / ·,〉 = 1
2

(
6(-, /)6(.,,) + 6(-, /)6(.,,)

)
.

If we denote by ` the constant Ricci curvature of " , and by _1, _# the smallest and
largest eigenvalue of &, respectively, then

CQB > 0 ⇐⇒ ` > _# , and 3CQB > 0 ⇐⇒ _1 > −`.

In section 4, we shall examine the eigenvalue bounds for the simplest kind of Kähler
C-spaces, namely, the Type � spaces, and check the sign for CQB and 3CQB.

3. Fanoness of the nonflat factor

In this section we study further the factor in the splitting provided by Theorem 2.5. If we
assume that the manifold (", 6) in Theorem 2.5 is simply-connected we show that " is
a Fano manifold. Precisely we have the following slightly stronger result.

Theorem 3.1. Assume that (", 6) be a compact Kähler manifold with CQB1 ≥ 0 (or
3CQB1 ≥ 0). Assume that the universal cover "̃ does not have a flat de Rham factor. Then
" must be Fano. In fact the Kähler-Ricci flow evolves the metric 6 into a Kähler metric
6(C)C ∈(0, n ) with positive Ricci curvature for some n .

Proof. Here we adapt an idea of Böhm-Wilking in [1] where the authors proved that the
Ricci flow deformation of a metric with nonnegative sectional curvature of a compact
manifold with finite fundamental group evolves the initial metric into one with posit-
ive Ricci curvature for some short time. The assumption on the fundamental group is
to effectively rule out the flat de Rham factor in its universal cover. A dynamic version
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of Hamilton’s maximum principle (cf. §1 of [1], Chapter 10 of [8], as well as [21]) was
employed. Since CQB1 ≥ 0 (or 3CQB1 ≥ 0) is different from the sectional curvature being
nonnegative, we need to construct a different collection of invariant time-dependent con-
vex sets and prove the corresponding estimates to show that Ric(6(C)) > 0. We shall focus
on the case CQB1 ≥ 0 since the other case is similar.

Let 6(C) be the solution to Kähler-Ricci flow with initial metric 6 satisfying CQB1 ≥ 0:
m

mC
6UV̄ (C) = −'UV̄ , 6(0) = 6

where 'UV̄ denoted the Ricci curvature of 6(C). By Hamilton’s maximum principle we
can focus on the study of a collection of sets {� (C)}, each being a convex subset of the
space of algebraic curvature operators satisfying the following conditions:

0 ≤ Ric(-, -), ∀ - ∈ ) ′G"; (3.1)���Ric(-,. ) − '6 (C)
-. //

���2 ≤ (�1 + C�1) Ric(-, -) Ric(.,. ), ∀ -,., /, |/ | = 1;(3.2)

‖'‖ ≤ �2 + C�2. (3.3)

Here in (3.3) ' is viewed as the curvature operator and ‖ · ‖ is the natural norm extended
to the corresponding tensors from the Kähler metric on ) ′G" .

First we need to check that the sets � (C) are convex. Clearly (3.1) and (3.3) are convex
conditions. For (3.2) let ' and ( be two Kähler curvature operators. We shall check that if
(3.2) holds for ' and ( then it holds for [' + (1 − [)( for [ ∈ [0,1]. Given / with |/ | = 1,
Ric(-,. ) − '

-. //
is a Hermitian symmetric form on ) ′G" , which we denote it as �, and

denote the corresponding one for the curvature operator ( as �. We also denote '(-, -)
and '(.,. ) as 01 and 02. Similarly we have 11 and 12 for the corresponding Ricci of the
curvature operator (. Then

|[� + (1 − [)� |2 = [2 |�|2 + [(1 − [) (�� + ��) + (1 − [)2 |�|2

≤ [2 |�|2 + 2[(1 − [) |�| |� | + (1 − [)2 |� |2

≤ (�1 + C�1)
(
[20102 + 2[(1 − [)

√
01021112 + (1 − [)21112

)
≤ (�1 + C�1) ([01 + (1 − [)11) ([02 + (1 − [)12) .

This completes the proof of the convexity of � (C). Recall that after applying the Uhlen-
beck’s trick [10] the Kähler-Ricci flow evolves the curvature tensor ' by the following
PDE: (

m

mC
− Δ

)
'UV̄W X̄ = 'UV̄?@̄'W X̄@ ?̄ + 'UX̄?@̄'WV̄@ ?̄ − 'U?̄W@̄'?V̄@ X̄ . (3.4)

Here computation is with respect to a unitary frame. The first term on the right hand side
can be written as (2 Rm2)UV̄W X̄ , the second and third terms combined can be expressed as
(2 Rm#)UV̄W X̄ with Rm# := ad ·(Rm∧Rm) · ad∗. Here we identify ∧2)?" with so()?"),
and view Rm as a symmetric map of so()?"); ad : ∧2 (so()?")) → so()?") is the
adjoint representation. Tracing it gives the evolution equation of the Ricci curvature:(

m

mC
− Δ

)
'UV̄ = 'UV̄?@̄'@ ?̄ . (3.5)
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We shall show that the set � (C) defined by (3.1), (3.2) and (3.3) are invariant under the
equation (3.4) and (3.5). Hamilton’s maximum principle (see §1 of [1]) allows us to drop
the diffusion term in verifying the invariance.

We first show that (3.2) holds at C = 0 since by Theorem 2.1 we have that (3.1) holds
at C = 0, and it is easy to choose �2 and �2 to make (3.3) hold if n is sufficiently small.
By Theorem 2.1, in particular (2.1), we have that for any / with |/ | = 1, �(-, . ) +
Ric(-, .̄ ) − '-.̄ / /̄ is a Hermitian symmetric tensor which is nonnegative. Diagonalize
� with a unitary frame {�8} and eigenvalues {_8}. Then we compute that for - = G8�8
and . = H 9� 9���8 9̄G8 H̄8 ��2 =

���∑_8G
8 H̄ 9

���2 ≤∑
_8 |G8 |2

∑
_ 9 |H 9 |2

= (Ric(-, -̄) − '--̄/ /̄ ) · (Ric(., .̄ ) − '..̄ / /̄ )

≤
=∑
8=1

(
Ric(-, -̄) − '--̄�′

8
�̄′
8

) =∑
9=1

(
Ric(., .̄ ) − '..̄ �′

9
�̄′

9

)
= (= − 1)2 Ric(-, -) Ric(.,. ).

Here {� ′
9
} is another unitary frame so chosen that � ′1 = / . Hence if we choose �1 =

(= − 1)2 the estimate (3.2) holds at C = 0.
Now we need to verify that the PDE/ODE preserves the set� (C). For that we only need

to prove that the time derivative of the convex condition lies inside the tangent cone of the
convex set. The trick of [1] is to chose �1 sufficiently large (compared with �1, �2, �2)
to make sure that (3.2) stay invariant under the PDE (3.4) (or the corresponding ODE
3
3C

Rm = Rm2 + Rm#) for C ∈ [0, n] if n is very small. With a suitably chosen �2, it is
easy to have (3.3). In fact we may choose �2 = 1 if n is small. For (3.1), if Ric(-, -̄) ever
becomes zero for some - , then within � (C) by (3.2), we have

Ric(-,. ) − '
-. //

= 0, ∀ ., /.

This then via the polarization implies that '
-. /,

= 0, ∀., /, , . Thus (3.5) implies
m
mC

Ric(-, -) ≥ '
-- ?@̄

'@ ?̄ = 0. This shows that (3.1) is preserved by (3.5).
As in [1], the main issue is to show that (3.2) is preserved under the flow, namely (3.4)

and (3.5). For this it suffices to show that as long as ' is in � (C),

m

mC

(
(�1 + C�1) Ric(-, -) · Ric(.,. ) −

���Ric(-,. ) − '
-. //

���2) ≥ 0. (3.6)

Direct calculation shows that the left hand side of the above inequality is

�1 Ric(-, -) Ric(.,. ) + (�1 + C�1)
(
'--̄ ?@̄ Ric(.,. ) + '..̄ ?@̄ Ric(-, -)

)
'@ ?̄

−2<
((
m

mC
Ric(-,. ) − m

mC
'
-. //

)
(Ric(-,. ) − '

-. //
)
)
.

We shall show that for n small and C ∈ [0, n] the above is nonnegative. Namely the first term
dominates the rest. By (3.2), by letting n ≤ 1

�1
(with �1 to be decided later), (�1 + C�1) ≤
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2�1. In the mean time �1 is chosen to be large comparing with �2
1�2. First (3.2), together

with | Ric(-,. ) | ≤
√

Ric(-, -) Ric(.,. ), imply that

|'
-. //

| ≤ 4�1

√
Ric(-, -) Ric(.,. ) (3.7)

which then implies that ��'--̄ ?@̄'@ ?̄ �� ≤ 4=�1�2 Ric(-, -).

This, together with C�1 ≤ 1, implies that

(�1 + C�1)
(
'--̄ ?@̄ Ric(.,. ) + '..̄ ?@̄ Ric(-, -)

)
'@ ?̄ ≥ (3.8)

−16=�2
1�2 Ric(-, -) · Ric(.,. ).

To handle the term involving m
mC
'
-. //

we observe the following estimates:

|'
-*/,

| ≤ 32=�1
√
=�2

√
Ric(-, -), (3.9)

|'
.*/,

| ≤ 32=�1
√
=�2

√
Ric(.,. ), ∀*, /,,, |* | = |/ | = |, | = 1.(3.10)

These can be derived easily out of (3.7) and (3.3). Now note that���(Ric(-,. ) − '
-. //

)
��� ≤ √

2�1

√
Ric(-, -) Ric(.,. ).

Hence we only need to establish that����( mmC Ric(-,. ) − m

mC
'
-. //

)���� ≤ � (�1, �2, =)
√

Ric(-, -) Ric(.,. )

for some positive � depends on �1, �2 and =. By (3.4) and (3.5) we have that(
m

mC
Ric(-,. ) − m

mC
'
-. //

)
= '

-. /,
Ric

/,
−'

// ?@̄
'
@ ?̄-.

−'
/.@ ?̄

'
?@̄-/

+ '/ ?̄-@̄'?/@. .

Putting Estimates (3.7), (3.9) and (3.10) together we have the estimate we want. Taking
�1 ≥ 100� (�1, �2, =) we have proved (3.6). Hence {� (C)} is an invariant collection of
convex subsets under the Kähler-Ricci flow.

If for some C ∈ (0, n), Ric(6(C)) has a nontrivial kernel, the strong maximum principle
(see for example, pages 675-676 of [1]) takes effect to imply that the universal cover splits
a factor according to the distribution provided by the vectors in the kernel of the Ricci
curvature. The factor is flat since by (3.2) the kernel of Ric would be the kernel of the
curvature tensor. If there exists a sequence of such C8 → 0 this implies that the universal
cover contains a flat de Rham factor. This is a contradiction. Thus we have proved that
Ric(6(C)) > 0 for any C ∈ (0, n ′) for some n ′ small. �
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The result indicates a connection with Kähler C-spaces in view of the splitting theorem
of Matsushima [17]. An argument similar as [1] was also employed by Liu in [15] to the
non-positive setting to conclude that the deformed metric has negative Ricci curvature if
the initial metric has non-positive bisectional curvature.

The conditions CQB≥ 0 and 3CQB≥ 0 can have their corresponding Riemannian
versions: We say that a Riemannian manifold ("=, 6) has CQBR≥ 0, if for any G ∈ "
and an orthonormal frame {48}, it holds that
=∑
9=1

Ric(�(4 9 ), �(4 9 )) −
=∑

8, 9=1
'(�(48), 4 9 , 48 , �(4 9 )) ≥ 0, ∀ linear maps � :)G"→)G".

(3.11)
For 3CQBR≥ 0 we require that
=∑
9=1

Ric(�(4 9 ), �(4 9 )) +
=∑

8, 9=1
'(�(48), 4 9 , 48 , �(4 9 )) ≥ 0, ∀ linear maps � :)G"→)G".

(3.12)
Here to be consistent with the Kähler notations1, the curvature tensor is defined as

'(-,. )/ = ∇-∇. / − ∇.∇-/ − ∇[-,. ]/

(which implies that '(-,.,., -) = 〈'(-,. )., -〉 is positive for spheres). If we restrict
to � of rank one we have similar conditions as (2.1) and (2.3). Namely, CQBR1 ≥ 0 is
equivalent to

|- |2 Ric(.,. ) − '(-,.,., -) ≥ 0. (3.13)

Similarly, 3CQBR1 ≥ 0 is equivalent to

|- |2 Ric(.,. ) + '(-,.,., -) ≥ 0. (3.14)

It is easy to see that (3.13) and (3.14) will each imply the nonnegativity of the Ricci
curvature. By adapting the proof of Theorem 3.1 we have the following result.

Theorem 3.2. Assume that (", 6) be a compact Riemannian manifold with CQBR1 ≥ 0
(or 3CQBR1 ≥ 0). Assume that the universal cover "̃ does not have a flat de Rham factor.
Then " admits a metric with positive Ricci. In particular its fundamental group is finite.
In fact the flow evolves the metric 6 into a metric 6(C)C ∈(0, n ) with positive Ricci curvature
for some n .

It is easy to check that the nonnegativity of the sectional curvature implies CQBR1 ≥
0 and 3CQBR1 ≥ 0. In fact CQBR1 ≥ 0 is the same as the (= − 2)-nonnegativity of
curvature in the sense of H. Wu (namely for any = − 1 orthonormal frame {40, · · · , 4=−2},∑=−2
9=1 '(40, 4 9 , 4 9 , 40) ≥ 0).2 Hence the result above provides a generalization of the result

1Thanks to N. Wallach for suggesting this.
2See the Appendix. We are grateful to B. Wilking for pointing this out to us.
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of Böhm-Wilking in [1]. The notions of CQBR and 3CQBR are not geometrically motiv-
ated as CQB and 3CQB. We are grateful to Professor R. Hamilton for suggesting (3.13)
and that Theorem 3.2 may still hold to the first named author. The nonnegative/positive
conditions of these curvature respect the product structure (hence there is no difficult
problem of a corresponding Hopf’s conjecture for these curvatures).

Proposition 3.1. Let "= = "1 × "2 be a product manifold. Then for any 1 ≤ : ≤ =,
" has positive (or nonnegative) 3CQBR

:
if and only if both "1 and "2 have positive (or

nonnegative) 3CQBR
:
.

It is also not hard to check CQBR ≥ 0 and 3CQBR ≥ 0 for the locally symmetric
spaces. A study of these conditions perhaps should begin with the homogenous Rieman-
nian manifolds. The homogenous manifolds with positive sectional curvature is quite
scarce [30]. We expect that CQBR ≥ 0 and 3CQBR ≥ 0 are more inclusive. We leave
the more detailed study in this direction to a future project.

4. Kähler C-spaces

Recall that Kähler C-spaces are the orbit spaces of the adjoint representation of compact
semisimple Lie groups [2]. Any such space is the product of simple Kähler C-spaces, and
all simple Kähler C-spaces can be obtained in the following way.

Let g be a simple complex Lie algebra. They are classified as four classical sequences
�A = sl A+1 (A ≥ 1), �A = so2A+1 (A ≥ 2), �A = sp2A (A ≥ 3), �A = so2A ((A ≥ 4) and the
exceptional ones �6, �7, �8, �4 and �2.

Let h ⊂ g be a Cartan subalgebra with corresponding root system Δ ⊂ h∗, so we have
g = h ⊕

⊕
U∈Δ C�U where �U is a root vector of U. Let A = dimC h and fix a fundamental

root system {U1, . . . , UA }. This gives an ordering in Δ, and let Δ+, Δ− be the set of positive
or negative roots. Each V ∈ Δ+ can be expressed as V =∑A

8=1 =8 (V)U8 . For a fixed nonempty
subset Φ ⊆ {U1, . . . , UA }, denote by

Δ+Φ = {V ∈ Δ+ | =8 (V) > 0 for some U8 ∈ Φ}.

Let � be the simple complex Lie group with Lie algebra g and ! the closed subgroup
with Lie subalgebra l = h ⊕

⊕
V∈Δ\Δ+

Φ
C�V . Then "= = �/! is a simple Kähler C-space,

and all simple Kähler C-spaces can be obtained that way. The complex dimension = of "
is equal to the cardinality |Δ+

Φ
|, while 12 (") = |Φ|. The tangent space ) ′" at the point

4! can be identified with the subspace m+ =
⊕

V∈Δ+
Φ
C�V of g. Following Itoh [13], we

will denote this simple Kähler C-space as "= = (g,Φ).
Next let us recall the Chevalley basis (see [11] or Prop. 11 of [16]). Let � be the Killing

form of g. For each U ∈ Δ, let �U be the unique element in h such that �(�U, �) = U(�)
for any � ∈ h. One can always choose root vectors �U of gU so that [�U, �−U] = �U,
� U = −�−U, and #−U,−V = −#U,V , where #U,V is defined by [�U, �V] = #U,V�U+V for
any U, V ∈ Δ with U ≠ −V. When U + V is not a root, then #U,V = 0.
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Denote by IU = �(�U, �−U). Then [�U, �−U] = IU�U, and IU are all real and I−U = IU
for each U. Now we describe the invariant Kähler metrics on " . Such a metric 6 makes
the tangent frame � := {�U, U ∈m+} an orthogonal frame, with 6(�U, � U) = 6UIU where
6U satisfy the following additive condition with respect to Φ:

WriteΦ= {U81 , . . . , U8< }, where 1 ≤ 81 < · · · < 8< ≤ A . Assign 6U8 9 = 2 9 > 0 arbitrarily,
and require 6V = =81 (V)21 + · · · + =8< (V)2< for any V = =1 (V)U1 + · · · + =A (V)UA in Δ+Φ.
Denote this metric as 6 = 6(21 ,...,2<) . So the invariant Kähler metrics on " are determined
by < = 12 positive constants 21, . . . , 2<. It turns out (see §3.2 of [16]) that the metric is
Einstein if and only if up to scaling, 6U =

∑
V∈Δ+

Φ
�(U, V) for any U ∈ Δ+

Φ
.

Following the computation initiated in [13], Lohove ([16], Prop 16) completed the
curvature formula for ("=, 6) under the Chevalley frame �, which we will describe below.
For U, V, W, X ∈ Δ+

Φ
, write '(�U, �V , �W , � X) as 'UVWX . A highly distinctive property of

the curvature of " is that

'
UVWX

= 0 unless U + W = V + X. (4.1)

To take advantage of the symmetry of curvature for Kähler metrics, let us consider the
order relation < in Δ: for U ≠ V ∈ Δ, write U < V if =B (U) < =B (V) but =8 (U) = =8 (V) for
all 1 ≤ 8 < B (if B > 1).

For '
UVWX

with U + W = V + X, by Kähler symmetries, we may assume that U is the
smallest, and V ≤ X. If U = V, then W = X, so we are left with 'UUWW where U ≤ W. If U ≠ V,
then we are left with the case U < V ≤ X < W. In the first case, Lohove obtained that, for
any U, W ∈ Δ+

Φ
with U ≤ W:

'UUWW =

{
6UIUIW�(�U, �W) +

6U6W

6U+W
IU+W#2

U,W , if W − U ∈ Δ+
Φ

;

6WIUIW�(�U, �W) +
62
W

6U+W
IU+W#2

U,W , if W − U ∉ Δ+
Φ
.

(4.2)

For the second case, he obtained that, for any U, V, W, X ∈ Δ+
Φ
with U < V ≤ X < W and

U + W = V + X,

'
UVWX

=

{
6UIU−V#U,−V#W,−X +

6U6V

6U+W
IU+W#U,W#V, X , if W − V ∈ Δ+

Φ
;

6XIU−V#U,−V#W,−X +
6W6X

6U+W
IU+W#U,W#V, X , if W − V ∉ Δ+

Φ
.

(4.3)

Note that in [16] the curvature ' differs from here by a minus sign, as he is using a
different sign convention. Next let us specialize to the simplest case, namely, when

g = �A = sl(A + 1)

is the space of all traceless complex (A + 1) square matrices. A Cartan subalgebra h is
given by all (traceless) diagonal matrices. The Killing form � is �(-,. ) = tr(-. ). The
root system is given by Δ = {U8 9 : 1 ≤ 8, 9 ≤ A + 1}, where U8 9 (�) = �88 − � 9 9 for any
� ∈ h, with a fundamental basis {U1, . . . , UA } where U8 = U8 (8+1) . The positive roots are
Δ+ = {U8 9 : 1 ≤ 8 < 9 ≤ A + 1}, with −U8 9 = U 98 .

Denote by �8 9 the (A+1)×(A+1) matrix whose only nonzero entry is 1 at the (8, 9)-
th position, and write �8 9 = �88 − � 9 9 . Then {�8 9 , �8 9 } forms a Chevalley basis. Since
[�8 9 , � 98] =�8 9 , we know that IU = 1 for all U ∈ Δ. Thus the square norm 6(�U, � U) = 6U.
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To simplify our further discussions, let us introduce the following notations. For any
U < W in Δ+, we will denote by

W t U ⇐⇒ W = U8 9 , U = U 9: for some 1 ≤ 8 < 9 < : ≤ A + 1;
W A′ U ⇐⇒ W = U8: , U = U8 9 for some 1 ≤ 8 < 9 < : ≤ A + 1;
W A′′ U ⇐⇒ W = U8: , U = U 9: for some 1 ≤ 8 < 9 < : ≤ A + 1;
W A U ⇐⇒ W A′ U or W A′′ U.

Since �(�8 9 , �:;) = tr{(�88 − � 9 9 ) (�:: − �;;)} = X8: + X 9; − X8; − X 9: , we get

�(�U, �U) = 2, for each U,

and for any U < W in Δ+, we have

�(�U, �W) =

−1, if W t U;

1, if W A U;
0, otherwise.

Also, since [�8 9 , �:;] = X 9:�8; − X8;�: 9 , we get that for any U < W in Δ+,

#U,W =

{
−1, if W t U;

0, otherwise.

Also, for any U < V ∈ Δ+,

#U,−V =


−1, if W A′′ U;
1, if W A′ U;
0, otherwise.

Note that for X < W ∈ Δ+, we have #W,−X = −#−W, X = #X,−W . Putting all these info into the
Itoh-Lahove curvature formula, we get 'UUUU = 26U, and for any U < W in Δ+

Φ
,

'UUWW =


− 6U6W
6U+W

, if W t U;
6U, if W A U;
0, otherwise.

Also, for U < V < X < W in Δ+
Φ
with U + W = V + X, only two cases will result in nonzero

values for '
UVWX

, namely, either when W t U = X t V and W A′ X, or when V A′ U, X A′′ U,
and W = V + X − U. In the first case the curvature equals to − 6U6X

6U+W
, and in the second case

the curvature equals to 6U. Note that these two cases can be described equivalently as:
there exist 1 ≤ 8 < ? < @ < : ≤ A + 1 such that X = U8 ? , V = U?: , W = U8@ , U = U@: for the
first case, while X = U8@ , V = U?: , W = U8: , U = U?@ for the second case.

Now let us switch to the unitary frame �̃U = �U√
6U

of m+. For the sake of convenience,

we will still use '
UVWX

to denote the curvature component '(�̃U, �̃V , �̃W , �̃X). Also, to
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avoid clumsy notations, we will write 6U8: simply as 68: . Up to the Kähler symmetries,
the only non-zero components of the curvature are

'UUUU =
2
6U
, U ∈ Δ+Φ; (4.4)

'UUWW =

{
− 1
68:
, if ∃ 8 < 9 < : : W = U8 9 , U = U 9: ;

1
68:
, if ∃ 8 < 9 < : : W = U8: , U = U8 9 or U 9: ,

(4.5)

where we assumed U < W. For U < V < X < W in Δ+
Φ
, the curvature component '

UVWX
will

be equal to the following non-zero values only when there are 1 ≤ 8 < ? < @ < : ≤ A + 1
such that

'
UVWX

=


−
√
68?6@:

68:
√
68@6?:

, if X = U8 ? , V = U?: , W = U8@ , U = U@: ;
√
6?@√

68:68@6?:
, if X = U8@ , V = U?: , W = U8: , U = U?@ .

(4.6)

Now check the sign for CQB or 3CQB. First let us consider the case when Φ =

{U1, . . . , UA }, namely, when "= = (* (A + 1)/T is the flag manifold, where T is a maximal
torus. We have = = 1

2A (A + 1), 12 = A , and Δ+Φ = Δ
+. We will choose 6 to be the Kähler-

Einstein metric. In this case, all 2 9 = 1, and 6U8: = : − 8. It is easy to see that the Ricci
curvature is constantly equal to ` = 2.

For any symmetric = × = matrix �, the quadratic form

〈&(�), �〉 =
=∑

0,1,2,3=1
'
0123

�02�13

is equal to ∑
U

'UUUU |�UU |2 +
∑
U<W

4'UUWW |�UW |2 +
∑

U<V<X<W

8<{'
UVWX

�UW�VX}

=
∑
U

2
6U
|�UU |2 +

∑
8< 9<:

4
68:

(
|�8 9 ,8: |2 + |� 9:,8: |2 − |� 9:,8 9 |2

)
+

+
∑

8<?<@<:

8<{−
√
68 ?6@:

68:
√
68@6?:

�@:,8@�?:,8 ? +
√
6?@

√
68:68@6?:

�?@,8:�?:,8@} (4.7)

Let us denote by - and . the two terms in the last line above. We have

CQB�̃ (�) = ` | |�| |2 − 〈&(�), �〉, 3CQB�̃ (�) = ` | |�| |2 + 〈&(�), �〉.

In order to check that CQB ≥ 0 and 3CQB > 0 for ((* (A + 1)/T, 6), the flag manifold of
type A with Einstein metric, it suffices to take care of the two crossing terms - and . . For
. , the square root part of the coefficient is less than 1

2 , so we have

|. | ≤
∑

8<?<@<:

4|�?@,8:�?:,8@ | ≤
∑

8<?<@<:

2|�?@,8: |2 + 2|�?:,8@ |2
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Note that in 2| |�| |2 = 2〈�, �〉 = ∑
U |�UU |2 + 4

∑
U<W |�UW |2, each |�?@,8: |2 term or

|�?:,8@ |2 term will appear 4 times, so the . term will be dominated by ` | |�| |2 from
above or below. For the - term, let us fix 8 < : with : − 8 = C + 1 ≥ 2. Write �8 ?, ?: = /? ,
and write ?′ = ? − 8. Since the square root part of the coefficient of - is less than 1, we
have

|- | ≤
∑
8<:

∑
1≤?′<@′≤C

4
C + 1
( |/? |2 + |/@ |2) =

∑
8<?<:

4(C − 1)
C + 1

|/? |2.

Again since for each 8 < 9 < : , the term |�8 9 , 9: |2 = |/ 9 |2 will appear 4 times in ` | |�| |2,
the - term will be dominated by ` | |�| |2 from above and below. Note that for the lower
bound part, the term |/? |2 will also emerge from the bisectional curvature terms, with
coefficient − 4

C+1 . We have − 4(C−1)
C+1 −

4
C+1 = −

4C
C+1 > −4, so 3CQB will be nonnegative, and

actually positive since its vanishing would imply � = 0. We have thus proved Theorem
1.6 stated in the introduction.

Note that if � has only non-trivial entries along the diagonal line for the simple roots,
then 〈&(�), �〉 = 2| |�| |2, so CQB is only nonnegative and not positive.

Next let us give a non-symmetric example of irreducible Kähler C-space with 12 > 1
that has positive CQB. The smallest dimensional Type � space which is non-symmetric
and not a P1 bundle would be "12 = (* (6)/((* (2) × * (2) × * (2)), or equivalently,
(�5,Φ) = (sl6,Φ) where Φ = {U2, U4}. It has = = 12 and 12 = 2. We have

Δ+Φ = {U:; | 1 ≤ : < ; ≤ 6} \ {U12, U34, U56}.

Up to a scaling, the Kähler-Einstein metric 6 has 6:; = 6U:;
=

∑
V∈Δ+

Φ
�(U:; , V), so we

have

613 = 614 = 623 = 624 = 2,
635 = 636 = 645 = 646 = 2,
615 = 616 = 625 = 626 = 4.

Let us denote by Δ1 = {U15, U16, U25, U26} and Δ2 = Δ
+
Φ
\ Δ1.

So the curvature components are 'UUUU = 2
6U

, which is 1
2 for U ∈ Δ1 and 1 for U ∈ Δ2.

While 'UUWW are given by (4.5). It is easy to see that the Ricci curvature is constantly
` = 2 in this case. The crossing terms '

UVWX
are given by (4.6). We have

` | |�| |2 =
∑
U

2|�UU |2 +
∑
U<W

4|�UW |2.

Now consider the quadratic form 〈&(�), �〉 given by (4.7). Let us examine the two terms
- and . in the last line of (4.7). For the term . , note that 8 < ? < @ < : could be from
(1, 2, 3, 4), (3, 4, 5, 6), in which case the square root part of the coefficient is 1

2 , or from
(1,2,3,5), (1,2,3,6), (1,2,4,5), (1,2,4,6), (1,2,5,6), (1,3,5,6), (1,4,5,6), (2,3,5,6),
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or (2, 4, 5, 6). In each of these last 9 cases the square root part of the coefficient for the .
terms is 1

4 . So we have

|. | ≤ 2
∑

8<?<@<:

|�8:, ?@�8@, ?: | ≤
∑

8<?<@<:

( |�8:, ?@ |2 + |�8@, ?: |2).

Here in the sum we are skipping those terms with (?, @) = (3,4). Note that in ` | |�| |2, each
of the terms |�8@, ?: |2 appears with coefficient 4, so |. | is strictly dominated by ` | |�| |2
from above and below. Next let us consider the - terms. For each of U = U@: , V = U?: ,
W = U8@ , X = U8 ? to be in Δ+Φ, the indices 8 < ? < @ < : could only take the following four
cases: (1, 3, 4, 5), (1, 3, 4, 6), (2, 3, 4, 5), (2, 3, 4, 6). In each case, the square root part of
the coefficient is 1, while 68: = 4, so we have

|- | ≤
2∑
8=1

6∑
:=5
|�83,3: |2 + |�84,4: |2.

So each of these |�83,3: |2 or |�84,4: |2 term in the quadratic form will be strictly dominated
by that from ` | |�| |2 from both sides. The other terms are clearly strictly dominated by
` | |�| |2 from both above and below. So ("12, 6) has positive CQB and positive 3CQB,
and we have completed the proof of Theorem 1.8 stated in the introduction.

5. Non-positive cases

One may also consider Kähler manifolds with non-positive CQB or 3CQB. Similar to the
nonnegative cases, we have the following results:

Theorem 5.1. Let (", 6) be a Kähler manifold with CQB1 ≤ 0. Then for any -,. ∈ ) ′G"

|- |2 Ric(.,. ) − '(-, -,.,. ) ≤ 0. (5.1)

The above holds as strict inequality (for nonzero - , . ) if CQB1 < 0. In particular

Ric(.,. ) ≤ 1
= − 1

Ric⊥ (.,. ) ≤ 0.

Similarly, if (", 6) is Kähler with 3CQB1 ≤ 0, then for any -,. ∈ ) ′G"

|- |2 Ric(.,. ) + '(-, -,.,. ) ≤ 0, (5.2)

and the inequality is strict (for nonzero - , . ) when 3CQB1 < 0. In particular, it holds that
Ric(.,. ) ≤ 1

=+1 Ric+ (.,. ) ≤ 0.
A product Kähler manifold " = "1 × "2 has CQB < 0 (or ≤ 0, or 3CQB < 0, or

3CQB ≤ 0) if and only if each factor is so. For any positive integer : , " has CQB: (or
3CQB: ) < 0 or ≤ 0 if and only if each factor is so.

Proof. The proof is exactly the same as that of Theorem 2.1. �
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Theorem 5.2. Assume that (", 6) be a compact Kähler manifold with CQB1 ≤ 0 (or
3CQB1 ≤ 0). Assume that the universal cover "̃ does not have a flat de Rham factor. Then
" must admit a metric with Ric < 0. In fact the Kähler-Ricci flow evolves the metric 6
into a Kähler metric 6(C)C ∈(0, n ) with negative Ricci curvature for some n .

Proof. We can prove the result by following the same argument and flipping the sign when
needed in the proof of Theorem 3.1. �

Next construct examples of compact Kähler manifolds with negative (non-positive)
CQB and 3CQB. First of all, if "= is a compact quotient of a Hermitian symmetric space
"̃ of non-compact type, then by [3], we see that " always has 3CQB < 0 and CQB
≤ 0, and it will have CQB < 0 when and only when "̃ does not have the unit disc as an
irreducible factor.

For non-locally Hermitian symmetric examples, we adapt the construction of strongly
negatively curved manifolds by Mostow and Siu [20] and by the second named author
[34], [35]. To state the result, let us recall the notion of good coverings.

A finite branched cover 5 : "= → #= between two compact complex manifolds
is called a good cover, if for any ? ∈ " , there exists locally holomorphic coordinates
(I1, . . . , I=) centered at ? and (|1, . . . , |=) centered at 5 (?), such that 5 is given by
|8 = I

<8

8
, 1 ≤ 8 ≤ =, where <8 are positive integers. Note that the branching locus � and

ramification locus ' are necessarily normal crossing divisors in this case.
In [20], Mostow and Siu computed the curvature for the Bergman metric of the Thul-

len domain {|I1 |2< + |I2 |2 < 1}, and used it to construct examples of strongly negatively
curved surfaces which is not covered by ball. In [34], the second named author generalized
this to higher dimensions, and also at the quotient space level using the Poincaré distance,
and showed that (see Theorem 1 of [34]) if # is a compact smooth quotient of the ball,
and � ⊂ # a smooth totally geodesic divisor (possibly disconnected), then for any good
cover 5 : " → # branched along �, " admits a Kähler metric with negative complex
curvature operator. We will use this computation to claim the following:

Theorem 5.3. Let #= (= ≥ 2) be a smooth compact quotient of the ball, equipped with the
complex hyperbolic metric, and let � ⊂ # be a smooth totally geodesic divisor (possibly
disconnected). If 5 : " → # is a good cover branched along �, then " admits a Kähler
metric 6 which has negative CQB and negative 3CQB.

Remark: Such a manifold " is not homotopy equivalent to any locally Hermitian sym-
metric space, and it is strongly rigid in the sense of Siu, namely, any compact Kähler
manifold homotopy equivalent to " must be (anti)biholomorphic to " .

Proof. The construction of the Kähler metrics lY is exactly the same as in the proof
of Theorem 1 of [34]. Notice that at the point ? in a tubular neighborhood + of the
ramification locus ', there exists tangent frame 4 at ? such that 48 ⊥ 4 9 whenever 8 ≠ 9 ,
and under 4 the only non-zero curvature components of lY are '88 9 9 , with

−'1111 = 1, −'1188 = 2, −'8888 = 24, −'88 9 9 = 4
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for any 2 ≤ 8 < 9 . It was shown that 1 > 0, 2 > 0, 4 > 0, and =14 > (= − 1)222.
Note that if we normalize 4, namely, replace 4: by 4:

|4: | for each : , then the above
inequalities on 1, 2, and 4 still holds. So let us assume that 4 is unitary at ?. For any
non-trivial = × = matrix �, we have −CQB4 (�) = % − &, and − 3CQB4 (�) = % + &,
where

% = −
∑
8, 9 ,:,ℓ

'
8 9::

�ℓ8�ℓ 9 = −
∑
8,:,ℓ

'
88::
|�ℓ8 |2

= (1 + (= − 1)2)
∑
ℓ

|�ℓ1 |2 + (2 + =4)
∑
8>1,ℓ
|�ℓ8 |2

& = −
∑
8, 9 ,:,ℓ

'
8 9:ℓ

�8:� 9ℓ = −
∑
8

'8888 |�88 |
2 −

∑
8<:

'
88::
|�8: + �:8 |2

= 1 |�11 |2 + 24
∑
8>1
|�88 |2 + 2

∑
8>1
|�18 + �81 |2 + 4

∑
1<8<:

|�8: + �:8 |2

Clearly, % +& > 0 for all � ≠ 0, and if we write C8 9 = |�8 9 |2, we have

% −& = (= − 1)2 C11 + (2 + (= − 2)4)
∑
8,:>1

C8: +

+
∑
8>1

(
(1 + (= − 2)2) C81 + =4 C18 − 22<(�81�18)

)
,

which is positive as =14 > (= − 1)22 > 22. So the metric lY has CQB < 0 and 3CQB < 0
in + , for any Y > 0. By choosing Y sufficiently small, one see that CQB and 3CQB will be
negative everywhere in " . �

By [34] and [35], we see that there are many examples of such " in = = 2. An example
in = = 3 was constructed by M. Deraux in [9], and we are not aware of any higher dimen-
sional such constructions, even though it has been widely believed that there should be
plenty in all dimensions.

Appendix

Proposition 5.1 (Wilking). Let "=, 6) be a Riemannian manifold of dimension = ≥ 3.
Then CQBR1 ≥ 0 (> 0) is the same as the (= − 2)-nonnegativity (positivity) of curvature.
Dually, CQBR1 ≤ 0 (< 0) is the same as the (=− 2)-nonpositivity (negativity) of curvature.

Proof. Recall that the = − 2-nonnegativity of the curvature is defined to be for any = −
1 orthonormal vectors {40, · · · , 4=−2},

∑=−2
9=1 '(40, 4 9 , 4 9 , 40) ≥ 0. To verify this under

CQBR1 ≥ 0 we pick - = 40 and . = 4=−1 with 4=−1 being the unit vector perpendicular to
{40, · · · , 4=−2}. Then |. |2 Ric(-, -) − '(-,.,., -) ≥ 0 immediately implies the result.
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To prove the other direction we first observe that (=− 2)-nonnegativity of the curvature
implies that Ric ≥ 0. This can be seen from that, for any fixed 1 ≤ : ≤ = − 1

=−1∑
9=1

'(40, 4 9 , 4 9 , 40) − '(40, 4: , 4: , 40) ≥ 0.

Summing them together we have that

(= − 2) Ric(40, 40) = (= − 1) Ric−Ric ≥ 0.

Since it holds for any (= − 1)-orthonormal vectors Ric ≥ 0.
Given -,. ≠ 0, let - = 40. And let 4= be the unit maximum eigen-direction of sym-

metric bilinear form �(., /) + '(-, ., /, -). Clearly '(40, 4=, 4=, 40) ≥ 0, otherwise
'(40, 4 9 , 4 9 , 40) ≤ '(40, 4=, 4=, 40) < 0 which implies that Ric(40, 40) < 0, a contradic-
tion.

We may assume that 40 ⊥ 4=. Otherwise we may split 4= as 4= = 4⊥= + 4)= into the
perpendicular and tangent parts with 4)= ≠ 0 with |4⊥= | < 1. We may assume that |4⊥= | ≠ 0
otherwise we have that '(40,. ,. , 40) ≤ '(40, 4=, 4=, 40) = 0. This together with Ric ≥ 0
implies that |. |2 Ric(-, -) − '(-,.,., -) ≥ 0. Under the condition 1 > |4⊥= | > 0

'(40,
4⊥=
|4⊥= |

,
4⊥=
|4⊥= |

, 40) =
1
|4⊥= |2

'(40, 4=, 4=, 40) > '(40, 4=, 4=, 40)

unless we have '(40, 4=, 4=, 40) = 0, which implies |. |2 Ric(-, -) − '(-,., ., -) ≥ 0
by the above argument and Ric ≥ 0.

Together, the above shows that either 40 ⊥ 4= or |. |2 Ric(-, -) − '(-, ., ., -) ≥
0. Under the assumption 40 ⊥ 4= we can choose the other vectors 41, · · · , 4=−2 in the
subspace perpendicular to span{40, 4=} so that we can apply the (= − 2)-nonnegativity of
the curvature to conclude that

Ric(-, -) − '(-, 4=, 4=, 40) =
=−2∑
9=1

'(40, 4 9 , 4 9 , 40) ≥ 0.

But for any . with |. | = 1 we have that

|. |2 Ric(-, -) − '(-,.,., -) ≥ Ric(-, -) − '(40, 4=, 4=, 40).

This proves the other direction as well. The positivity case is the same. �

A restatement of the CQBR1 part of Theorem 3.2 is

Theorem 5.4. Assume that (", 6) be a compact Riemannian manifold with nonnegative
(= − 2)-Ricci curvature. Assume that the universal cover "̃ does not have a flat de Rham
factor. Then " admits a metric with positive Ricci. In particular its fundamental group
is finite. In fact the flow evolves the metric 6 into a metric 6(C)C ∈(0, n ) with positive Ricci
curvature for some n .
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It is an interesting to investigate if a result similar to the above holds for :-nonnegative
curvature with : < = − 2. Namely if 6(C) has positive : + 1-curvature assuming 6(0) has
:-nonnegative curvature and (", 6(C)) does not split locally.
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