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Abstract By solving the Cauchy problem for the Hodge-Laplace heat equa-
tion for d-closed, positive (1,1)-forms, we prove an optimal gap theorem
for Kähler manifolds with nonnegative bisectional curvature which asserts
that the manifold is flat if the average of the scalar curvature over balls
of radius r centered at any fixed point o is a function of o(r−2). Further-
more via a relative monotonicity estimate we obtain a stronger statement,
namely a ‘positive mass’ type result, asserting that if (M,g) is not flat, then
lim infr→∞ r2

Vo(r)

∫
Bo(r)

S(y) dμ(y) > 0 for any o ∈ M .

1 Introduction

In [26] the following gap theorem was proved for Kähler manifolds with non-
negative bisectional curvature.

Theorem 1.1 Let Mm (m = dimC(M)) be a complete noncompact Käh-
ler manifold with nonnegative holomorphic bisectional curvature. For any
o ∈ M , let Vo(r) be the volume of the ball Bo(r). Then M is flat if for some
o ∈ M

1

Vo(r)

∫

Bo(r)

S(y) dμ(y) = o(r−2) (1.1)
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provided that

lim inf
r→∞

[

exp
(
−ar2

)∫

Bo(r)

S 2(y) dμ(y)

]

< ∞ (1.2)

for some a > 0. Here S denotes the scalar curvature of M .

A result of this type was originated in [19], where it was proved that M is
isometric to C

m under much stronger assumptions that (Mm,g) (with m ≥ 2)
is of maximum volume growth (meaning that Vo(r) ≥ δr2m for some δ > 0)
and S(x) decays pointwisely as r(x)−2−ε for some ε > 0. A Riemannian
version of [19] was proved in [10] shortly afterwards (see also [9] for re-
lated results). In [21, Theorem 5.1], motivated by a vanishing theorem on
L2-holomorphic sections, via a parabolic method introduced on solving the
so-called Poincaré-Lelong equation, the result of [19] was improved to the
cases covering manifolds of more general volume growth. Since then there
are several further works aiming to prove the optimal result. See for example
[6, 28]. In particular the Ricci flow method was later introduced to the study.
Before this paper, the above Theorem 1.1 is the best known result. The extra
assumption (1.2) is related to the uniqueness of the heat equation solution,
which is somewhat natural for the method employed in [26]. Since [26] it
has been a natural question whether or not the extra assumption (1.2) can be
dropped. In view of the recent examples of H. Wu and F.Y. Zheng [34] on
manifolds with nonnegative bisectional curvature, which include manifolds
whose scalar curvature can grow to infinity in any arbitrarily given manner
along any divergent sequence of points, it seems unlikely that (1.2) holds au-
tomatically on Kähler manifolds with nonnegative bisectional curvature. The
main purpose of this paper is to prove, via a completely different method, the
optimal result by removing the extra assumption (1.2) in Theorem 1.1.

Theorem 1.2 Without (1.2), but with the rest assumptions, Theorem 1.1
holds.

Before we describe the proof we first explain briefly the approaches
adapted in the previous works of [19, 21, 28] and [26]. A key common in-
gredient used in the works of [19, 21, 28] and [26] is to solve the so-called
Poincaré-Lelong equation

√−1∂∂̄u = ρ, for a given d-closed real (1,1)-
form ρ and then show that trace(ρ) = 0 using (1.1). In [26], the following
result was proved on solving the Poincaré-Lelong equation.

Theorem 1.3 Let Mm be a complete Kähler manifold with nonnegative holo-
morphic bisectional curvature. Let ρ be a real d-closed (1,1) form with
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trace f . Suppose f ≥ 0 and ρ satisfies the following conditions:
∫ ∞

0

(∫

Bo(s)

‖ρ‖(y)dμ(y)

)

ds < ∞, (1.3)

and

lim inf
r→∞

[

exp
(−ar2) ·

∫

Bo(r)

‖ρ‖2(y) dμ(y)

]

< ∞ (1.4)

for some a > 0. Then there is a solution u of the Poincaré-Lelong equation√−1∂∂̄u = ρ. Moreover, for any 0 < ε < 1, u satisfies

α1r

∫ ∞

2r

k(s) ds + β1

∫ 2r

0
sk(s) ds

≥ u(x) ≥ β3

∫ 2r

0
sk(s) ds

− α2r

∫ ∞

2r

k(s) ds − β2

∫ εr

0
sk(x, s) ds (1.5)

for some positive constants α1(m), α2(m, ε) and βi(m), 1 ≤ i ≤ 3, where
r = r(x). Here k(x, s) = ∫

Bx(s)
f and k(s) = k(o, s), where o ∈ M is a fixed

point.

The assumption (1.2) is related to (1.4), which in turn due to that a max-
imum principle for the sub-solutions to the heat equation, is needed in the
proof of [26]. Assuming that Theorem 1.3 can be proved without (1.4),
then the upper bound estimate in (1.5) shows that the solution u(x) of√−1∂∂̄u = Ric is of o(log r(x)) growth. Now Theorem 1.2 follows from
the Liouville theorem for plurisubharmonic functions proved in [26, Theo-
rem 0.2], which asserts that any continuous plurisubharmonic function with
upper growth bound of o(log r(x)) must be a constant. Since we do not know
how to solve the equation without (1.4) at this moment we do not take this
approach here.

Here we adapt a different method. The starting point is an alternate ar-
gument of proving the above mentioned Liouville theorem using the mono-
tonicity principle of [23]. This alternate method makes uses of the asymptotic
behavior of the solution to a parabolic equation to infer geometric/analytic in-
formation of the manifolds. This approach via asymptotic study has also suc-
ceeded in the recent resolution of the fundamental gap conjecture in [2]. The
key here is a sharp differential estimate and derived convexity/monotonicity
of heat equation deformation of positive (1,1)-forms (here we follow the con-
vention of calling nonnegative (p,p)-forms positive). Below is an outline of
the proof.
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First we solve the Cauchy problem:

{
∂
∂t

η(x, t) + 	∂̄η(x, t) = 0,

η(x,0) = Ric(x) ≥ 0.
(1.6)

Here 	∂̄ is the Hodge-Laplacian operator, Ric(x) is the Ricci form of the
Kähler metric (M,g). Moreover, we show that there exists a long time solu-
tion η(x, t) with η(x, t) ≥ 0 on M ×[0,+∞) such that η(x, t) is d-closed for
any t . Let u(x, t) = 
η � gij̄ ηij̄ . (Here 
 is the contraction with the Käh-
ler metric.) Since u(x, t) is nonnegative and satisfies the heat equation with
u(x,0) = S(x), it can be expressed in terms of the heat kernel by the unique-
ness theorem for nonnegative solutions [18, Theorem 5.1], keeping in mind
that (M,g) has nonnegative Ricci curvature.

In the second stage of the argument we establish the large time asymptotics
for u(x, t) using (1.1). The monotonicity of [23], derived from a sharp dif-
ferential estimate of Li-Yau-Hamilton type (also called differential Harnack
estimate) can be applied to η(x, t), which particularly implies that tu(x, t)

is monotonically nondecreasing in t for any x. This implies Theorem 1.2
in the following way: the assumption (1.1) and the ‘moment’ type estimate,
[22, Corollary 3.2], implies that limt→∞ tu(x0, t) = 0. Hence the monotonic-
ity and the strong maximum principle imply that tu(x, t) ≡ 0 for any x and
t > 0. The flatness then follows from u(x,0) ≡ 0 which is clear by continu-
ity. Here a key ingredient allowing the application of the differential Harnack
(also called Li-Yau-Hamilton) estimate to get the needed monotonicity is that
η(x, t), the solution obtained in the previous step is both d-closed and posi-
tive.

The major technical contribution of this paper is to solve (1.6), most impor-
tantly obtaining a d-closed, positive solution. It is not too difficult to obtain
a d-closed solution or to obtain a positive solution alone. See for example
Sect. 11 of [25] for a construction on obtaining a positive solution. However
it is not easy to see why the construction there gives a d-closed solution. The
difficult part is to obtain a solution satisfying both conditions. To achieve this
goal, we have to study the parabolic Hodge-Laplace problem on bounded re-
gion � ⊂ M with absolute boundary condition and prove that the solution
obtained is both d-closed and positive. The absolute boundary condition is
designed to keep the d-closeness. It turns out to be a bit subtle to show that
the positivity is preserved. This requires us to extend Hamilton’s tensor max-
imum principle to a much general setting.

Heuristically, the advantage of the method here over the previous methods
of [19, 21, 26, 28] is that by solving the Cauchy problem for the differen-
tial forms, the solution carries more information than solving a scalar heat
equation (or a Poincaré-Lelong equation) as in [26] and [19, 21, 28]. Another
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major extra force of the argument here is the monotonicity proved in [23], de-
rived out of a sharp differential Harnack estimate for the Hermitian-Einstein
flow. For our purpose of proving the optimal result we in fact use an improved
version of that monotonicity result (in the sense that no growth condition is
needed) in a recent joint work [25]. Hence in the proof here we crucially use
two major techniques in the study of Ricci flow, namely the tensor maximum
principle and the differential Harnack estimates. As a consequence of a new
relative monotonicity proved in this paper we obtain the following conse-
quence of Theorem 1.2 which can be thought as a ‘positive mass’ result for
Kähler manifolds of any dimension since the ADM mass in general relativ-
ity is a limit of certain flux integrals resembling the integration of the scalar
curvature over balls in an asymptotically flat manifold.

Corollary 1.4 Let (M,g) be a complete noncompact Kähler manifold with
nonnegative bisectional curvature, which is not totally flat. Then

lim inf
r→∞

r2

Vo(r)

∫

Bo(r)

S(y) dμ(y) > 0.

We speculate that

lim
r→∞

r2

Vo(r)

∫

Bo(r)

S(y)

does exist. This certainly is the case for examples constructed in [34].
Finally we note that in [26], a seemingly weaker assumption is used instead

of (1.1). The new relative monotonicity shows that in fact it is equivalent to
(1.1). The method of this paper effectively proves the gap result and the above
‘positive mass’ type result for any d-closed positive (1,1)-forms.

2 A general maximum principle

In this section we generalize the maximum principle for the parabolic systems
(of Hamilton’s type [11]) to the degenerate parabolic systems, with a mixed
type boundary condition. It turns out that this is what is necessary for the
study of the Hodge-Laplacian heat equation deformation of forms in the next
section. Although maximum principle and strong maximum principle have
been extensively considered for parabolic PDEs earlier (cf. for example, [4,
8, 12, 29, 31] and [33]) we could not find the one fitting into our application.
Hence we include the detailed formulation and proof of one such result here.
The formulation benefits from the simplification in [3] on Hamilton’s tensor
maximum principle. Despite the simplicity of its proof, it seems to include
(sometimes maybe with a straight forward modification of argument) all the
previous known ones.
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Consider V , a vector bundle over M (of rank N ), with a fixed metric h̃, a
time-dependent metric connection D(t). On M , assume that there are, possi-
bly, time-dependent metrics g(t) with ∇(t) being the Levi-Civita connection
of g(t). When the meaning is clear we often omit the supscript (t). Recall
that for any smooth section f of V , D2

XY f = DXDY f − D∇XY f . The main
concern here is on a smooth section f (x, t) defined over M × [0, T ], and
when f (x, t) stays inside a family of sets C(t) ⊂ V . Correspondingly, if we
identify the fiber Vx with R

N , consider the following ODE in R
N

{
d f
dt

= φ(f ),

f (0) = f0.
(2.1)

Here φ : R
N → R

N is a locally Lipschitz map and f (t) is a vector valued
(in R

N ) function of t . Given a closed set X ∈ R
N , we say that the ODE (2.1)

preserves the set X (on [0, T ]) if for any smooth solution f (t) with f (0) ∈ X,
f (t) ∈ X for any t ∈ [0, T ]. Recall the concept of the tangent cone of X. For
any p ∈ X we define the tangent cone at p, T C

p X as the collection of vectors
ξ satisfying that for any x1 ∈ Xc, the complement of X, with the property that
dist(x1,p) = dist(x1,X),

〈ξ,p − x1〉 ≥ 0. (2.2)

Similarly we say that a vector ξ is tangent to X (and denote all such vectors
by TpX) if

〈ξ,p − x1〉 = 0 (2.3)

for any x1 ∈ Xc with dist(x1,p) = dist(x1,X). Without any effort one can de-
fine similar concepts for a closed set X in a Riemannian manifold. One sim-
ply replaces p − x1 by −γ ′(0), where γ (s) is a length minimizing geodesic
joining from p to x1.

Theorem 2.1 Assume that M is a compact manifold with boundary and
φ : V → V is locally Lipschitz and invariant under the parallel transport.
Let C(t) ⊂ V , t ∈ [0, T ], be a family of closed subset, depending continu-
ously on t . Suppose that for each t , C(t) is invariant under parallel transport,
fiberwise convex and that the family {C(t)} is preserved by the ODE (2.1).
Consider f (x, t), a family of smooth sections of V on [0, T ]. Assume that for
any t > 0 with D(t) � maxy∈M dist(f (y, t),Cy(t)) > 0, and any x satisfying
dist(f (x, t),Cx(t)) = D(t), there locally (near x) exist vector fields Xi with
1 ≤ i ≤ k and Yj with 1 ≤ j ≤ l, for some nonnegative integers k, l, such that

∂f

∂t
−

k∑

i=1

D2
XiXi

f −
l∑

j=1

DYj
f − φ(f ) ∈ T C

v(x,t)Cx(t), (2.4)
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where v(x, t) ∈ Cx(t) is the vector in Vx with dist(f (x, t), v(x, t)) =
dist(f (x, t),Cx(t)). Assume also on (x, t) ∈ ∂M × [0, T ], if
dist(f (x, t),Cx(t)) = D(t) > 0, the exterior normal derivative Dνf (x, t) ∈
T C

v(x,t)Cx(t), where v(x, t) ∈ Cx(t) is as above. Then f (x, t) ∈ C(t) for all
t > 0 given f (x,0) ∈ C(0).

We say that C(t) depends continuously on t if C(t) as a family of sets
parametrized by t is continuous in t with respect to the pointed Hausdorff
topology. The assumption the ODE (2.1) preserves the set C(t) means that
for every x ∈ M , if Vx is the fiber of V over x, then Cx(t) = Vx ∩ C(t) is
preserved by (2.1).

We remark that our formulation has several advantages. First it applies to
the degenerate parabolic systems. Secondly, it applies to some mixed type
boundary value problems. Thirdly it does not require that f (x, t) satisfies a
partial differential relation (2.4) everywhere, but only on the extremal points
(namely those x with dist(f (x, t),Cx(t)) = D(t)). This, for an example, al-
lows one to modify such a result, by allowing non-smooth boundary, to in-
clude the situations as those considered in [2]. When V is a trivial line bundle
with C(t) being half line {z| z ≥ c}, φ(f ) = 0, the differential relation (2.4)
can be replaced by a degenerate nonlinear one such as

∂f

∂t
− det

(
D2

XiXj
f

) ≥ 0.

The following simple lemma is the basic block for the proof of the theorem.

Lemma 2.1 Let ρ(t) be a continuous function on [0, b]. Assume that
ρ(0) ≤ 0 and there exist some positive constants ε,C such that D−ρ ≤ Cρ,
whenever 0 < ρ(t) ≤ ε. Then ρ(b) ≤ 0. The same result holds if D− is re-
placed by D+, D− or D+.

Recall that the upper left derivative D−f (t) � lim suph→0,h>0
1
h
(f (t) −

f (t −h)). Similarly, D+f (t) � lim suph→0,h>0
1
h
(f (t +h)−f (t)) and D+f

and D−f are defined by replacing lim sup by lim inf.

Proof Let ρ̃(t) = e−Ctρ(t). Then D−ρ̃(t) ≤ 0 whenever 0 < ρ̃(t) ≤ ε′,
where ε′ = εeCb. We shall show that, via contradiction, for any η ≤ ε′

2b
,

ρ̃(t) ≤ ηt . This is sufficient to prove lemma. Assume the otherwise, then there
exist t0 such that ρ̃(t0) > ηt0. Clearly t0 > 0 and we may choose δ > 0 such
that ρ̃(t0) ≥ ηt0 + δ. Choose δ so small that ηb + δ < ε′. Then let t1 be the
smallest t such that ρ̃(t) ≥ ηt + δ. Note that 0 < ρ̃(t1) = ηt1 + δ < ε′ and
t1 > 0. On the other hand, by the definition of D−ρ̃(t1), for h small, we have
that ρ̃(t1 − h) ≥ ρ̃(t1) − η

2h ≥ ηt1 + δ − η
2h > η(t1 − h) + δ. �
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The following proposition, which is well-known to experts, answers when
the ODE (2.1) preserves a closed set X. The ODE preserving the set is one of
the assumptions in the theorem.

Proposition 2.1 Assume that X is a closed set. Suppose further that φ is
locally Lipschitz on Xε , where Xε = {x | dist(x,X) ≤ ε}. Then (2.1) preserves
X on [0, T ] if and only if φ(p) ∈ T C

p X for any p ∈ X.

Proof We first prove that the condition is sufficient. Let ρ(t) = dist2(f (t),X).
We shall show that there exists C > 0 such that, whenever 0 < ρ(t) ≤ ε2,
D+ρ ≤ Cρ. Since f ([0, T ]) is compact, it is not hard to see that all
points y on the interval of x f (t), where x is over all the points satisfy-
ing dist(f (t), x) = dist(f (t),X) for the t with ρ(t) ≤ ε2, is contained in
a compact subset. Hence, there exist L > 0 such that |φ(f (t)) − φ(x)| ≤
L|f (t) − x|. Now fix t with the property 0 < ρ(t) < ε2, and let x0 be the
point in X such that dist(f (t),X) = dist(f (t), x0). Compute

lim sup
h→0,h>0

ρ(t + h) − ρ(t)

h
≤ lim sup

h→0,h>0

|f (t + h) − x0|2 − |f (t) − x0|2
h

= 2〈φ(f )(t), f (t)〉 − 2〈φ(f )(t), x0〉.
Using the assumption that 〈φ(x0), x0 − f (t)〉 ≥ 0 we conclude that

lim sup
h→0,h>0

ρ(t + h) − ρ(t)

h
≤ 2〈φ(f )(t), f (t) − x0〉 + 2〈φ(x0), x0 − f (t)〉
= 2〈φ(f )(t) − φ(x0), f (t) − x0〉
≤ 2L|f (t) − x0|2 = 2Lρ(t).

Applying Lemma 2.1 we have proved that the assumption φ(p) ∈ T C
p X for

any p is sufficient.
In order to see that the condition is necessary we choose a point x0 such

that φ(x0) does not lie inside the tangent cone T C
x0

X. This implies that there
exists a x1 ∈ Xc such that dist(x1,X) = dist(x1, x0) and 〈x0 −x1, φ(x0)〉 < 0.
Consider a solution f (t) to (2.1) with f (0) = x0. Let ρ(t) = |f (t) − x1|2,
then it is easy to see that

lim sup
h→0,h>0

ρ(h) − ρ(0)

h
= 2〈φ(f )(0), x0 − x1〉

< 0.

Hence ρ(h) < ρ(0), which implies that dist(x1, f (h)) < dist(x1,X). So f (h)

is outside X for small h. �
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Remark 2.2 It is obvious from the proof that if X is time-dependent such that
it is decreasing in time in the sense that X(t ′) ⊂ X(t) for any t ′ ≥ t , the same
result holds.

The following lemma can be derived from the proof of [3, Lemma 2.1].
We include the argument for the sake of completeness.

Lemma 2.2 Let (V , h̃) be a vector bundle with metric h̃. Let C ⊂ V be a
closed subset such that Cx = C ∩Vx is convex for any x ∈ M . Suppose that C

is invariant under the parallel transport with respect to a metric connection
D on V . If f (y) a section of V satisfies that f (y) ∈ C for all y ∈ M . Then
for any x ∈ Int(M), and any X ∈ TxM (D2

XXf )(x) ∈ T C
f (x)Cx .

Proof Pick a point o ∈ Int(M). Choose a normal coordinate (x1, . . . , xn)

near o such that ∂

∂x1 |o = X
|X| . Assume that {Ea} (for 1 ≤ a ≤ N with

N = rank(V )) is a basis of V near o so that Ea is parallel along any
radial direction. Write f (x) = ∑

χa(x)Ea(x). Then since (x1, . . . , xn) is
normal, D2

11f (o) = D1D1f (o) = ∑N
a=1(∇1∇1χa)(o)Ea(o). Since γ (s) =

(s,0, . . . ,0) with −δ1 ≤ s ≤ δ1 for some small δ1 > 0 is a short geodesic
and if we restrict f on this curve we have f (s) = ∑

χa(s)Ea(s) and
(D1D1f )(o) = ∑

χ ′′
a (0)Ea(o). The assumption that C is invariant under

the parallel transport amounts to that if we identify Co with a set C̃ ⊂ R
N ,

via the basis {Ea(o)}, then the set Cγ(s) can be identified with the same
C̃ via the basis {Ea(s)}. Hence the assumption that f (x) ∈ C implies that
G(s) = (χ1(s), . . . , χN(s)) is a path inside C̃. We shall show that G′′(0)

lies inside T C
G(0)C̃. Suppose that q ∈ R

N satisfies dist(q,G(0)) = dist(q, C̃).

By convexity, ηG(s) + (1 − η)G(0) ∈ C̃ for any η > 0. From the fact
that |η(G(s) − G(0)) + (G(0) − q)|2 ≥ |G(0) − q|2 it is easy to see that
〈G(s)−G(0),G(0)−q〉 ≥ 0. Hence I (s) := 〈G(s)−G(0),G(0)−q〉 ≥ 0 for
all s ∈ [−δ1, δ1] with I (0) = 0. This by calculus implies that 〈G′′(0),G(0) −
q〉 ≥ 0. Namely G′′(0) ∈ T C

G(0)C̃. This shows that (D1D1f )(o) ∈ T C
f (o)Co. �

When M is a manifold with boundary we need the following lemma to
handle the boundary points.

Lemma 2.3 Let M,(V, h̃), C, and f (y) be as in Lemma 2.2. Assume that M

is a closed manifold with smooth boundary ∂M , x ∈ ∂M , and at x, Dνf (x) ∈
T C

f (x)Cx . Here ν is the exterior unit normal at x. Then the same conclusion
as Lemma 2.2 holds.

Proof Given a point o ∈ ∂M , choose a coordinate as in the proof of
Lemma 2.2 near o such that γ1(s) = (s,0, . . . ,0) is a geodesic from o point-
ing normally inward and γ2(s) = (0, s,0, . . . ,0), . . . , γn(s) = (0, . . . ,0, s)
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are just curves lying inside ∂M with γi(0) = o. Moreover γ1(s) only defined
for δ1 ≥ s ≥ 0, while γi(s) is defined for −δ1 ≤ s ≤ δ1 with δ1 > 0 being
small. For γ (s) = γ1(s) the same argument as in the proof of Lemma 2.2
shows that I (s) = 〈G(s) − G(0),G(0) − q〉 ≥ 0 with I (0) = 0. Here G(s),
C̃ and q are as in the proof of Lemma 2.2, with dist(q,G(0)) = dist(q, C̃).
This implies that I ′(0) ≥ 0, namely

〈G′(0),G(0) − q〉 ≥ 0

which is equivalent to −Dνf (o) ∈ T C
f (o)Co. By the assumption that Dνf (o) ∈

T C
f (o)Co, we conclude that

〈−Dνf (o), f (o) − q〉 = 0, i.e. I ′(0) = 〈G′(0),G(0) − q〉 = 0.

This is the same as that Dνf (o) is tangential to Co. Here we abuse the
notation by using q to denote both the point q ∈ R

N with dist(q,G(0)) =
dist(q, C̃) and its corresponding point in Vo. Since now the Taylor expansion
for I (s) is 1

2I ′′(0)s2 + O(s3) ≥ 0 which implies that

I ′′(0) = 〈G′′(0),G(0) − q〉 ≥ 0.

This proves that D1D1f ∈ T C
f (o)Co, consequently D2

11f ∈ T C
f (o)Co. When

γ (s) = γi(s) for n ≥ i ≥ 2, the same argument as in the proof of Lemma 2.2
proves that

DiDif (o) ∈ T C
f (o)Co.

In order to show that D2
iif (o) ∈ T C

f (o)Co, observing that

D2
iif = DiDif − D∇γ ′γ ′f

it suffices to show that D∇γ ′γ ′f (o) is tangential to Co. By the proof of
Lemma 2.2, for i ≥ 2, it is easy to see that

I ′(0) = 〈G′(0),G(0) − q〉 = 0

which then implies that D∇�
γ ′γ ′f (o) is tangential to Co. Here ∇�

γ ′γ ′ and ∇⊥
γ ′γ ′

are the tangential and normal component with respect to ∂M . On the other
hand D∇⊥

γ ′γ ′f (o) = − II(γ ′, γ ′)Dνf (o) is tangential to Co, by the above ar-

gument for i = 1, where II(·, ·) is the second fundamental form of ∂M at o.
Hence D2

iif (o) ∈ T C
f (o)Co.

After showing that D2
iif (o) ∈ T C

f (o)Co for all i with 1 ≤ i ≤ n, to complete

the proof, we only need to show that D2
XXf (o) ∈ T C

f (o)Co for X which has
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both non-zero tangential (to ∂M) and normal components. Observing that
the above argument has proved that for any Y ∈ ToM , DY f (o) ∈ Tf (o)Co,
namely DY f (o) is tangential to Co. With the above notations we may assume
that X = a ∂

∂x1 + b ∂

∂x2 for some a, b �= 0. Since it dose not affect the value of

D2
XXf when X is replaced by −X we may also assume that a > 0. Let γ (s) =

(as, bs,0, . . . ,0) with s ≥ 0. Then γ ′(0) = X and γ (s) ∈ M . Applying the
above argument as above again we show that Dγ ′Dγ ′f (o) ∈ T C

f (o)Co. Hence

D2
XXf (o) ∈ T C

f (o)Co. �

Remark 2.3 The proof of Lemmas 2.2 and 2.3 implies that, under either as-
sumption, for any vector Y ∈ TxM , DY f (x) ∈ Tf (x)Cx .

Now we apply Lemma 2.2 and Lemma 2.3 to prove the theorem.

Proof Here we use the ideas in the proof of [3, Theorem 1.1] on Hamil-
ton’s tensor maximum principle. First we can determine a compact sub-
set K (of V ) containing an 2ε-neighborhood of f (M × 0, T ]), such that φ

is uniformly Lipschitz on K with Lipschitz constant L. We also can assume
that φ is bounded by L on K . Let ρ(x, t) = dist2(f (x, t),Cx(t)). Also let
ρ(t) = maxx∈M ρ(x, t). The goal is to apply Lemma 2.1 to ρ(t). For this
purpose we show that for t satisfying that 0 < ρ(t) < ε2, there exists C

such that D−ρ ≤ Cρ. Let x0 be the point that ρ(x0, t) = ρ(t). First we con-
sider the case that x0 lies in the interior of M . For h sufficiently small, let
v(t −h) ∈ Cx0(t −h) be the vector such that dist(f (x0, t −h),Cx0(t −h)) =
dist(f (x0, t − h), v(t − h)). By the assumption that (2.1) preserves C(t), we
infer that v(t −h)+hφ(v(t −h)) is a good approximation to a point in Cx0(t)

in the sense that

dist(v(t − h) + hφ(v(t − h)),Cx0(t)) ≤ C1h
2. (2.5)

This can be seen by considering f̃ , a solution to the ODE (2.1) (in the fiber
Vx0 ) with f̃ (t − h) = v(t − h). The assumption that (2.1) preserves C(t)

implies that f̃ (t) ∈ Cx0(t). The claimed result follows from the observation
that

|v(t − h) + hφ(v(t − h)) − f̃ (t)| ≤ C1h
2, (2.6)

where C1 depends on L. This can be seen fairly easily. It is also easy to
see that there exists subsequence of hi → 0 such that v(t − hi) converges
to, say v∞. Abusing the notation, we shall write h → 0 even we really
take hi → 0. Since dist(v(t − h),Cx0(t − h)) − dist(Cx0(t − h),Cx0(t)) ≤
dist(v(t −h),Cx0(t)) ≤ dist(v(t −h),Cx0(t −h))+ dist(Cx0(t −h),Cx0(t)),
taking h → 0, it is clear that v∞ ∈ Cx0(t). Moreover, since that dist(f (x0, t −
h),Cx0(t)) − dist(Cx0(t − h),Cx0(t)) ≤ dist(f (x0, t − h),Cx0(t − h)) =



L. Ni

dist(v(t − h), f (x0, t − h)) ≤ dist(f (x0, t − h),Cx0(t)) + dist(Cx0(t −
h),Cx0(t)), taking h → 0 we deduce that

dist(v∞, f (x0, t)) = dist(f (x0, t),Cx0(t)). (2.7)

Now we can estimate

ρ(t) − ρ(t − h) ≤ dist2(f (x0, t),Cx0(t)) − dist2(f (x0, t − h),Cx0(t − h))

≤ |f (x0, t) − f̃ (t)|2 − |f (x0, t − h) − v(t − h)|2
≤ |f (x0, t) − (v(t − h) + hφ(v(t − h)))|2

− |f (x0, t − h) − v(t − h)|2 + O(h2)

≤ |f (x0, t)|2 − |f (x0, t − h)|2
− 2

(〈f (x0, t), v(t − h) + hφ(v(t − h))〉
+ 2〈f (x0, t − h), v(t − h)〉)

+ 2〈v(t − h),φ(v(t − h))〉h + O(h2).

This shows that

D−ρ(t) ≤ 2

〈
∂f

∂t
, f

〉∣∣
∣
∣
(x0,t)

− 2

〈
∂f

∂t

∣
∣
∣
∣
(x0,t)

, v∞
〉

− 2〈f (x0, t) − v∞, φ(v∞)〉

= 2

〈
∂f

∂t
−

k∑

i=1

D2
XiXi

f −
l∑

j=1

DYj
f − φ(f ), f (x0, t) − v∞

〉

+ 2

〈(
k∑

i=1

D2
Xi,Xi

f

)

(x0, t) +
(

l∑

j=1

DYj
f

)

(x0, t), f (x0, t) − v∞

〉

+ 2
〈
φ(f (x0, t)) − φ(v∞), f (x0, t) − v∞

〉

≤ 2

〈(
k∑

i=1

D2
Xi,Xi

f

)

(x0, t) +
(

l∑

j=1

DYj
f

)

(x0, t), f (x0, t) − v∞

〉

+ 2
〈
φ(f (x0, t)) − φ(v∞), f (x0, t) − v∞

〉
.

Here we have used the assumed partial differential relation (2.4). To apply
Lemma 2.2 to the proof of the theorem, for any C a convex closed subset
set of R

N let Cδ = {v |dist(v,C) ≤ δ}. We call Cδ the δ-neighborhood of C.
Then Cδ is also a convex closed subset. Suppose that p ∈ Cc and q ∈ C is
a point satisfying dist(q,C) = dist(q,p). Choose δ = dist(p, q). Clearly p ∈
Cδ . By the convexity it is easy to see that C is a subset of the half plane
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H = {y|〈y − q, q − p〉 ≥ 0}. Thus Cδ ⊂ Hδ = {v|〈v − p,q − p〉 ≥ 0}. Now
by abusing the notation let Cδ be the subset of V such that Cδ ∩ Vx is the
δ-neighborhood of C ∩ Vx . Then f (x, t) ∈ C√

ρ(t) due to the choice of x0.
Moreover C√

ρ(t) is invariant under the parallel transport and C√
ρ(t) ∩ Vx is

convex. Now applying Lemma 2.2 we conclude that

〈(
k∑

j=1

D2
XjXj

f

)

(x0, t), f (x0, t) − v∞

〉

≤ 0.

Observing from Remark 2.3, 〈(∑l
j=1 DYj

f )(x0, t), f (x0, t) − v∞〉 = 0, we
then arrive at

D−ρ(t) ≤ 2〈φ(f (x0, t)) − φ(v∞), f (x0, t) − v∞〉
≤ 2L|f (x0, t) − v∞|2
= 2Lρ(t).

When x0 ∈ ∂M , we replace Lemma 2.2 by Lemma 2.3 to obtain the same
estimate as the above. By Lemma 2.1, this completes the proof. �

3 The proof of Theorem 1.2

Let m = dimC(M) and n = 2m be the real dimension of M . First choose {�μ}
a sequence of relatively compact smooth exhaustion domains of M . We solve
the initial-boundary value problem:

⎧
⎨

⎩

(
∂
∂t

+ 	∂̄

)
ηk(x, t) = 0, on �μ × [0,∞),

nημ = n dημ = 0, on ∂�μ,

ημ(x,0) = Ric(x), on �μ.

(3.1)

Here 	∂̄ = ∂̄ ∂̄∗ + ∂̄∗∂̄ , with ∂̄∗ being the adjoint of ∂̄ , the boundary condition
is the so-called absolute boundary condition with nφ = ινφ, where ν is the
exterior unit normal to ∂�μ. Recall that ιν is the adjoint operator of ν∗ ∧ (·).
The solvability follows from the theory of linear parabolic systems [8, 13–
15]. The solvability for the corresponding elliptic problem can be found for
example in Theorem 7.8.4 of Morrey’s classics [20]. Note that the Ricci form

Ric(x) =
√−1
2π

Rij̄ dzi ∧ dz̄j is a closed (1,1)-form. The following result as-
serts that the solution ημ(x, t) will preserve both the positivity and the close-
ness. For the simplicity of the notation we shall omit the subscripts μ if the
meaning is clear.
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Proposition 3.1 Assume that � is a smooth bounded domain. Let η(x, t) be
the unique solution of the initial-boundary value problem (3.1). Then η(x, t)

will be a real (1,1)-form with η(x, t) ≥ 0 and η(x, t) being d-closed. The
same conclusion holds if Ric(x) is replaced by any d-closed positive real
(1,1)-form.

Proof Recall an elementary lemma (Lemma 7.5.3 of [20]) which asserts that
for any α, β , smooth r and r − 1 forms

∫

�

〈α,dβ〉dμ =
∫

�

〈δα,β〉dμ +
∫

∂�

(−1)r−1〈nα, tβ〉dA (3.2)

where dA is the induced surface measure of ∂M , δ is the adjoint of exterior
differentiation d , and tβ is the tangential part of β on ∂M . Recall also that
for a Kähler manifold 2	∂̄ = 	d = dδ + δd . We shall also write ημ by η.
The uniqueness of problem (3.1) can be seen via the monotonicity of J (t) �∫
�

|η|2 dμ, since

2J ′(t) = −
∫

ω

〈η,	dη〉dμ

= −
∫

�

|dη|2 + |δη|2 dμ.

In the above we have used the elementary identity (3.2) twice. Hence if
J (0) = 0, J (t) = 0. Applying this observation to the difference of two so-
lutions to (3.1) we have the uniqueness.

The uniqueness implies that if η(x,0) is a real (1,1)-form, it will be a
real (1,1)-form for all t > 0. We then proceed to prove the d-closeness of η.
Consider

I (t) �
∫

�

|dη|2(x, t) dμ(x).

Recalling that 	d = dδ + δd = 2	∂̄ , direct calculation shows that

2I ′(t) = −
∫

�

〈d	dη, dη〉(x, t) dμ(x)

= −
∫

�

〈d δ dη, dη〉(x, t) dμ(x)

= −
∫

�

|δdη|2(x, t) dμ(x) ≤ 0.

Here in the first equality we use the fact that [d,	d ] = 0, in the third equa-
tion we used the boundary condition ndη = 0 and identity (3.2), namely
Lemma 7.5.3 of [20]. Note that the absolute boundary condition allows one
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to apply (3.2). Since I (0) = 0, we conclude that I (t) ≡ 0, hence dη = 0
for t > 0. This proof above assumes the regularity. However the solution is
usually not continuous at the corner ∂� × {0}. Hence further elaboration is
needed. See [27, Lemma 3.2, 3.3] for details of an approximation argument
around this using the kernel function for (3.1) constructed by Ray-Singer [30].

It is not hard to see that the problem (3.1) has a long time solution on
�μ × [0,+∞). Besides appealing to the results from [13–15], the existence
can also be inferred via the monotonicity (of non-increasing) of the energy

J (t) �
∫

�

|δημ|2 dμ.

This can be proved similarly as the above by observing that n(δημ) = 0,
which follows from nημ = 0 by Lemma 7.5.2 of [20], and applying (3.2),
namely Lemma 7.5.3 of [20].

For the preservation of the non-negativity, we apply the maximum princi-
ple Theorem 2.1 applying to the degenerate setting. By adding εω (with ω

being the Kähler form), and then letting ε → 0, we may assume that η > 0 at
t = 0. First consider the unitary frame bundle U (M) over M which is given by
the union of collections of f = {e1, . . . , em}, where {ei} being a unitary frame
of T ′

pM (in a neighborhood of p), over all p ∈ M . This is a principle U(m)-
bundle over M . Denote its projection map by π . The Levi-Civita connection
now defines a horizontal distribution H such that for any given f ∈ U (M),
Hf is spanned by vector fields X̃1, . . . , X̃m which are horizontal lift (cf. [1])
of e1, . . . , em in a neighborhood U of p with π(f) = p. The vertical vectors
can then be identified with the Lie algebra u(m). We may equip U (M) with a
Riemannian metric so that π is a Riemannian submersion with the metric on
the fiber being the scalar product of u(m) (cf. [1]). For η(x, t), a solution to
(3.1) we define a smooth function v(f) � η( 1√−1

e1 ∧ e1) on U(M) × [0, T ].
The Bochner-Kodaira lemma (cf. Lemma 2.1 of [25]) asserts that at f

∂v

∂t
−

m∑

j=1

D2
X̃j X̃j

v = K B(η)11̄ (3.3)

with

K B(η)11̄ = R11̄kl̄ηlk̄ − 1

2

(
R1k̄ηk1̄ + Rk1̄η1k̄

)
.

Here Rij̄kl̄ and Rij̄ are the curvature tensor and Ricci tensor of (M,g) respec-
tively. We shall apply Theorem 2.1 (with V being the trivial rank one bundle)
to show that (3.3) is enough to preserves the nonnegativity of v. To apply
Theorem 2.1 it suffices to check the conditions for extremal points. Now con-
sider U (M) over � and denote it by U (�). If for some t > 0, v(f0, t) < 0
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and v(f0, t) ≤ v(f, t) for all f ∈ U (�), namely f0 is a local extremal point,
from the definition of v (in terms of η), it implies that for some X ∈ T ′

p(M)

with |X| = 1, η( 1√−1
X ∧ X) < 0 and η( 1√−1

X ∧ X) ≤ η( 1√−1
Y ∧ Y ) for

all Y ∈ T ′
pM with |Y | = 1. Let ω be the Kähler form which can be written

as
√−1

∑m
i=1 e∗

i ∧ e∗̄
i
. Let −α = η( 1√−1

X ∧ X). Then η̃ � η + αω ≥ 0 and

η̃( 1√−1
X ∧ X) = 0. Now the proof of Proposition 2.2 of [25] implies that

K B(̃η)XX ≥ 0. But direct calculation shows that K B(̃η) = K B(η). This im-
plies that at the extremal point f0,

K B(η)XX ≥ 0.

This verifies the assumption (2.4).
Assume that f0 ∈ ∂(U (�)) is an extremal point with v(f0) < 0. Note that

this can only happen when t > 0. Now we verify the boundary condition. It
is easy to see that p = π(f0) lies on ∂�. Choose a unitary frame {e1, . . . , em}
near p so that em = 1

2(ν − √−1Jν), where ν is the unit normal vector with
respect to the includes Riemannian metric. Let ej̄ = ej . We can write η =√−1

∑m
i,j=1 ηij̄ e

∗
i ∧ e∗̄

j
. The boundary condition n(η) = 0 implies that

ηim̄ = ηmī = ηmm̄ = 0 (3.4)

for all 1 ≤ i ≤ m − 1 on ∂�. Consider the functional

I(ε) �
η( 1√−1

(X + εZ) ∧ (X + εZ))

ω( 1√−1
(X + εZ) ∧ (X + εZ))

.

The assumption that v(f0, t) is the smallest among all f ∈ U (�) implies
that I(0) ≤ I(ε) for any complex number ε. The first variation ∂

∂ε
I(0) =

∂
∂ε̄

I(0) = 0 then implies that

η

(
1√−1

X ∧ Z

)

− η

(
1√−1

X ∧ X

)

ω

(
1√−1

X ∧ Z

)

= 0

for any Z. By letting Z = em, (3.4) and the assumed condition that η( 1√−1
X∧

X) < 0, imply that ω( 1√−1
X∧em) = 0. Observing that {ek} is a unitary frame,

this shows that X is spanned by {e1, . . . , em−1}. Without the loss of the gen-
erality we assume that X = e1. Since

dη = √−1
m∑

i,j,k=1

(∇ek
ηij̄ e

∗
k ∧ e∗

i ∧ e∗̄
j
+ ∇ek̄

ηij̄ e
∗̄
k
∧ e∗

i ∧ e∗̄
j
)
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the assumption n(dη) = 0 on ∂� and (3.4), imply that

∇νηij̄ = 0 (3.5)

for any i, j with 1 ≤ i, j ≤ m − 1. Here we observe that for 1 ≤ i ≤ m − 1,
ei are all tangential to ∂�. Now let ν̃ be the horizontal lift of ν. Clearly ν̃ is
the unit exterior normal to ∂U (�). To apply Theorem 2.1, we only need to
verify that at f0, ∂v

∂ν̃
≥ 0. Let γ (s) (with s ≥ 0) be a geodesic in the direction

of −ν starting at p, and let {e1(s), . . . , em(s)} be a frame which is parallel
along γ (s). Let γ̃ (s) be the lifting curve starting from f0. Then −ν̃ = γ̃ ′(0)

and

−∂v

∂ν̃

∣
∣
∣
∣
f0

= d

ds
η

(
1√−1

e1(s) ∧ e1̄(s)

)∣
∣
∣
∣
s=0

= ∇νη11̄

= 0

by (3.5). Theorem 2.1 can be applied to have that v ≥ 0 on U (�) × [0, T ],
hence the nonnegativity of η. This completes the proof of the proposition. �

Remark 3.1 Similar argument proves that the unique solution to problem
(3.1) also preserves both the d-closeness and the positivity for (p,p)-forms
if the condition Cp in [25] is assumed for manifold (M,g).

Equipped with the above proposition we are ready to prove Theorem 1.2.
First we choose a sequence of smooth domains �μ which exhausts M . Let
ημ be the solution on �μ × [0,∞) to the boundary value problem (3.1).
By Proposition 3.1, we have that ημ(x, t) is positive and it is d-closed. Let
uμ(x, t) = 
ημ(x, t). By the positivity of ημ the estimate of |ημ| can be re-
duced to the upper estimate of uμ. By the identities

∂
 − 
∂ = −√−1∂̄∗, ∂̄
 − 
∂̄ = √−1∂∗

where ∂∗ and ∂̄∗ are conjugate operators of ∂ and ∂̄ , and (8.1.19) from [20]
which asserts that

ιν ∂̄
∗ημ = 0,

the closeness of η implies that

ιν∂uμ = ιν ∂̄uμ = 0.

This in particular implies that uμ satisfies the Neumann boundary condition.
Let Hμ(x, y, t) be the Neumann fundamental solution on �μ.
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A way of obtaining the maximum modulus estimate on uμ is to make use of
k(o, r) �

∫
Bo(r)

S(y) dμ(y) is uniformly (in terms of r) bounded from above,
which is implied by the assumption (1.1) made in the theorem. First we can
choose rμ,�μ so that Bo(rμ) ⊂ �μ ⊂ Bo(2rμ). The Neumann boundary con-
dition ensures that

∫
�μ

uμ(x, t) dμ(x) is a conserved quantity (in t). Hence

it is bounded from the above by
∫
Bo(2rμ)

S(y) dμ(y). The volume doubling
property of the manifold then implies that there exists a positive constant
C(n) such that

∫

Bo(rμ)

uμ(y, t) dμ(y) ≤ C(n)k(o,2rμ).

Then noting that k(o,2rμ) is uniformly bounded in terms μ, the interior uni-
form maximum estimate (independent of μ) on uμ(x, t) now follows from
the parabolic mean value inequality (cf. Theorem 1.1 of [16]). If one applies
Theorem 1.2 of [16], the mean value inequality up to t = 0, we also have
that for any T > 0, and any compact subset K ⊂ M , there exists a positive
constant C(K,n, S, T ) such that

max
K×[0,T ]

uμ(y, t) ≤ C(K,n, S, T ).

Now the interior Schauder estimate (cf. Theorem 6.2.6 of [20], or [32]) can
be applied to extract convergent subsequence from {ημ} and obtain a solution
η(x, t) solving

(
∂

∂t
+ 	∂̄

)

η(x, t) = 0

on M × [0,∞). Similarly after passing to a subsequence {uμ} converges to
a positive solution u(x, t) to the heat equation with initial value S(x). It is
easy to see that η(x, t) ≥ 0 and it is d-closed. Moreover, the positivity of
η(x, t) implies that u(x, t) = 
η(x, t), by the uniqueness of the positive so-
lutions. Clearly it bounds |η| after multiplying some positive constant de-
pending on m. Note that u(x, t) also satisfies the Harnack estimate (cf. [18,
Theorem 2.1]):

u(x, t) ≤ u(o,T )

(
T

t

)n/2

exp

(
r2(o, x)

4(T − t)

)

(3.6)

for any t < T . Here o ∈ M is a fixed point. Estimate (3.6) allows one to use
Corollary 2.1 of [23] via a perturbation argument. Alternatively we may apply
Theorem 4.1 of [25], to conclude that

1

t

∂

∂t
(tu(x, t)) + 〈∂u,X〉 + 〈∂u,X〉 + η

(
1√−1

X ∧ X

)

≥ 0 (3.7)
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for any (1,0)-type vector field X. From Theorem 4.1 of [25] to the above
estimate one needs to use that η is closed. Details on this derivation can be
found in Corollary 4.2 of [25].

By taking X = 0 in (3.7), we have that tu(x, t) is monotone non-
decreasing. Since u(x, t) is a solution to the heat equation with u(x,0) =
S(x). Now we can evoke the ‘moment estimates’ in [22].

Lemma 3.1 (Theorem 3.1, [22]) Let u(x, t) be the unique nonnegative so-
lution to the heat equation on M , with nonnegative Ricci curvature. As-
sume that u(x,0) = f (x). If 1

Vx(r)

∫
Bx(r)

f (y) dμ(y) ≤ Ard for some A > 0,

d ≥ −n − 2, and all r ≥ R, then u(x, t) ≤ C(n, d)Atd/2 for t ≥ R2.

Applying the above result to d = −2 we have that u(o, t) = o(t−1), from
the assumption (1.1) and that (M,g) has nonnegative Ricci curvature. To-
gether with that tu(o, t) is monotone nondecreasing, it implies that u(o, t) =
0 for all t . The strong maximum principle implies that u(y, t) ≡ 0 noting that
u(y, t) ≥ 0 and it solves the heat equation. Hence u(y,0) = S(y) ≡ 0. This
proves the flatness of (M,g) since (M,g) is assumed to have nonnegative
bisectional curvature.

Remark 3.2 The monotonicity tu(o, t) is the same as the monotonicity of

t

∫

M

H(o, y, t)S(y) dμ(y).

One can shows that, if denote by Sk the k-th elementary symmetric function
of η(y,0), which is viewed as a Hermitian symmetric bilinear form,

tk
∫

M

H(o, y, t)Sk(y) dμ(y) (3.8)

is monotone non-decreasing.

Since we do not make uses of any special features of Ricci form, the result
holds for any d-closed real positive (1,1) form ρ. More precisely we have
proved the following result.

Theorem 3.3 Assume that (M,g) is a complete Kähler manifold with non-
negative bisectional curvature. Suppose that ρ = √−1

∑
ρij̄ dzi ∧dzj̄ , a real

d-closed positive (1,1)-form. Then ρ ≡ 0, if (1.1) holds for some o ∈ M with
S(y) = 
ρ(y).
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4 A relative monotonicity

In [26], for Theorem 1.1, in stead of (1.1), the following seemingly weaker
condition

∫ r

0
s

∫

Bo(s)

S(y) dμ(y) ds = o(log r) (4.1)

is assumed. It is not hard to see that (1.1) implies (4.1). In this section
we shall show that these two conditions are equivalent as a result of a
general monotonicity estimate. It is not hard to see that (4.1) implies that∫

Bo(r)
S(y) dμ(y) = o(

log r

r2 ). But it seems not an easy task to improve it to

o( 1
r2 ) without extra considerations. The key ingredient in proving that (4.1)

implies (1.1) is the following relative monotonicity. This localization idea is
originated from [7] for the mean curvature flow of submanifolds in Euclidean
spaces. In [24], this was carried for analytic subvarieties in a Kähler mani-
folds. Here we extend it further for positive (1,1)-forms.

Theorem 4.1 Assume that (Mm,g) is a complete Kähler manifold with non-
negative bisectional curvature. Let ρ be a d-closed real positive (1,1) form.

Then there exist δ(m) =
√

1
2m

, C = C(m) > 0 such that

r2
1

∫

Bo(r1)

S(y) dμ(y) ≤ Cr2
∫

Bo(r)

S(y) dμ(y) (4.2)

for any positive r1 ≤ δr . Here S = 
ρ.

Proof Given any t1 ∈ R, let

ϕ(o,t1),h(y, t) =
(

1 − r2(o, y) + (m − 1)(t − t1)

h2

)

+

where r(x, y) is the distance function between x and y, h > 0 is any given
positive number, (f )+ denotes the positive part of any given continuous func-
tion f . Consider the quantity

Et0,t1,o,h(t) = (t0 − t)

∫

M

ϕ(o,t1),hH(o, y, t0 − t)S(y) dμ(y).

When the meaning is clear we simply denote it as E (t). The key step for the
proof is to establish that E (t) is monotone non-increasing as a function of t .
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Denote t0 − t by τ . Also abbreviate ϕ(o,t1),h by ϕ. Note that ϕ is supported in
Bo(

√
h2 − (m − 1)(t − t1)), which we abbreviate by Bh

o .
Direct calculation shows

d

dt
E (t) =

∫

M

−ϕH S − τ(	H)Sϕ + τHSϕt

=
∫

M

τ

((
∂

∂t
− 	

)

ϕ

)

H S − H Sϕ + τ 〈∇′H,∇′S〉ϕ

− τ 〈∇′S,∇′ϕ〉H +
∫

∂Bh
o

τ 〈∇ϕ, ν〉H S dA. (4.3)

Here dA is the induced area integral, ∇′f = ∇if
∂

∂zi (and ∇′′f = ∇′f ). Using
the complex Hessian lower estimate of the heat kernel in [5, Theorem 1.1]:

∇2
ij̄

logH + 1

τ
gij̄ ≥ 0 (4.4)

which implies the complex Hessian estimate for r2(o, y) (which is also
proved independently in [17])

∇2
ij̄

r2(o, y) ≤ gij̄ , (4.5)

we have that, under a normal coordinate, (also note that ∇2
ij̄

= ∇i∇j̄ )

0 ≤
∫

M

(

∇i∇j̄ logH + 1

τ
gij̄

)

Hρjīϕ

=
∫

M

1

τ
H Sϕ − 〈∇′H,∇′S〉ϕ − ρ(∇′H,∇′′ϕ)

− ρ(∇′ logH,∇′′ logH)Hϕ. (4.6)

Here ρ(X,Y ) = ρij̄X
iY j̄ for X = Xi ∂

∂zi , Y = Y j̄ ∂

∂zj̄
, and we have used that

ρ is d-closed, which implies that ∇kρij̄ = ∇iρkj̄ . In a normal coordinate also

ρ(X,Y ) = ρij̄XīYj , where Xī = gījX
j and Yj is defined likewise.

Integration by parts on the third term of the right hand side of (4.6) shows
that

−
∫

M

ρ(∇′H,∇′′ϕ) =
∫

M

H 〈∇′ϕ,∇′S〉 + Hρij̄ϕj ī −
∫

∂Bh
o

ρij̄H∇jϕνī dA.

(4.7)
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Combining (4.6) and (4.7), also noting that ρ ≥ 0, we have that

0 ≤
∫

M

1

τ
H Sϕ − 〈∇′H,∇′S〉ϕ + 〈∇′ϕ,∇′S〉H + Hρij̄ϕj ī dμ

−
∫

∂Bh
o

ρij̄H∇jϕνī dA. (4.8)

Applying this estimate to (4.3), it implies that

d

dt
E (t) ≤

∫

M

τ

((
∂

∂t
− 	

)

ϕ

)

H S + τHρij̄ ϕj ī

+
∫

∂Bh
o

τ 〈∇ϕ, ν〉H S − τρij̄H∇jϕνī dA. (4.9)

Note that ∂Bh
o is the level set of ϕ, and if we choose local unitary

frame e1, . . . , em related to ν as in the last section, namely making e1 =
1
2(ν − √−1jν), then 〈∇ϕ, ν〉 = ϕ1ν1̄ ≤ 0. Moreover

〈∇ϕ, ν〉S − ρij̄∇jϕνī = (S − ρ11̄)ϕ1ν1̄

≤ 0.

This shows that the second area integral in the right hand side of (4.9) is
non-positive.

Meanwhile, under a normal coordinate which diagonalizes ρij̄ ,

S
(

∂

∂t
− 	

)

ϕ + ρij̄ ϕj ī = 1

h2
(−(m − 1)S + ∇i∇ī r

2S − ∇i∇j̄ r
2ρj ī)

= 1

h2
(−(m − 1)S + ∇i∇ī r

2(S − ρiī))

≤ 1

h2

(

−(m − 1)S +
m∑

i=1

(S − ρiī)

)

= 0.

In the above inequality, we have used (4.5) and S − ρiī ≥ 0. This estimate
together with (4.9) implies that d

dt
E (t) ≤ 0. The non-smoothness of ϕ does

not affect the monotonicity since the estimate S( ∂
∂t

− 	)ϕ + ρij̄ ϕj ī ≤ 0
holds in the distribution sense. One can follow the regularization process in
Sect. 5 of [24] (see also [7]) by multiplying a cut-off function ηε which is
given by ζε(ϕ) with ζε being a smooth cut-off function on R

1 satisfying 0 ≤
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ζε(z) ≤ 1, ζε(z) = 1 for z ≥ −n log(1 − ε) and ζε(z) = 0 for z ≤ 0. Further-
more ζε(z) is chosen to satisfies that |ζ ′

ε | ≤ 2
−n log(1−ε)

, |ζ ′
ε(z)z| ≤ 2 for z ∈

[0,−n log(1 − ε)] and ζ ′(z) = 0 for other z. This ensures that the error terms
∫

M

SϕH
∂ηε

∂t
,

∫

M

ϕ|∇(HS)‖∇ηε |

all tend to zero as ε → 0.
Now fixing T > 0, h > 0 and h1 ∈ (0, δh), where δ is a positive constant

which shall be specified later, let t0 = T + h2
1, t1 = T − δ2h2. Then we have

E (T − δ2h2) ≥ E (T − h2
1)

by the monotonicity on E (t). By Li-Yau’s heat kernel upper bound [18, Corol-
lary 3.1] we have that

H(o, y, t0 − (T − δ2h2)) ≤ C(m)

Vo(h)

for some positive constant C = C(m). Here we have used that h1 ≤ δh, δ =
δ(m) is fixed and the relative volume comparison theorem. Noting that ϕ ≤ 1,
easy estimates show that

E (T − δ2h2) ≤ C(m)δ2h2

Vo(h)

∫

Bo(h)

S(y) dμ(y). (4.10)

On the other hand, for y ∈ Bo(h1), we have that

ϕ(y,T − h2
1) ≥ 1 − h2

1 + (m − 1)δ2h2

h2

≥ 1 − mδ2 ≥ 1/2 (4.11)

if we choose δ =
√

1
2m

. On the other hand, the lower estimate on the heat

kernel [18, Theorem 4.1] implies that for y ∈ B0(h1), there exists C′(m) ≥ 0
such that when t = T − h2

1,

H(o, y, t0 − t) ≥ C′(m)

Vo(
√

2h1)
≥ C′(m)

2mVo(h1)
. (4.12)

Combining (4.11) and (4.12) we have the following lower estimate:

E (T − h2
1) ≥ C′′(m)h2

1

Vo(h1)

∫

Bo(h1)

S(y) dμ(y). (4.13)
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Combining (4.10), (4.13) and the monotonicity of E (t), this completes the
proof of the theorem. �

Now the implication of (1.1) out of (4.1), as well as Corollary 1.4 out of
Theorem 1.2, can be proved by applying Theorem 4.1 and some elementary
considerations. As in the last section, our argument effectively proves the
following result for any positive d-closed, (1,1)-form.

Corollary 4.2 Assume that (M,g) is a complete Kähler manifold with non-
negative bisectional curvature. Suppose that ρ = √−1

∑
ρij̄ dzi ∧dzj̄ , a real

d-closed positive (1,1)-form with S = 
ρ. Then, unless ρ ≡ 0,

lim inf
r→∞

r2

Vo(r)

∫

Bo(r)

S(y) dμ(y) > 0.

Remark 4.3 Theorem 4.1 also provides an alternate proof to Theorem 1.2.
The method of this paper can be applied to solve the Poincaré-Lelong equa-
tion for positive d-closed (1,1)-forms without the assumption (1.4) in Theo-
rem 1.3 [27].
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