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The fundamental group, rational connectedness
and the positivity of Kähler manifolds

By Lei Ni at La Jolla

Abstract. Firstly, we confirm a conjecture asserting that any compact Kähler mani-
fold N with Ric? > 0 must be simply-connected by applying a new viscosity consideration
to Whitney’s comass of .p; 0/-forms. Secondly we prove the projectivity and the rational con-
nectedness of a Kähler manifold of complex dimension n under the condition Rick > 0 (for
some k 2 ¹1; : : : ; nº, with Ricn being the Ricci curvature), generalizing a well-known result of
Campana, and independently of Kollár, Miyaoka and Mori, for the Fano manifolds. The proof
utilizes both the above comass consideration and a second variation consideration of [40].
Thirdly, motivated by Ric? and the classical work of Calabi and Vesentini [6], we propose two
new curvature notions. The cohomology vanishingH q.N; T 0N/ D ¹0º for any 1 � q � n and
a deformation rigidity result are obtained under these new curvature conditions. In particular,
they are verified for all classical Kähler C-spaces with b2 D 1. The new conditions provide
viable candidates for a curvature characterization of homogeneous Kähler manifolds related to
a generalized Hartshone conjecture.

1. Introduction

Kähler manifolds bridge the Riemannian manifolds, complex manifolds and complex
algebraic manifolds. It avails analytic and geometric techniques in the study of algebraic mani-
folds via the GAGA principle. The first general result on the projectivity of a high dimensional
Kähler manifold .N; h/, i.e. being able to be realized as a holomorphic submanifold in some
projective space PK , was obtained by Kodaira [22]. Kodaira proved that the projectivity is
equivalent to the existence of an integral Kähler form !h in H 2.N;Z/. It was also shown
that this cohomological condition is equivalent to the existence of a positive line bundle L. A
line bundle is positive means that there exists a Hermitian metric h on L such that the Chern
form of .L; h/ is positive. From the Riemannian geometric point of view the most natural way
of associating a line bundle to N is via its canonical line bundle (KN D det..T 0N/�/, the
determinant bundle of the holomorphic tangent bundle .T 0N/�) and the anti-canonical line
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bundle (K�1N ). The associated intrinsic curvature (i.e. c1.M/, the Chern form of K�1N ) is the
Ricci curvature of .N; h/. Compact Kähler manifolds with positive Ricci curvature form a spe-
cial class of smooth projective/algebraic varieties, i.e. the Fano manifolds. Its study and the
extension to varieties with various singularities have been one of active focuses of the algebraic
geometry during last decades. In this paper we study a family of intrinsic curvature conditions
(generalizing the Ricci curvature), whose positivity implies the projectivity and the rational
connectedness of a compact Kähler manifold.

Rational connectedness is an important/useful property for algebraic manifolds [12].
For compact Kähler manifolds with positive Ricci curvature this property was established by
Campana [7], Kollár, Miyaoka and Mori [24]. In this paper we show:

Theorem 1.1. Let .N n; h/ be a compact Kähler manifold with Rick > 0 for some
1 � k � n. Then N is projective and rationally connected. In particular, �1.N / D ¹0º.

The Rick is defined as the Ricci curvature of the k-dimensional holomorphic subspaces of
the holomorphic tangent bundle T 0N . Hence it coincides with the holomorphic sectional curva-
tureH.X/ when k D 1, and with the Ricci curvature when k D n D dimC.N /. The condition
Rick > 0 is significantly different from its Riemannian analogue, i.e. the so-called q-Ricci (see
next section for details), since it exams only the holomorphic subspaces in T 0N , thus unlike
its Riemannian analogue, Rick > 0 does not imply RickC1 > 0; Rick > 0 means that every
infinitesimal k-dimensional holomorphic subvariety is Fano. The notion of Rick was initiated
in a recent study of the k-hyperbolicity of a compact Kähler manifold by the author [34]. It is
closely related to the degeneracy of holomorphic mappings from Ck into concerned mani-
folds (cf. [34, Theorem 1.3]). The condition Rick > 0 allows some negativity of (holomorphic)
sectional curvature if k > 1. Note that all Hirzebruch surfaces (and generalized Hirzebruch
manifolds) admit Kähler metric with Ric1 > 0. This contracts sharply with the Fano condi-
tion of Ric > 0. The class of manifolds with Rick > 0 (for k < n) contains many non-Fano
examples. It remains interesting to find for what k the class Rick > 0 has finite deformation
connected components (cf. [24, 31] for the Fano case).

The proof of Theorem 1.1 is completely different from that of [7, 16, 24]. Here it is built
upon recent techniques of applying the (partial) maximum principle via the viscosity consider-
ation developed by the author in [33,34]. It is in the proof of the projectivity, Whitney’s comass
(amounts to an operator norm) is employed to localize the problem. The proof of rational con-
nectedness also needs a second variation consideration of author (with F. Zheng [40]) to obtain
some desired estimates in the fiber direction of the flags in T 0N . The proof also uses a recent
result of [8].

The literature on the fundamental group �1.N / of a Kähler manifold N is big (cf. [2,33]
and references there). A result of Kobayashi [20] asserts that a compact Kähler manifold
with Ric > 0 must be simply-connected. Same conclusion was proved by Tsukamoto [45] for
compact Kähler manifold with H > 0. The next result of this paper provides an analogue of
Kobayashi’s and Tsukamoto’s theorems for Kähler manifolds with Ric? > 0.

Theorem 1.2. A compact Kähler manifoldN with Ric? > 0must be simply-connected.

The result was conjectured in the paper [37]. In [37], the authors – motivated by the
Laplace comparison theorem and the holomorphic Hessian comparison theorem – studied the
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orthogonal Ricci curvature

Ric?.X;X/ + Ric.X;X/ �
R.X;X;X;X/

jX j2

for any type .1; 0/ tangent vector X . Here R.X;X;X;X/ is the holomorphic sectional curva-
ture (denoted as H.X/), which is the Gauss curvature of the infinitesimal curve tangent to X .
For a compact Kähler manifold N n (n D dimC.N /), with Ric? > 0 everywhere, its projectiv-
ity was shown in [37], via a uncommon unitary congruence normal form for .2; 0/-forms.1) It
was also proved in [37] that j�1.N /j <1 in general, and �1.N / D ¹0º for n D 2; 3; 4.

Unlike Ric, Ric?.X;X/ does not come from a Hermitian symmetric sesquilinear form.
But it can be viewed as the holomorphic sectional curvature of a Bochner curvature operator
(namely the curvature operator which arises in the standard Bochner formula computing the
Laplacian of the square of the norm of two forms, cf. [36, 37]). Despite this close connection
with the holomorphic sectional curvature, the proof of Theorem 1.2 follows the scheme of [20]
(for Ric > 0) via a Riemann–Roch–Hirzebruch formula and a vanishing theorem on Hodge
numbers hp;0. The vanishing of hp;0 for all 1 � p � n needed in [20] is known by Kodaira’s
vanishing theorem. However, the proof of hp;0 D 0 for all 1 � p � n under Ric? > 0 (cf.
Theorem 2.2) requires a completely new idea which involves a novel use of a viscosity con-
sideration of Whitney’s comass. The effective method also plays an important role in the proof
of the above rational connectedness result. Note that our proof applies to the case of H > 0

(implying Tsukamoto’s result). It provides a unified argument for all cases of ¹Rick > 0º,
k 2 ¹1; : : : ; nº, and Ric? > 0 with additional information hp;0 D 0 for all 1 � p � n.

The study of Ric? > 0 in the papers [36, 39] is also motivated by the so-called gener-
alized Hartshorne conjecture (cf. [9, Conjectures 11.1 and 11.2] and [53, Conjecture 8.23]):
A Fano manifold has nef tangent bundle if and only if it is a Kähler C-space. The first curvature
notion one naturally would like to associate with the nefness condition is the so-called almost
nonnegativity of bisectional curvature. However, it has been proved recently that the almost
nonnegativity of the bisectional curvature [3] implies that the manifolds are diffeomorphic
to compact quotients of Hermitian symmetric spaces, provided the volume is non-collapsing.
A recent work of the author with X. Li [27] extends this to the (weaker) almost nonnegativity of
the orthogonal bisectional curvature. In [47] a curvature positivity notion, namely the quadratic
orthogonal bisectional curvature QB (cf. (2.2) for its definition) was proposed (by Wu, Yau and
Zheng) for the purpose of a curvature characterization of the Kähler C-spaces. Unfortunately,
as shown in [11], it is a bit off the target since only for about eighty percentage of classical
Kähler C-spaces with 2nd Betti number b2 D 1 (with the canonical Kähler–Einstein metric)
have QB > 0, while for the rest twenty percent manifolds QB < 0 somewhere. As a step back,
the positivity of Ric? was studied in [39] for the purpose of the curvature characterization
of C-spaces, since on all classical C-spaces with b2 D 1 the canonical Kähler–Einstein met-
rics satisfy Ric? > 0 (see [36]). Further studies of compact Kähler manifolds with Ric? > 0
were carried in a recent work [36]: A complete classification for threefolds, a partial clas-
sification for fourfolds, and a Frankel-type result were obtained for compact Kähler mani-
folds with Ric? > 0 in [36]. Many examples were also constructed in [36, 37] illustrating

1) Due to E. Cartan implicitly (L.-G. Hua explicitly in a paper of 1945), cf. [37, p. 151]. This partially
contributes to the gap between the first appearance of Ric? [28] and meaningful results in [36, 37, 39].
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that Ric?, H , and Ric are completely independent except the trivial relation

Ric.X;X/ D Ric?.X;X/C
H.X/

jX j2
:

On the other hand, except for dimension nD 2; 3 (and n D 4 if one is optimistic) [36], Ric? >0
appears not enough to imply that the manifold is a Kähler C-space. This is partially reflected by
the flexible constructions of metrics with Ric? > 0 on fiber bundles over a positively curved
Kähler manifold in [36].

At the same time, motivated by the local rigidity theorem of Calabi and Vesentini [6],
the above relation between Ric? and the generalized Hartshone conjecture, we introduce two
stronger (than Ric?) notions of intrinsic curvature positivity, namely the cross quadratic bisec-
tional curvature (abbreviated as CQB > 0) and its dual dCQB (cf. (2.3) and (2.4)) in this paper.
The defining expressions appear similar to the quadratic orthogonal bisectional curvature. How-
ever, a sharp contrast is that the positivity of CQB and its dual can be verified for all classical
Kähler C-spaces with b2 D 1 (cf. Theorems 5.4 and 6.7). Results as initial studies of these two
notions of curvature in this paper includes:

(1) CQB > 0 implies Ric? > 0.

(2) The projectivity and simply-connectedness of manifolds with CQB > 0 or dCQB > 0

(cf. Theorem 2.7).

(3) A deformation rigidity result for manifolds with quasi-positive dCQB (or quasi-nega-
tive CQB).

Since there are non-locally Hermitian symmetric manifolds with CQB < 0, it follows that (3)
generalizes the result of Calabi and Vesentini [6]. Utilizing the Kähler–Ricci flow, the Fanoness
was proved under the assumptions of CQB � 0 (or dCQB � 0) and the finiteness of �1.N /
recently in [38] joint with F. Zheng. In particular, CQB > 0 (or dCQB > 0) implies that N is
Fano. Hence there is a good chance that one of these two curvature notions can provide the
curvature characterization of the Kähler C-spaces. Tracing dCQB (CQB, respectively) leads
to a related notion of Ricci curvature, namely RicC (Ric?, respectively). We also show that
a compact Kähler manifold with RicC > 0 is projective and simply-connected. It is also proved
in this paper that any compact Kähler manifolds with quasi-positive Ric? and of Picard number
one must be Fano. However, the rational connectedness of manifolds with Ric? > 0 remains
unknown. Since the condition Ric? > 0 allows arbitrarily large b2 (cf. [38] for examples of
Type A Kähler C-spaces with CQB � 0, Ric? > 0, dCQB > 0, and with arbitrarily large b2),
the implications of Ric? > 0 on the dimension of certain harmonic .1; 1/-forms is included in
the appendix.

The well-known curvature notions for Kähler manifolds include the sectional curvature,
the bisectional curvature B.X; Y / + R.X;X; Y; Y /, and the holomorphic sectional curvature
H.X/ mentioned above. For Hermitian manifolds there is Griffiths’ positivity [15]. Restricted
to Kähler manifolds, it is the same as B > 0. Various positivity notions in algebraic geometry
are discussed in the excellent books of Lazarsfeld [25, 26]. However, the positivity (even the
nonnegativity) of bisectional curvature is rather restrictive for compact Kähler manifolds since
Mori’s solution of the Hartshorne conjecture [29] asserts that if T 0N is ample, the complex
manifoldN D Pn, the complex projective space. In particular, sinceB > 0 implies that T 0N is
ample (cf. [26, Theorem 6.1.25]), Mori’s result implies that the only compact Kähler manifold
with B > 0 is Pn (cf. [43], for an independent Kähler geometric proof of Siu and Yau).
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Related to results of this paper, the projectivity of compact Kähler manifolds with S2 > 0
was recently proved in [40], generalizing an earlier result of [50] under the stronger assump-
tion H > 0. A general (maybe the most general possible) result on a weaker criterion of the
projectivity can be found in Corollary 4.4 (i.e. any Kähler manifold of BC-2 positive curvature
is projective). The vanishing of hp;0 in Theorems 1.1 and 1.2 is also extended to broader cases
in Theorem 6.3. For algebraic manifolds with H > 0 the rational connectedness was proved
in [16] (cf. also [51]). Recent work [33] also contains results on the fundamental groups of
compact Kähler manifolds with Rick � 0, in particular H � 0. We hope that this paper serves
an introduction to relatively new notions of positivity concerning the intrinsic metrics, namely
Rick , Ric?k , CQBk , as well as their dual RicC

k
, dCQBk , for Kähler manifolds. One can find

many questions/open problems, and examples, in later sections of this paper.

2. Definitions and statements of results

We start with the following conjecture proposed in [37, Conjecture 1.6].

Conjecture 2.1. Let N n (n � 2) be a compact Kähler manifold with Ric? > 0 every-
where. Then for any 1 � p � n, there is no nontrivial global holomorphic p-form, i.e. the
Hodge number hp;0 D 0. In particular, N n is simply-connected.

The conjecture was confirmed for n D 2; 3; 4 in [37] following a general scheme of
Kobayashi. As illustrated in [37], the “in particular” part, namely the simply-connectedness
of compact Kähler manifolds, would follow from Hirzebruch’s Riemann–Roch formula [17]
as follows: Letting ON be the structure sheaf, the Euler characteristic number

�.ON / + 1 � h1;0 C h2;0 � � � � C .�1/nhn;0

satisfies that
�.O�N / D � � �.ON /

by the Riemann–Roch–Hirzebruch formula if �N is a finite �-sheets covering of N . On the
other hand, the vanishing of all Hodge numbers hp;0 for 1 � p � n (which is the main part of
the conjecture) asserts that �.ON / D 1 for both N and �N if �N is compact and of Ric? > 0
(hence projective). This forces � D 1, hence �1.N / D ¹0º. Note that the universal cover �N
satisfies Ric? > ı > 0. Hence �N is compact and projective by [37, Theorem 3.2]. This argu-
ment was the one used in [20, 37] proving the simply-connectedness of a Fano manifold, and
for n D 2; 3; 4 with Ric? > 0.

In this paper we prove Conjecture 2.1 for all n � 2 by a stronger result, namely the
vanishing of hp;0 under a weaker curvature condition related to p. First we recall this condition
(cf. [37, Section 4]). Let † be a k-subspace † � T 0xN . Let«

f .Z/ d�.Z/ +
1

Vol.S2k�1/

Z
S2k�1

f .Z/ d�.Z/;

where S2k�1 is the unit sphere in †. Define

(2.1) S?k .x;†/ + k
«
Z2†; jZjD1

Ric?.Z;Z/ d�.Z/:
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Similarly, Sk.x;†/, the k-scalar curvature of †, can be defined by replacing Ric?.Z;Z/
with Ric.Z;Z/ in (2.1). Let S?

k
.x/ + inf† S?k .x;†/. Thus S?

k
.x/ > 0 if and only if for any

k-subspace † � T 0xM , S?
k
.x;†/ > 0. The condition S?

k
.x/ > 0, k 2 ¹1; : : : ; nº, interpolate

between Ric?.X;X/ and n�1
nC1

S.x/ (see Lemma 5.1). It is easy to see that S?
`
> 0 implies

S?
k
> 0 for k � `. And it is not hard to prove that (cf. (3.2))

S?k .x;†/ D
�
Ric.E1; E1/C Ric.E2; E2/C � � � C Ric.Ek; Ek/

�
�

2

.k C 1/
Sk.x;†/:

Note that the corresponding collection of k-scalar curvatures ¹Sk.x/ W k D 1; : : : ; nº inter-
polates between the holomorphic sectional curvature H.X/ and the scalar curvature S.x/.
Equation (2.1) in particular implies that S?n .x/ D

n�1
nC1

S.x/: The first theorem of this paper
proves that hp;0 D 0 for all p � k if S?

k
> 0 or Sk > 0. Conjecture 2.1 follows since Ric? > 0

implies that S?
k
> 0 for all k 2 ¹1; : : : ; nº.

Theorem 2.2. Let .N; g/ be a compact Kähler manifolds such that S?
k
.x/ > 0 for

any x 2 N . Then hp;0 D 0 for any p � k. The same result holds if Sk > 0. In particular, if
Ric? > 0 (or H > 0), then hp;0.N / D 0 for all 1 � p � n, and N is simply-connected.

The part h2;0 D 0 was proved in [37,40] under the assumption S2.x/ > 0. The argument
there is limited to p D 2 since one has to use a normal form for .2; 0/-forms. The proof here
uses a different idea which is developed recently in [34] to prove a new Schwarz Lemma by
the author. We recall that idea first before explaining the related details. Starting from the work
of Ahlfors, the Schwarz Lemma concerns estimating the gradient of a holomorphic map f
between two Kähler (or Hermitian) manifolds .Mm; h/ and .N n; g/. For that it is instrumental
to study the pull-back .1; 1/-form f �!g , where !g is the Kähler form of .N; g/. The tradi-
tional approach (before the work of [34]) is to compute the Laplacian of the trace of f �!g .
But in [34], the author estimated the largest singular value of df , equivalently the biggest eigen-
value of f �!g , by applying the àà-operator to the maximum eigenvalue of f �!g (which is
only continuous in general) via a viscosity consideration. It allows the author to prove another
natural generalization of Ahlfors’ result with a sharp estimate on the largest singular value
of df in terms of the holomorphic sectional curvatures of both the domain and target mani-
folds. This estimate can be viewed as a complex version of Pogorelov’s estimate for solutions
of the Monge–Ampère equation [41]. To prove the vanishing of holomorphic .p; 0/-forms
under the assumption of Ric? > 0, in Section 3 we apply the àà-operator on the comass of
holomorphic .p; 0/-forms (cf. [13, 46]), through a similar viscosity consideration. The comass
of a .p; 0/-form generalizes the biggest singular value of df in some sense since one can view
df as a vector valued .1; 0/-form. It can be done thanks to some basic properties of the comass
established by Whitney [46]. This new idea also allows us to prove a generalization of the main
theorem in [40] (cf. Corollary 4.4).

By combining this new idea with the work of [40], in Section 4, we prove the projectiv-
ity and the rational connectedness of compact Kähler manifolds under the condition Rick > 0,
i.e. Theorem 1.1. The notion Rick was introduced in [34] to prove that any Kähler manifold
with Rick < 0 uniformly must be k-hyperbolic, a concept generalizing the Kobayashi hyperbol-
icity (which amounts to 1-hyperbolic). Let Rick;�.x/ + inf†;v2†;jvjD1 Rick.x;†/.v; v/ and
similarly Rick;C.x/ + sup†;v2†;jvjD1 Rick.x;†/.v; v/. Here Rick.x;†/ is the Ricci curva-
ture of the curvature tensor R restricted to † � TxN . Thus Rick;�.x/ > �.x/ if and only if
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Rick.x;†/.v; v/ > �jvj2, for any v 2 † and for every k-dimensional subspace †. We say N
has positive Rick if Rick;�.x/ > 0 for all x 2 N . The condition Ric1 > 0 is equivalent to that
the holomorphic sectional curvature H > 0. For k D n, Rick is the Ricci curvature. By [1, 18]
Rick > 0 is independent from Ric` > 0 for k ¤ ` (cf. also [37, 49] for more examples). The
known examples of manifolds with Rick > 0 for k ¤ n contain mostly non-Fano manifolds.
It remains interesting to find out for what k and n the deformation types of manifolds with
Rick > 0 is finite.

As in [37, 40] the projectivity only needs h2;0 D 0. In Theorem 4.2 we show a stronger
vanishing result: hp;0 D 0 for any 1 � p � n under the assumption that Rick > 0 for some
1 � k � n. (In Theorem 6.3 this result is extended to Ric?k > 0 and RicC

k
> 0). The rational

connectedness is proved in Section 4 by another vanishing theorem, whose validity is a crite-
rion of the rational connectedness, thanks to [8]. Both the second variation estimate from [40]
and the one utilizing the comass for .p; 0/-forms introduced in Section 3 of this paper are cru-
cial in proving these two vanishing theorems. Theorem 1.1 generalizes both the result for Fano
manifolds [7, 24] (the case k D n, namely the Fano case of Campana, and Kollár, Miyaoka
and Mori), and the more recent result for the compact Kähler manifolds with positive holomor-
phic sectional curvature [16] by Heier and Wong (cf. also [50] for the projectivity for the case
k D 1), since Ric1 > 0 amounts to H > 0 and Ricn D Ric. It is not clear if Rick > 0 has any-
thing to do with that Ricci curvature is k-positive in general. When k D 1, Hitchin’s examples
show that they are independent. However Rick is related to the notion of q-Ricci studied in
Riemannian geometry which interpolates the Ricci and the sectional curvature. In particular,
it is the complex analogue of q-Ricci and if the .2k � 1/-Ricci is positive in the sense of
Bishop and Wu [4, 48], then Rick > 0. The positivity of the .2k � 1/-Ricci is a much stronger
condition than Rick > 0 since it requires the Ricci being positive on all 2k-dimensional sub-
spaces of the (complexified) tangent space TxN for all x 2 N . This makes that the positivity
of the p-Ricci implies the positivity of q-Ricci if q � p. On the other hand since most of
2k-dimensional (real) subspaces of TxN ˝C are neither invariant under the almost complex
structure, nor subspaces of T 0N , Rick > 0 is a lot weaker than .2k � 1/-Ricci being positive.
A major difference is that Rick > 0 does not imply RickC1 > 0, unlike the q-Ricci positivity
condition.

In Section 5 we study the question when a compact Kähler manifold with Ric? > 0 is
Fano, a question raised in [37]. We give an affirmative answer under an extra assumption.

Theorem 2.3. Let .N; h/ be a compact Kähler manifold of complex dimension n. Then:

(i) If Ric? is quasi-positive (namely Ric? � 0 everywhere and Ric? > 0 somewhere) and
the Picard number �.N / D 1, then N must be Fano.

(ii) If Ric? is quasi-negative and h1;1.N / D 1, thenN must be projective with ample canon-
ical line bundle KN .

In particular, in case (i) N admits a Kähler metric with positive Ricci, and case (ii) N admits
a Kähler–Einstein metric with negative Einstein constant.

Since it was proved in [37] that N is projective and

h1;0.N / D h2;0.N / D 0 D h0;2.N / D h0;1.N /

under the assumption that Ric? > 0, the assumption of �.N / D 1 for case (i) is equivalent to
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the assumption that the second Betti number b2 D 1. We should mention that in [36], it has been
shown that for all Kähler C -spaces of classical type with b2 D 1 the canonical Kähler–Einstein
metric satisfies Ric? > 0.

To put Theorem 2.3 into perspectives, it is appropriate to recall some earlier works.
First related to Ric? � 0 there exists a stronger condition called the nonnegative quadratic
orthogonal bisectional sectional curvature, studied by various people including authors of [47]
and [10], etc. The quadratic orthogonal bisectional curvature (abbreviated as QB), is defined
for any real vector Ea D .a1; : : : ; an/tr and any unitary frame ¹Eiº of T 0xN ,

QB.Ea/ D
X
i;j

Riij j .ai � aj /
2:

In [35] it was formulated invariantly as a quadratic form on the space of Hermitian symmetric
tensors. Precisely for symmetric tensor A,

QBR.A/ + hR;A2 ^ id � A ^ Ai:

Interested readers can refer to [35] for the notations involved. For any unitary orthogonal frame
of T 0N , ¹E˛º, we adapt

(2.2) QBR.A/ +
nX

˛;ˇD1

R.A.E˛/; A.E˛/; Eˇ ; Eˇ / �R.E˛; Eˇ ; A.Eˇ /; A.E˛//:

Clearly, it is independent of the choice of the unitary frame. Its nonnegativity, abbreviated
as NQOB, is equivalent to that QB.Ea/ � 0 for any Ea with respect to any unitary frame ¹Eiº.
NQOB was formally introduced in [47] (appeared implicitly in the work of Bishop and Gold-
berg in 1960s). It is easy to see that QB > 0 implies Ric? > 0.2) In [10] the following was
proved by Chau and Tam in [10, Theorem 4.1]:

Theorem 2.4 (Chau–Tam). Let .N; h/ be a compact Kähler manifold with NQOB and
h1;1.N / D 1. Assume further that N is locally irreducible then c1.M/ > 0.

Theorem 2.3 has the following corollary, which extends the above result.

Corollary 2.5. Let .N; h/ be a compact Kähler manifold of complex dimension n with
Ric? � 0. Assume further that h1;1.N / D 1 and N is locally irreducible. Then c1.N / > 0,
namely N is Fano. A similar result holds under the assumption Ric? � 0.

There exists compact Kähler manifolds with b2 > 1 (cf. construction in [36] via projec-
tivized bundles) and Ric? > 0. Hence it remains an interesting question whether or not the
same conclusion of Theorem 2.3 (i) holds without the assumption h1;1 D 1. Since the quasi-
positivity of QB implies that h1;1 D 1, as a consequence we have that any compact Kähler
manifold with quasi-positive QB must be Fano. Whether or not the same conclusion of part (ii)
of Theorem 2.3 holds without assuming that h1;1 D 1 remains open.

As mentioned in Section 1, motivated by the relation of the condition Ric? > 0 with the
generalized Hartshone conjecture and the work of Calabi and Vesentini we introduce the cross
quadratic bisectional curvature (abbreviated as CQB) as a Hermitian quadratic form on the

2) Motivated by the work of Calabi and Vesentini [6], we introduce the so-called cross quadratic bisectional
curvature (abbreviated as CQB), another (quadratic form-type) curvature, whose positivity also implies Ric? > 0.
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space of linear maps A W T 00xN ! T 0xN :

(2.3) CQBR.A/ +
nX

˛;ˇD1

R.A.E˛/; A.E˛/; Eˇ ; Eˇ / �R.E˛; Eˇ ; A.E˛/; A.Eˇ //:

Here ¹E˛º is a unitary frame of T 0xN . It is easy to see that CQB.A/ is independent of the choice
of the unitary frame. Dually, the dual cross quadratic bisectional curvature (dCQB) is defined
as a Hermitian quadratic form on linear maps A W T 0N ! T 00N :

(2.4) dCQBR.A/ +
nX

˛;ˇD1

R.A.E˛/; A.E˛/; Eˇ ; Eˇ /CR.E˛; Eˇ ; A.E˛/; A.Eˇ //:

The advantage of these two curvature notions over QB is demonstrated by

Theorem 2.6. The following statements hold.

(i) LetN n be a classical Kähler C-space with n � 2 and b2 D 1. Then the canonical metric
satisfies CQB > 0 and dCQB > 0.

(ii) For a compact Kähler manifolds with quasi-positive dCQB (or quasi-negative CQB),
H q.N; T 0N/ D ¹0º, for 1 � q � n, and N is deformation rigid in the sense that it does
not admit nontrivial infinitesimal holomorphic deformation. In particular, the deforma-
tion rigidity holds for all classical Kähler C-spaces with b2 D 1.

The proof uses the results of [6,11,19,36]. We also use the criterion of Frölicher and Ni-
jenhuis [14, 23] for the deformation rigidity statement. The key is a Kodaira–Bochner formula
(cf. [6]) and the role of a curvature notion dCQB (dual-cross quadratic bisectional curvature)
played in the Kodaira–Bochner formulae. The rigidity result on Kähler C-spaces can possi-
bly be implied by a result of Bott [5]. Here it follows from a general vanishing theorem for
manifolds with dCQB > 0. Hence before a complete classification of Kähler manifolds with
dCQB > 0 (cf. [38] for a precise conjecture related to this) the rigidity result above for N with
dCQB > 0 is a more general statement. One can refer Sections 5 and 6 for further motivations
and detailed discussions on these two new curvatures.

The new dual-cross quadratic bisectional curvature dCQB naturally induces a Ricci-type
curvature (in a similar manner as QB and CQB induces Ric?.) It is denoted by RicC, and is
defined, for any X 2 T 0xN , as

:

In Section 6, for the Kähler manifolds with RicC > 0 we have the following result similar to
the Ric? > 0 case.

Theorem 2.7. Let .N; h/ be a complete Kähler manifold with RicC � ı > 0 (or replaced
with any one of ¹Rick � ı;Ric?k � ı;RicC

k
� ıº). Then:

(i) N is compact,

(ii) hp;0 D 0 for all n � p � 1.

In particular, N is simply-connected and N is projective. Since dCQB > 0 implies RicC > 0,
this applies to compact manifolds with dCQB > 0.

\Ric^+(X, \bar{X})=\Ric(X, \bar{X})-H(X)/|X|^2
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The proof of the above result again makes use of the method via a viscosity consider-
ation on the comass (introduced in Section 3) and follows a similar line of argument as the
proof of Theorem 2.2. In Section 6 we also prove a diameter estimate and a result similar to
Corollary 2.5 for RicC.

The cross quadratic bisectional curvature and its dual dCQB are shown positive on some
exceptional Kähler C-spaces too. Since CQB > 0 (as QB > 0) implies Ric? > 0, Theorem 2.6
generalizes the result of [36]. On the other hand it was shown by Chau and Tam [11] that
QB > 0 fails to hold for all Kähler C-spaces with b2 D 1, and it was shown in [36] that there
exists a non-homogeneous compact Kähler manifold with Ric? > 0. Hence one of these two
new curvature notions will more likely give a curvature characterization of the compact Kähler
C-spaces with b2 D 1. Towards this direction we prove (in Theorem 5.3) that a compact Kähler
manifold with CQB > 0 must be rationally connected. This also follows from [7, 24] and the
statement that CQB > 0 (or dCQB > 0) implies that N is Fano (cf. [38]). More ambitious
project is to apply these curvatures to tackle the generalized Hartshorne conjecture concerning
the Fano manifolds with a nef tangent bundle (cf. conjectures formulated in [38]). We also
calibrate QB, CQB and dCQB into QBk , CQBk or dCQBk with k 2 ¹1; : : : ; nº to bridge them
with Ric? and RicC.

In the appendix, we study the gap in terms of vanishing theorems between QB > 0 and
Ric? > 0. Most results in this paper can be adapted to Hermitian manifolds without much
difficulty, if the notions of involved curvatures are properly extended.

3. Comass and the proof of Theorem 2.2

In [34] and [33] we developed a viscosity technique to apply a maximum principle to the
operator norm of the differential of a holomorphic map. Here we extend the idea to differen-
tial forms. The comass introduced by Whitney fits our need quite well. We start with a brief
summary of its properties. Let V be a Euclidean space. An r-(multi-)vector a is an element
of
V
r V , namely the space of r-multi-linear skew symmetric forms on V � (the dual of V ).

Here we identify V and V � via the inner product when needed. A vector a is called simple if
there exist v1; : : : ; vr 2 V such that

a D v1 ^ � � � ^ vr :

This can be defined for r-covector ! similarly. For an r-covector ! the comass is defined
in [46] as

k!k0 + sup¹j!.a/j W a is a simple r-vector; kak D 1º:

Here the norm k � k is the norm (an L2-norm in some sense) induced by the inner product
defined for simple vectors a D x1 ^ � � � ^ xr ;b D y1 ^ � � � ^ yr , with xi ; yj 2 V , as

ha;bi + det.hxi ; yj i/

and then extended bi-linearly to all r-covectors a and b which are linear combination of simple
vectors. The following results concerning the comass are well known. The interested read-
ers can find their proof in Whitney’s classics [46, pp. 52–55, Theorem 13A, Lemma 13a] or
Federer’s [13, Section 1.8].
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Theorem 3.1 (Whitney). The following statements hold.

(i) k!k0 is a norm and k!k0 D sup¹j!.a/j W kak0 D 1º, where kak0 is the mass of a defined
as

kak0 + inf
°X

kaik W a D
X

ai ; the ai simple
±
:

(ii) For any r-vector a, kak0 � kak, with equality if and only if a is simple.

(iii) For each ! there exists an r-vector b such that k!k0 D j!.b/j, b is simple, and kbk D 1.

(iv) If ! is simple, then k!k0 D k!k.

(v) One has k!k � k!k0 � .
rŠ.n�r/Š
nŠ

/
1
2 k!k, with the first inequality holds equality if and

only if ! is simple.

We shall prove the theorem via an argument by contradiction. Assume that S?
k
> 0 and

there exists a � ¤ 0 which is a harmonic .p; 0/-form with p � k. It is well known that it is
holomorphic. Let k�k0.x/ be its comass at x. Then its maximum (nonzero) must be attained
somewhere at x0 2 N . We shall exam � more closely in a coordinate chart (to be specified
later) of x0. By the above proposition, at x0, there exists a simple p-vector b with kbk D 1,
which we may assume to be ààz1 ^ � � � ^

à
àzp for a unitary frame ¹ ààzk ºkD1;:::;n at x0, such that

max
x2N
k�k0.x/ D k�k0.x0/ D j�.b/j:

If we denote
� D

1

pŠ

X
Ip

aIpdz
i1 ^ � � � ^ dzip ;

where Ip D .i1; : : : ; ip/ runs all p-tuples with is ¤ it if s ¤ t , we deduce

k�k0.x0/ D ja12���pj.x0/:

Extend the frame to have a normal complex coordinate chart U centered at x0. This means that
at x0, the metric tensor g

˛ˇ
satisfies (cf. [44])

g
˛ˇ
D ı˛ˇ ; dg

˛ˇ
D 0;

à2g
˛ˇ

àzàzı
D 0:

With respect to this coordinate

�.x/ D
1

pŠ

X
Ip

aIp .x/dz
i1 ^ � � � ^ dzip

for x 2 U with aIp .x/ being holomorphic. Let

��.x/ + 1q
det.g

˛ˇ
/1�˛;ˇ�p

q
det.g˛ˇ /1�˛;ˇ�p

a12���p.x/dz
1
^ � � � ^ dzp:

This is defined in U . Since �� is simple, we have

k��k20.x/ D k��k2.x/ D ja1���pj
2.x/

det.g
˛ˇ
/1�˛;ˇ�p

:

In particular, k��k0.x0/ D k�k0.x0/. On the other hand let a D ààz1 ^ � � � ^
à
àzp . Then by the



278 Ni, The fundamental group and the positivity

definition of the comass k � k0, namely k�k0 D sup j�.a/j
kak , taking among all simple nonzero a,

k�k20.x/ �
j�.a/j2

kak2
D

ja1���pj
2.x/

det.g
˛ˇ
/1�˛;ˇ�p

� k��k20.x/:
Since k�k0.x/ � k�k0.x0/, as a consequence we have that

k��k.x/ D k��k0.x/ � k�k0.x/ � k�k0.x0/ D ja1���p.x0/j D k��k0.x0/ D k��k.x0/:
In summary, we have constructed a simple .p; 0/-form ��.x/ in the neighborhood of x0 such
that its L2-norm attains its maximum value at x0.

Now apply àvàv to log k��k2 at x0. If v D ààz , we have that at point x0 that

0 � �

pX
˛;ˇD1

g˛ˇ
à2

àzàz
g
˛ˇ
D

pX
˛D1

R˛˛ :

Namely, we have arrived that at x0,

(3.1) 0 �

pX
jD1

Rvvjj :

Now we are essentially at the same position of the proof in [37]. For the sake of the complete-
ness we include the argument below. Let † D span¹ ààz1 ; : : : ;

à
àzp º. It is easy to see from (3.1)

that Sp.x0; †/ � 0, where Sp.x0; †/ denotes the scalar curvature of the curvature R restricted
to †. In fact, Sp.x0; †/ D

Pp
i;jD1Riij j .

On the other hand as in [37],
1

p
S?p .x0; †/(3.2)

D

«
Z2†; jZjD1

Ric?.Z;Z/ d�.Z/

D

«
Z2†; jZjD1

.Ric.Z;Z/ �H.Z// d�.Z/

D

«
1

Vol.S2n�1/

�Z
S2n�1

.nR.Z;Z;W;W / �H.Z// d�.W /

�
d�.Z/

D
1

Vol.S2n�1/

Z
S2n�1

�«
.nR.Z;Z;W;W / �H.Z// d�.Z/

�
d�.W /

D
1

p
.Ric11CRic22C � � � C Ricpp/ �

2

p.p C 1/
Sp.x0; †/:

Applying (3.1) to v D ààzi for i D p C 1; : : : ; n, and summing the obtained inequalities we
have that

(3.3) Ric11CRic22C � � � C Ricpp D Sp.x0; †/C
nX

`DpC1

pX
jD1

R
``jj
� Sp.x0; †/:

Combining (3.2) and (3.3), we have that

0 < S?k .x0/ � S
?
p .x0; †/ � Sp.x0; †/ �

2

p C 1
Sp.x0; †/ D

p � 1

p C 1
Sp.x0; †/:

This implies Sp.x0; †/ > 0, a contradiction, since we have shown that a consequence of (3.1)
is Sp.x0; †/ � 0.
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From the definition of S?
k

it is easy to see that Ric? > 0 implies that S?
k
> 0 for all

k 2 ¹1; : : : ; nº. Hence hp;0 D 0 for all p � 1 by the above under the assumption Ric? > 0.
The simply-connectedness claimed in Theorem 2.2 follows from the argument of [20]

illustrated in the introduction. The proof under the assumption Sk > 0 is similar, but easier in
view of (3.1).

Note that under Ric? > 0, �1.N / is finite by a result of [37]. This in particular implies
that b1 D 2h1;0 D 0. The argument here provides an alternate proof of this.

Remark 3.2. The argument here also provides an alternate proof of the main theorem
of [40]. It is clear that the Kählerity is not absolutely needed. Hence one can easily formu-
late a corresponding result for Hermitian manifolds. We leave this to interested readers. The
concepts of Sk.x;†/ and S?

k
.x0; †/ were introduced in [33, 34, 37, 40].

4. Rational connectedness and Rick

A complex manifold N is called rationally connected if any two points of N can be
joined by a chain of rational curves. Various criterion on the rational connectedness have been
established by various authors. In particular, the following was prove in [8]:

Theorem 4.1 (Campana–Demailly–Peternell). Let N be a projective algebraic mani-
fold of complex dimension n. Then N is rationally connected if and only if for any ample line
bundle L, there exist C.L/ such that

(4.1) H 0.N; ..T 0N/�/˝p ˝ L˝`/ D ¹0º

for any p � C.L/`, with ` being any positive integer.

It was proved in [16] that a compact projective manifold with positive holomorphic sec-
tional curvature must be rationally connected. The projectivity was proved in [50] afterwards
(an alternate proof of the rational connectedness was also given there). In [34], the concept
Rick was introduced, which interpolates between the holomorphic sectional curvature and the
Ricci curvature. Precisely for any k dimensional subspace † � T 0xN , Rick.x;†/ is the Ricci
curvature of Rj†. Under Rick < 0, the k-hyperbolicity was proved in [34].

We say Rick;�.x/ > �.x/ if for any v 2 † and for every k-dimensional subspace †,

Rick.x;†/.v; v/ > �jvj
2:

Similarly, Rick > 0 means that Rick;�.x/ > 0 everywhere. The condition Rick > 0 does not
become weaker as k increases since more v needs to be tested. In fact, Hitchin [18] illustrated
examples of Kähler metrics with Ric1 > 0 on all Hirzebruch surfaces. But on most of them
one could not possibly find metrics with Ric2 > 0. More examples can be found in [1, 37].
But it is easy to see that Sk > 0 does follow from Rick > 0, and Sk > 0 becomes weaker as k
increases with S1 being the same as the holomorphic sectional curvature and Sn being the scalar
curvature. Hence if Ric2 > 0, N is also projective by the result of [40]. Naturally one would
ask whether or not a compact Kähler manifold with Rick > 0 for some k 2 ¹3; : : : ; n � 1º is
projective since the projectivity has been known for the cases of k D 1; k D 2 and k D n. The
following result provides an affirmative answer.
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Theorem 4.2. Let .N n; h/ be a compact Kähler manifold with Rick > 0 for some
1 � k � n. Then hp;0 D 0 for 1 � p � n. In particular, N must be projective.

Proof. By Theorem 2.2 and that Rick > 0 implies Sk > 0 we have that hp;0 D 0 for
p � k. Hence we only need to focus on the case p < k. The first part of proof of Theorem 2.2
asserts that if there exists a holomorphic .p; 0/-form � ¤ 0, then (3.1) holds. Namely, there
exists x0 2 N , and a unitary normal coordinate centered at x0 such that at x0:

(4.2)
pX
jD1

Rvvjj � 0

for any v 2 T 0x0N .
Now we pick a k-subspace † � T 0x0N such that it contains the p-dimensional subspace

spanned by ¹ ààz1 ; : : : ;
à
àzp º. Then, by the assumption Rick > 0 for all j 2 ¹1; : : : ; pº,«

v2S2k�1�†
Rvvjj d�.v/ D

1

k
Rick

�
à
àzj

;
à
àzj

�
> 0:

Thus we have that «
v2S2k�1�†

pX
jD1

Rvvjj d�.v/ > 0:

This is a contradiction to (4.2). The contradiction proves that hp;0 D 0 for p < k. The projec-
tivity follows from h2;0 D 0 and a theorem of Kodaira (cf. [30, Theorem 8.3 of Chapter 3]).

For k D 1; 2; n, the result is previously known except when k D 2; p ¤ 2. The above
proof provides a unified argument for all the previous known cases. The argument above proves
a bit more. To state the result, we introduce the following:

Definition 4.3. We call the curvature operator R BC-p positive at x0 (BC stands for
the bisectional curvature) if for any unitary orthogonal p-vectors ¹E1; : : : ; Epº, there exists
a v 2 T 0x0N such that

(4.3)
pX
iD1

RvvEiE i > 0:

We say that .N; h/ is BC-p positive if the above holds all x0 2 N . This can be easily adapted
to Hermitian bundle .V; h/ over a Hermitian manifold N since the expression in (4.3) makes
sense for v 2 Vx0 and unitary p-vectors ¹E1; : : : ; Epº of T 0x0N .

It is easy to see that BC-1 positivity is the same as RC-positivity for the tangent bundle
defined in [50]. In general BC-p positivity amounts to at any x 2 N ,

min
†2Gp;n.T

0
xN/

max
jX jD1

�«
Z2S2p�1�†

R.X;X;Z;Z/ d�.Z/

�
> 0:

Here Gp;n.T 0xN/ denotes the Grassmannian of rank p subspaces of T 0xN . If we endow a com-
pact complex manifoldN n with a Hermitian metric, letR be its curvature, which can be viewed
as section of

V1;1
.End.Tx0N//. Then BC-p positivity can be defined for any Hermitian vector

bundles. Here we specialize it to V D T 0N .
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Corollary 4.4. If the curvature of a Hermitian manifold .N n; h/ satisfies the BC-p
positivity for some 1 � p � n, then hp;0 D 0. Hence any Kähler manifold with BC-2 positive
curvature must be projective. Moreover, the 2-positivity of Rick (for some k � 2) implies the
BC -2 positivity, thus the projectivity of N . Similarly, Ric?kC1 > 0 implies BC-p positivity for
all p � k.

In Theorem 6.3 the last statement is strengthen into BC-p positivity for all p � 1. Here
we define

Ric?k

for a k-dimensional subspace † � T 0xN and v 2 †. The positivity of Ric?k is defined as Rick .
Clearly, Ric?1 � 0. Note that Ric?2 � 0 is the same as the orthogonal bisectional curvature is
nonnegative; Ric?n is the same as Ric?.

Proof. By the proof of Theorem 4.2 and by definition, we only need to show the last
statement. The 2-positivity of Rick means that for any k-dimensional † � T 0x0N and any two
unitary orthogonal E1; E2 2 †,

Rick.x0; †/.E1; E1/C Rick.x0; †/.E2; E2/ > 0:

This clearly implies BC-2 positivity, since for any given unitary orthogonal ¹E1; E2º there
always a k-dimensional † containing them, and if R.v; v; E1; E1/CR.v; v; E2; E2/ � 0 for
all v 2 †, it is easy to see that

Rick.x0; †/.E1; E1/C Rick.x0; †/.E2; E2/ � 0:

If Ric?kC1 > 0, then it implies that, for a unitary frame ¹Eiº of a .k C 1/-dimensional †
with E1 D X

jX j
,

kC1X
jD2

R.X;X;Ej ; Ej / > 0;

which implies BC-k positive. On the other hand, a simple calculation shows that«
S2kC1�†�T 0xN

Ric?kC1.Z;Z/ d�.Z/ D
k

.k C 1/.k C 2/
SkC1.x/:

The case of ` > k follows by the proposition below if k C 1 < n.

Proposition 4.1. For a Kähler manifold .N; h/, Sk.x0/ > 0 implies BC-p positivity
for any p � k, and the `-positivity of Rick.x0/ (with ` � k) implies BC-p positivity for any
` � p � n.

Proof. Note that Sp > 0 implies BC-p positivity. The first claim follows from the fact
that Sk > 0 implies Sp > 0 for any p � k. For the second statement, if p � k, the result fol-
lows from the first. If `�p < k, for unitary p-vectors ¹E1; : : : ; Epºwe choose a k-subspace†
containing them. If

Pp
iD1R.v; v; Ei ; Ei / � 0 for all v 2 †, it implies that

pX
iD1

Rick.x0; †/.Ei ; Ei / � 0:

This violates the `-positivity of Rick.x0/.

(x, \Sigma)(v, \bar{v})=\Ric_k(x, \Sigma)(v, \bar{v})-H(v)/|v|^2
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One can also extend the definition of Rick to a Hermitian vector bundle over Hermitian
manifolds. Let

R D R
˛ˇi

jdz˛ ^ dzˇ ˝ e�i ˝ ej

be the curvature of a Hermitian vector bundle .V; h/ over a Hermitian manifold.

Definition 4.5. Let † � T 0x0N and � � Vx0 be two k-dimensional subspaces. Define
for X 2 T 0x0N , v D viei 2 Vx0 with ¹ekºLkD1 being a unitary frame of Vx0 , L D dim.Vx0/,
the first and second Rick as follows:

Ric1k.x0; �/.X;X/ D
kX
iD1

RXX s
rasi a

t
ihrt ;

Ric2k.x0; †/.v; v/ D
kX
˛D1

RE˛E˛ i
j vivlh

j l
;

with ¹E˛ºk˛D1 being a unitary frame of †, and ¹ QeiºkiD1 being a unitary frame of � . Here

Qei D

LX
kD1

aki ek :

Note that Ric1 is a .1; 1/-form of N , and that it coincides with the first Chern–Ricci of
a Hermitian manifold if k D n and V D T 0N . Further, observe that for V D T 0N , Ric1kj� is
Rick.x0; �/ when N is Kähler, and generalizes Rick to the case of N being just Hermitian.

Corollary 4.4 generalizes the main theorem of [40]. Towards the rational connectedness
we prove the following result.

Theorem 4.6. Let .N n; h/ be a compact projective manifold with Rick > 0 for some
k 2 ¹1; : : : ; nº. Then (4.1) holds, and N must be rationally connected.

Proof. Before the general case, we start with a proof for the special case k D 1 by prov-
ing the above criterion in Theorem 4.1 directly via the àà-Bochner formula. Let s be a holo-
morphic section in H 0.N; ..T 0N/�/˝p ˝ L˝`/. Locally it can be expressed as

s D
X
Ip

aIp;`dz
i1 ˝ � � � ˝ dzip ˝ e`

with Ip D .i1; : : : ; ip/ 2 Np, and e being a local holomorphic section ofL and e` D e˝� � �˝e
being the `th power of e. Equip L with a Hermitian metric a and let Ca be the corresponding
curvature form. The point-wise norm jsj2 is with respect to the induced metric of ..T 0N/�/˝p

and L˝`/. The àà-Bochner formula implies that for any v 2 T 0xN ,

àvàvjsj2 D jrvsj2 C
X
Ip

nX
tD1

pX
˛D1

haIp;`Rvvi˛tdz
i1 ˝ � � � ˝ dzi˛�1(4.4)

˝ dzt ˝ � � � ˝ dzip ˝ e`; si

�

X
Ip

haIp;``Ca.v; v/dz
i1 ˝ � � � ˝ dzip ˝ e`; si:
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Apply the above equation at the point x0, where jsj2 attains its maximum, with respect to
a normal coordinate centered at x0. Pick a unit vector v such that H.v/ attains its mini-
mum on S2n�1 � T 0x0N . By the assumption H > 0, there exists a ı > 0 such that H.v/ � ı
for any unit vector and any x 2 N . Diagonalize Rvv.�/.�/ by a suitable chosen unitary frame
¹
à
àz1 ; : : : ;

à
àzn º. By applying the first and second derivative tests, it shows that if at v 2 S2n�1,

H.v/ attains its minimum, then Rvvww � ı
2

, and Rvvvw D 0, for any w with jwj D 1, and
hw; vi D 0. This implies that

Rvvi˛i˛ D j�1j
2Rvvvv C jˇ1j

2Rvvww �
ı

2

where we write à
àzi˛ D �1v C ˇ1w with j�1j2 C jˇ1j2 D 1, w 2 ¹vº? and jwj D 1. (This

perhaps goes back to the work of Berger. See also for example [50] or [37, Corollary 2.1].) If A
is the upper bound of Ca.v; v/, we have that

0 � àvàvjsj2 �
�
pı

2
� `A

�
jsj2:

This is a contradiction for p � 3A`
ı

if s ¤ 0. Hence we can conclude that for any p � C.L/`
with C.L/ D 3A

ı
, H 0.N; ..T 0N/�/˝p ˝ L˝`/ D ¹0º.

For the general case, namely Rick > 0 for some k 2 ¹1; : : : ; nº, we combine the argu-
ment above with the second variation result of [40]. At the point x0 where the maximum of
jsj2 is attained, we pick † such that Sk.x0; †/ attains its minimum ı1 > 0. For simplicity of
the notations, we denote the average of a function f .X/ over the unit sphere S2k�1 in † byª
f .X/. The second variation consideration in [40] gives the following useful estimates.

Proposition 4.2 ([40, Proposition 3.1]). Let ¹E1; : : : ; Emº be a unitary frame at x0 such
that ¹Eiº1�i�k spans †. Then for any E 2 †, E 0 ? †, and any k C 1 � p � m, we have«

R.E;E
0
; Z;Z/ d�.Z/ D

«
R.E 0; E;Z;Z/ d�.Z/ D 0;(4.5) «

R.Ep; Ep; Z;Z/ d�.Z/ �
Sk.x0; †/

k.k C 1/
:(4.6)

Proof. For the convenience of the reader we include the proof. The proof uses the first
and second variation out of the fact that Sk.x0; †/ is minimum. Let a 2 u.m/ be an element
of the Lie algebra of U.m/. Consider the function

f .t/ D

«
H.etaX/d�.X/:

By the choice of †, f .t/ attains its minimum at t D 0. This implies that f 0.0/ D 0 and
f 00.0/ � 0. Hence

(4.7)
« �
R.a.X/;X;X;X/CR.X; a.X/;X;X/

�
d�.X/ D 0

and « �
R.a2.X/;X;X;X/CR.X; a2.X/;X;X/C4R.a.X/; a.X/;X;X/

�
d�.X/(4.8)

C

« �
R.a.X/;X; a.X/;X/CR.X; a.X/;X; a.X/

�
d�.X/ � 0:
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We exploit these by looking into some special cases of a. Let W ? † and Z 2 † be two fixed
vectors. Let a D

p
�1.Z ˝W CW ˝Z/. Then

a.X/ D
p
�1hX;ZiW; a2.X/ D �hX;ZiZ:

Applying (4.8) to the above a and also the one with W being replaced by
p
�1W , and add the

resulting two estimates together, we have that

4

«
jhX;Zij2R.W;W ;X;X/ d�.X/ �

«
hX;ZiR.Z;X;X;X/C hZ;XiR.X;Z;X;X/:

Applying the above toZ 2 S2k�1 � † and taking the average of the result, we then have
4

k

«
R.W;W ;X;X/ d�.X/ �

2

k

«
R.X;X;X;X/:

This proves (4.6). By combining (4.7) (with a as above) and the one with W being replaced
by
p
�1W , we obtain two equalities«

hX;ZiR.W;X;X;X/ D

«
hZ;XiR.X;W ;X;X/ D 0:

Now write X D x1E1Cx2E2C� � �CxkEk . LetZ D Ei ; W D E` (for i D 1; 2, ` � k C 1).
Direct calculation (with Z D E1) shows that«

R`111jx1j
4
C 2

kX
jD2

R`1jj jx1j
2
jxj j

2
D 0:

Applying the integral identities in the proof of the Berger’s lemma (cf. [40, Lemma 1.1]), the
above equation (together with the case Z D Ei with 2 � i � k) implies that

(4.9)
kX

jD1

R`ij j D 0; 1 � i � k; k C 1 � ` � n:

This and its conjugate imply (4.5).

As [40], we may choose the frame so that
ª
R
vv.�/.�/

is diagonal. Integrating (4.4) over
the unit sphere S2k�1 � †, we have that

0 �

«
àvàvjsj2 d�.v/ �

X
Ip

jaIp;`j
2

« � pX
˛D1

Rvvi˛i˛ � `Ca.v; v/

�
d�.v/:

Here we have chosen a unitary frame ¹ ààz1 ; : : : ;
à
àzn º so that

ª
R
vv.�/.�/

d�.v/ is diagonal.
As in the paper [40], decompose ààzi into the sum of vectors �iEi 2 † and ˇiE 0i 2 †

?

with jEi j D jE 0i j D 1 and j�i j2 C jˇi j2 D 1. If we denote the lower bound of Rick by ı2 > 0,
by (4.5) and (4.6)«

Rvv11 d�.v/ D j�1j
2

«
RvvE1E1 d�.v/C jˇ1j

2

«
R
vvE 01E

0

1
d�.v/

D
j�1j

2

k
Rick.E1; E1/C jˇ1j

2

«
R
vvE 01E

0

1
d�.v/

�
j�1j

2

k
ı2 C

jˇ1j
2

k.k C 1/
ı1

�
min .ı1; ı2/
k.k C 1/

:
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The above estimate holds for any ààzi˛ as well. Hence combining two estimates above, we have

0 �

«
àvàvjsj2 d�.v/ �

�
p

min .ı1; ı2/
k.k C 1/

� `A

�
jsj2:

The same argument as the special case k D 1 leads to a contradiction if p � C.L/` for suitable
chosen C.L/, provided that s ¤ 0. This proves the vanishing theorem claimed in Theorem 4.1
for manifolds with Rick > 0.

The simply-connectedness part of Theorem 1.1 follows from Theorem 4.2, Theorem 6.1,
and the argument of [20] (recalled in the introduction) via Hirzebruch’s Riemann–Roch theo-
rem. It can also be inferred from the rational connectedness and [12, Corollary 4.29]. It is
expected that the construction via the projectivization in [36,49] would give more examples of
Kähler manifolds with Rick > 0.

Regarding rational connectedness we should point out that there exists a recent work [51],
in which it was proved that if T 0N is uniformly RC-positive in the sense that for any x 2 N ,
there exists an X such that R.X;X; V; V / > 0 for any V 2 TxN , then N is projective and
rationally connected. As pointed out above, BC-2 positivity (which follows from the uniform
RC-positivity) already implies the projectivity. The uniform RC-positivity is equivalent to

ı + min
x2N

�
max

jX jD1;X2T 0xN

�
min

jV jD1;V 2T 0xN
R.X;X; V; V /

��
> 0:

Hence one can derive Theorem 4.1 from (4.4) directly by letting v D X with X being the
vector which attains the maximum in the above definition, and p � 2A

ı
. This provides a direct

proof of [51, Theorem 1.3].
Since the boundedness of smooth Fano varieties (namely there are finitely many defor-

mation types) was also proved in [24], it is natural to ask whether or not the family of Kähler
manifolds with Rick > 0 (for some k, particularly for n large and n � k ¤ 0 small) is bounded.
Before one proves that every Kähler manifold with Ric? > 0 is Fano, it remains an interest-
ing future project to investigate the rational connectedness of compact Kähler manifolds with
Ric? > 0. For manifold with QB > 0, as a simple consequence of the results in the next section
and the result of [7, 24] we have the following corollary.

Corollary 4.7. Any compact Kähler manifold .N; h/ with quasi-positive QB, or more
generally with quasi-positive Ric?, and �.N / D 1 must be rationally connected.

The same conclusion holds if Ric? � 0, .N n; h/ is locally irreducible and �.N / D 1.

5. Compact Kähler manifolds with h1;1 D 1 and CQB

Recall the following result from [37], which is a consequence of a formula of Berger.

Lemma 5.1. Let .N n; h/ be a Kähler manifold of complex dimension n. At any point
p 2 N ,

n � 1

n.nC 1/
S.p/ D

1

Vol.S2n�1/

Z
jZjD1;Z2T 0pN

Ric?.Z;Z/ d�.Z/
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where S.p/ D
Pn
iD1 Ric.Ei ; Ei / (with respect to any unitary frame ¹Eiº) denotes the scalar

curvature at p.

Note that the first Chern form c1.N / D
p
�1
2�

rijdz
i ^ dzj , with rij D Ric. ààzi ;

à
àzj
/.

Let!h D
p
�1
2�

hij be the Kähler form (the normalization is to make the Kähler and Riemannian
settings coincide). A direct computation via a unitary frame gives

c1.N /.y/ ^ !
n�1
h .y/ D

1

n
S.y/ !nh.y/:

We also let V.N / D
R
N !

n
h

. The normalization above makes sure that the volume of an alge-
braic subvariety has its volume being an integer.

Recall that for any line bundle L its degree d.L/ is defined as

d.L/ D

Z
N

c1.L/ ^ !
n�1
h :

When h1;1.N / D 1, it implies that Œc1.N /� D `Œ!h� for some constant `. Hence we have that
d.K�1N / D `V.N /.

Under assumption (i) of Theorem 2.3, we know that S.y/ > 0 somewhere and S.y/ � 0
for all x 2 N by Lemma 5.1, which then implies that d.K�1N / > 0, hence ` > 0. This shows
that Œc1.N /� > 0. Now Yau’s solution to the Calabi’s conjecture [44,52] implies that N admits
a Kähler metric such that its Ricci curvature is `!h > 0.

The proof for statement (ii) is similar. The existence of negative Kähler–Einstein metric
follows from the Aubin–Yau theorem [44, 52].

To prove Corollary 2.5, we observe that if ` D 0 in the above argument, it implies that
S.y/ � 0. Hence by Lemma 5.1 we have that Ric? � 0. By [36, Theorem 6.1] it implies
that N is flat for n � 3, or n D 2 and N is either flat or locally a product. This contradicts to
the assumption of local irreducibility.

Note that the same argument can be applied to conclude the same result Rick and Ric?k .

Proposition 5.1. Let .N; h/ be a compact Kähler manifold of complex dimension n.
Assume further that h1;1.N / D 1. Then:

(i) If Rick (or Ric?k ) is quasi-positive for some 1 � k � n, then N must be Fano.

(ii) If Rick (or Ric?k ) is quasi-negative, then N must be projective with ample canonical line
bundle KN .

In particular, in case (i)N admits a Kähler metric with positive Ricci, and in case (ii)N admits
a Kähler–Einstein metric with negative Einstein constant.

Before introducing two new curvatures, we first observe that in (2.2) if we replaceA by its
traceless part VA D A � � id with � D trace.A/

n
, it remains the same. Namely, QB.A/ D QB. VA/.

Hence QB is defined on the quotient space S2.Cn/=¹C idº, with S2.Cn/ being the space
of Hermitian symmetric transformations of Cn. Now QB > 0 means that QB.A/ > 0 for all
A ¤ 0 as an equivalence class. This suggests a refined positivity QBk > 0 for any 1 � k � n,
defined as QB.A/ > 0 for any A … ¹C idº of rank not greater than k. Clearly, for k < n,
a nonzero Hermitian symmetric matrix with rank no greater than k cannot be in ¹C idº. It is easy
to see QB1 > 0 is equivalent to Ric? > 0 and QBn > 0 is equivalent to QB > 0. Naturally,
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a possible approach towards the classification of Ric? > 0 is through the family of Kähler
manifolds with QB > 0 and QBk > 0.

Now we discuss the first of two new curvatures. Recall that cross quadratic bisectional
curvature CQB is defined as a Hermitian quadratic form on linear maps A W T 00N ! T 0N :

CQBR.A/ D
nX

˛;ˇD1

R.A.E˛/; A.E˛/; Eˇ ; Eˇ / �R.E˛; Eˇ ; A.E˛/; A.Eˇ //

for any unitary frame ¹E˛º of T 0M . This is similar to (2.2). But here we allow A to be any lin-
ear maps. We sayR has CQB > 0 if CQB.A/ > 0 for any A ¤ 0. For anyX ¤ 0, if we choose
¹E˛º with E1 D X

jX j
, and let A be the linear map satisfying A.E1/ D E1 and A.E˛/ D 0 for

any ˛ � 2, it is easy to see that

CQBR.A/ D
Ric?.X;X/
jX j2

:

Hence CQB > 0 implies that Ric? > 0.3) Theorem 5.4 below shows that CQB > 0 holds for
all classical Kähler C-spaces with b2 D 1, unlike QB, which fails to be positive on about 20%
of Kähler C-spaces with b2 D 1. The expression CQB is motivated by the work of Calabi
and Vesentini [6] where the authors studied the deformation rigidity of compact quotients of
Hermitian symmetric spaces of noncompact type. We can introduce the concept CQBk > 0
(or CQBk < 0), defined as CQB.A/ > 0 for any A with rank not greater than k. Express A
as
Pk
sD1Xs ˝ Ys; then CQBk > 0 is equivalent to

kX
s;tD1

Ric.Xs; X t /hYs; Y t i �R.Xs; X t ; Ys; Y t / > 0;
kX
sD1

Xs ˝ Ys ¤ 0:

Proposition 5.2. The following statements hold.

(i) The condition CQB1 > 0 implies that Ric? > 0; in particular, N satisfies hp;0 D 0,
�1.N / D ¹0º, and N is projective.

(ii) If N is compact with n � 2, and CQB2 > 0, then Ricci curvature is 2-positive.

Proof. Part (i) is proved in the paragraph above together with Theorem 2.2. For part (ii),
for any unitary frame ¹E˛º, let A be the map defined as A.E1/ D E2 and A.E2/ D �E1, and
A.E˛/ D 0 for all ˛ > 2. Then the direct checking shows that CQB > 0 is equivalent to

Ric.E1; E1/C Ric.E2; E2/ > 0:

Since this holds for any unitary frame, we have the 2-positivity of the Ricci curvature.

The work of Calabi and Vesentini [6] proves the following result.

Theorem 5.1. Let .N; h/ be a compact Kähler manifold with quasi-negative CQB (i.e.
CQB � 0 and < 0 at least at one point). Then

H 1.N; T 0N/ D ¹0º:

In particular, N is deformation rigid in the sense that it does not admit nontrivial infinitesimal
holomorphic deformation.

3) In [38], it was shown that CQB > 0 implies Ric > 0.
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Proof. Let � D
Pn
i;˛D1 �

i
˛dz

˛ ˝Ei be a .0; 1/-form taking value in T 0N with ¹Eiº
being a local holomorphic basis of T 0N . The Arizuki–Nakano formula gives

.�à� ��à�/
i

ˇ
D R i�

j ˇ
�
j
� � Ricij �

j
� :

Under a normal coordinate we have that

h�à� ��à�; �i D �
�
Ricj i �

j

ˇ
�i
ˇ
�R

j i�ˇ
�
j
� �

i

ˇ

�
:

Hence if �à� D 0, we then have

0 D

Z
N

jà�j2 C
Z
N

jà��j2 �
Z
N

�
Ricij �

i

ˇ
�
j

ˇ
�R

j i�ˇ
�
j
� �

i

ˇ

�
:

Letting A.Eˇ / D �i
ˇ
Ei , the assumption amounts to that the expression in the third integral

above is nonpositive and negative over a open subset U , where CQB < 0 if .�i� / ¤ 0 on U .
This forces .�i

ˇ
/ � 0 on U , hence � D 0 by the unique continuation since � is harmonic.

It has been proved in [37] that if Ric? < 0, thenH 0.N; T 0N/ D ¹0º. By [6, Table 1] and
the proof of Theorem 5.4 below, all locally Hermitian symmetric spaces of noncompact type
satisfy CQB < 0. Moreover the above theorem generalizes the result of Calabi and Vesentini
since there are examples of non-Hermitian symmetric manifolds with CQB < 0. Flipping the
sign we have the following corollary.

Corollary 5.2. Let .N; h/ be a compact Kähler manifold with quasi-positive CQB. Then

H
0;1
à .N; T 0N/ D H

1;0

à
.N;�/ D H 0.N;�1.�// D ¹0º;

where � D .T 0N/�. If only Ric? > 0 is assumed, then H 0.N;�/ D ¹0º.

In fact, we can strengthen the argument to prove the following result.

Theorem 5.3. Assume that .N; h/ is a compact Kähler manifold with CQB > 0. Then
for any ample line bundle L there exists C.L/ such that

H 0.N; ..T 0N/�/˝p ˝ L˝`/ D ¹0º

for any p � C.L/`, with ` being any positive integer. In particular, N is rationally connected.

Proof. First we observe that a holomorphic section of ..T 0N/�/˝.pC1/ ˝ L˝` can be
viewed as a holomorphic .1; 0/-form valued in ..T 0N/�/˝p ˝ L˝`. Write it as

' D '
Ip
˛ dz

˛
˝ dzi1 ˝ dzi2 ˝ � � � ˝ dzip ˝ e`:

Applying the Arizuki–Nakano formula to the à-harmonic ' as above, using the formula for the
curvature of the tensor products, and under a normal coordinate, we have that

0 � h�à'; 'i �
Z
M

�
�IJ'

I
˛'

J
˛ ��

I
J ˛'

I
˛'

J


�
C A`j'j2 �

Z
M

�
�pıj'j2 C A`j'j2

�
;

where �IJ˛dz
 ^ z˛ is the curvature of ..T 0N/�/˝p and �IJ is the corresponding mean

curvature, ı > 0 is the lower bound of CQB, A is an upper bound of the scalar curvature
of L (equipped with a Hermitian metric of positive curvature). This implies that ' D 0 if p

`
is

sufficiently large, hence the result.
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Recently it was proved that CQB > 0 implies that M is Fano, which gives an alternate
proof of the above result.

Question 1. The results above naturally lead to the following questions:

(a) Does H 1.N; T 0N/ D ¹0º hold under the weaker assumption that Ric? < 0?

(b) Is a harmonic map f of sufficiently high rank from a Kähler manifold .M; g/ into a
compact manifold with negative CQB must be holomorphic or conjugate holomorphic?

(c) Is there any nonsymmetric (locally) example of manifolds with CQB < 0?

(d) Do all Kähler C-spaces (the canonical Kähler metric) with b2 D 1 satisfy CQB > 0

(below we provide a partial answer to this)?

The ultimate goal is to prove a classification theorem for compact Kähler manifolds with
CQB > 0.

Concerning (c), in a recent preprint [38] a nonsymmetric example has been constructed.
Moreover examples show that b2 can be arbitrarily large under the condition CQB > 0. Con-
cerning (d), we have the following affirmative answer for all classical Kähler C-spaces.

Theorem 5.4. Let N n be a compact Hermitian symmetric space (n � 2), or classical
Kähler C-space with n � 2 and b2 D 1. Then the Kähler–Einstein metric (unique up to con-
stant multiple) has CQB > 0.

Proof. If we write A.Eˇ / D AiˇEi , it is easy to see if we change to a different unitary
frame �E˛ D Bˇ˛Eˇ , the effect on A is BAB tr with B being a unitary transformation. Now

CQB.A/ D Ricij A
i
ˇA

j

ˇ
�R

j i�ˇ
Aj�A

i
ˇ
:

Given that there exists a normal form under congruence for symmetric and skew symmetric
matrices, it is helpful to write A into sum of the symmetric and skew-symmetric parts. For the
special case Ric D �h, namely the metric is Kähler–Einstein with � > 0, if we decompose A
into the symmetric part A1 and the skew-symmetric part A2, noting that R

j i�ˇ
is symmetric

in j; � and i; ˇ we have

CQB.A/ D �jA1j2 C �jA2j2 �Rj i�ˇ .A1/
j
� .A1/

i
ˇ
� �jA1j

2
�R

j i�ˇ
.A1/

j
� .A1/

i
ˇ
:

Now note thatR
j i�ˇ

.A1/
j
� .A1/

i
ˇ

is the Hermitian symmetric actionQ on the symmetric tensor
(matrix) A considered in [19] and [6]. Precisely Q is defined by

Q.X � Y;Z �W / D RXZYW

for X � Y D 1
2
.X ˝ Y C Y ˝X/, and then is extended to all symmetric tensors. Let � denote

the biggest eigenvalue of Q. As in [36], to verify the result we just need to compare � and �.
This can be done for all Hermitian symmetric spaces by [6, Table 2]. Note that � here is R

2n

in Calabi and Vesentini’s paper [6]. For the classical homogeneous examples which are not
Hermitian symmetric we can use the comparison done in [36] with the data supplied by [19]
and [11]. If we use the notation of [19] and [11], only the three types below need to be checked:

.Br ; ˛i /r�3;1<i<r ; .Cr ; ˛i /r�3;1<i<r ; .Dr ; ˛i /r�4;1<i<r�1:

The verification in [36, Section 2] applies verbatim.
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The above result strengthens the one in [36] since CQB > 0 is stronger than Ric? > 0.
Note that the result also holds for the exceptional (non-Hermitian symmetric) Kähler C-space
.F4; ˛4/ since for such a space � D 11

2
and the biggest eigenvalue of Q is 1. A future natural

project is to classify all the compact Kähler manifolds with CQB > 0. The example in [36],
shows that there certainly are compact Kähler manifolds with Ric? > 0, but not homogeneous.

The second related curvature is a dual version of CQB, which is motivated by the study of
the compact dual of the noncompact Hermitian symmetric spaces in [6]. We denote it by dCQB.
It is defined as a quadratic Hermitian form on the space of linear maps A W T 0N ! T 00N :

dCQBR.A/ + R.A.Ei /; A.Ei /; Ek; Ek/CR.Ei ; Ek; A.Ei /; A.Ek//:

Similarly, we can introduce the concept dCQBk > 0. The analogy of Ric? is

RicC.X;X/ + Ric.X;X/C
H.X/

jX j2
:

We say dCQBk > 0 if dCQB.A/ > 0 for any A ¤ 0 with rank not greater than k. Letting A
be the map which satisfies A.E1/ D E1 and A.Ei / D 0 for all i � 2, it is easy to see that
dCQB1 > 0 implies that RicC > 0. We discuss geometric implications of these two curvature
notions in details next.

6. Manifolds with dCQB > 0 and the properties of RicC

We have seen that Ric?k interpolates between the orthogonal bisection sectional curvature
and Ric?. In a similar manner we can define RicC

k
, which interpolates between the holomorphic

sectional curvature and RicC as Rick does. First we show that the diameter estimate in [37] for
manifolds with Ric? can be extended to RicC (Rick , RicC

k
). The argument via the second

variational formulae in the proof of the Bonnet–Meyer theorem proves the compactness of the
Kähler manifolds if the RicC is uniformly bounded from below by a positive constant.

Theorem 6.1. Let .N n; h/ be a Kähler manifold with

RicC.X;X/ � .nC 3/�jX j2

with � > 0. Then N is compact with diameter bounded from the above by
p

2n
.nC3/�

� � . More-
over, for any geodesic .�/ W Œ0; `�! N with length ` >

p
2n

.nC3/�
� � , the index i./ � 1.

Similarly, for a Kähler manifold .N n; h/ with

Rick � .k C 1/� > 0;

its diameter is bounded from above by
p

2k�1
.kC1/�

� �; for a Kähler manifold .N n; h/ with

Ric?k � .k � 1/� > 0

its diameter is bounded from above by
p
2
�
� �; for a Kähler manifold .N n; h/ with

RicC
k
� .k C 3/� > 0

its diameter is bounded from above by
p

2k
.kC3/�

� � .



Ni, The fundamental group and the positivity 291

Note that the result (for RicC) is slightly better than
p
2n�1
.nC1/�

� , the one predicted by the
Bonnet–Meyer estimate assuming

Ric.X;X/ � .nC 1/�jX j2

for n � 2. But it is roughly about
p
2 times the one predicted by the Tsukamoto’s theorem

in terms of the lower bound of the holomorphic sectional curvature. Let N D P1 � � � � � P1,
namely the product of n copies of P1, its diameter is

p
n
2
� . An easy computation shows that

it has Ric D 2 and H � 2
n

. This shows that the upper bound provided by Tsukamoto’s theo-
rem holds equality on both Pn and N D P1 � � � � � P1. The product of n-copies of P1 also
illustrates a compact Kähler manifold (after proper scaling) with Ric D nC 1, but its diameter
is roughly about

p
2 times of that of Pn. The product example and Pn indicate that the above

estimate on the diameter is far from being sharp.
We prove Theorem 2.7 via a vanishing theorem with weaker assumptions. For that we

introduce the scalar curvatures SC
k
.x;†/ which is defined as

SC
k
.x;†/ D k

«
Z2†; jZjD1

RicC.Z;Z/ d�.Z/

for any k-dimensional subspace † � TxN . Similarly, we say SC
k
> 0 if SC

k
.x;†/ > 0 for

any x and †.

Theorem 6.2. Assume that SC
k
> 0. Then N is BC-p, positive and one has hp;0 D 0

for k � p � n.

Proof. The first part of the proof follows similarly as in that of Theorem 2.2. Assum-
ing the existence of a nonzero holomorphic .p; 0/-form � leads to the conclusion that at the
point x0 where the maximum of the comass k�k0 is attained we have that

(6.1) 0 �

pX
jD1

Rvvjj

for any v 2 T 0x0N , for a particularly chosen frame ¹ ààz` º`D1;:::;n with

† D span
²
à
àz1

; : : : ;
à
àzp

³
:

This implies that Sp.x0; †/ � 0, by applying the above to v D ¹ ààzi º1�i�p.
Now a similar calculation as that of Section 2 shows that

1

p
SCp .x0; †/(6.2)

D

«
Z2†; jZjD1

RicC.Z;Z/ d�.Z/

D

«
Z2†; jZjD1

.Ric.Z;Z/CH.Z// d�.Z/

D

«
1

Vol.S2n�1/

�Z
S2n�1

.nR.Z;Z;W;W /CH.Z// d�.W /

�
d�.Z/

D
1

Vol.S2n�1/

Z
S2n�1

�«
.nR.Z;Z;W;W /CH.Z// d�.Z/

�
d�.W /

D
1

p
.Ric11CRic22C � � � C Ricpp/C

2

p.p C 1/
Sp.x0; †/:
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Using estimate (3.1) similarly as in Section 2 (cf. (3.3)), we have that

Ric11CRic22C � � � C Ricpp � Sp.x0; †/:

Thus together with (6.2) it implies that

0 < SC
k
.x0/ � S

C
p .x0; †/ �

p C 3

p C 1
Sp.x0; †/:

This is a contradiction.

Theorem 2.7 follows from the above theorem since RicC > 0 implies that SCp > 0 for
all 1 � p � n. In the theorem below we extend the projectivity part of Theorem 1.1 to Ric?k
and RicC

k
.

Theorem 6.3. Let .N; h/ be a compact Kähler manifold. If Ric?k > 0, or RicC
k
> 0 for

some 1 � k � n, then N is BC-p positive for p � 2. In particular, hp;0 D 0 for 1 � p � n,
and N is projective and simply-connected.

Proof. We only provide the proof for Ric?k since the proof for RicC
k

is similar. As before
it suffices to prove that N is BC-p positive for all 1 � p � n since hp;0 D 0 follows from
this. By Theorem 2.2 and Corollary 4.4, the BC-p positivity (for all 1 � p � n) is known for
k D 2; n. Thus we only need to prove it for 3 � k � n � 1. By Corollary 4.4 again we have
BC-p positivity for p � k � 1. Hence we only need to prove it for p � k � 2.

The proof is essentially the same as the proof of Theorem 2.2. We prove by the con-
tradiction argument. Assume that there exists unitary p-vectors ¹E1; : : : ; Epº such that (6.1)
hold for any v 2 T 0xN . Let† D span¹E1; : : : ; Epº. Since k � 2 � p, we extend them into uni-
tary k-vectors ¹E1; : : : ; Ekº. Let †0 be the k-dimensional subspace spanned by them. Clearly,
† � †0. We denote by Ric0 the Ricci curvature restricted to †0. We also define similarly
.Ric?/0, S 0p and .S?/0p correspondingly. In particular, .Ric?/0 is Ric?k .x;†

0/, .S?/0p is the
average of .Ric?/0 on the unit sphere of a p-dimensional subspace of †0, and

S 0p.x;†/ D

pX
i;jD1

Riij j :

Now the proof of Theorem 2.2 implies that for any x 2 N ,

.S?/0p.x/ �
p � 1

p C 1
S 0p.x;†/ D

p � 1

p C 1

pX
i;jD1

Riij j � 0:

On the other hand, the assumption implies that .Ric?/0 > 0, hence .S?/0p > 0. This induces
a contradiction. Hence we have N is BC-p positive for any 1 � p � n if Ric?k > 0.

Applying argument similar to that of the last section, we also have the following result.

Proposition 6.1. Let .N n; h/ be a compact Kähler manifold of complex dimension n
with quasi-positive RicC (or RicC

k
). Assume further that h1;1.N / D 1 (or �.N / D 1). Then

c1.N / > 0, namely N is Fano.

The proof of this result and the following lemma, which plays the analogue role of
Lemma 5.1, is the same as that of the last section.
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Lemma 6.1. Let .N n; h/ be a Kähler manifold of complex dimension n. At any point
p 2 N ,

nC 3

n.nC 1/
S.p/ D

1

Vol.S2n�1/

Z
jZjD1;Z2T 0pN

RicC.Z;Z/ d�.Z/;

where S.p/ D
Pn
iD1 Ric.Ei ; Ei / (with respect to any unitary frame ¹Eiº) denotes the scalar

curvature at p.

Following the argument in [36, Appendix], we also have that a RicC-Einstein Kähler
metric must be of constant curvature. In particular, the one with zero scalar curvature must
be flat. Hence we have the same result as Corollary 2.5 if we replace Ric? by RicC.

Corollary 6.4. Let .N; h/ be a compact Kähler manifold of complex dimension n with
RicC � 0 (or RicC

k
� 0). Assume further that h1;1.N / D 1 and N is locally irreducible. Then

c1.N / > 0, namely N is Fano. Similar result holds under the assumption RicC � 0.

The result similar to Corollary 4.7 holds for RicC > 0 and �.N / D 1, in view of Theo-
rem 2.7, Proposition 6.1 and Corollary 6.4.

Corollary 6.5. Any compact Kähler manifold .N; h/ with quasi-positive RicC (or
quasi-positive RicC

k
) and �.N / D 1, must be rationally connected.

The same holds if RicC > 0 is replaced with RicC � 0 and .N n; h/ is locally irreducible.
For compact Kähler manifolds with RicC < 0, we have the result below.

Proposition 6.2. Let .N; h/ be a compact Kähler manifold with RicC < 0. ThenN does
not admits any nonzero holomorphic vector field.

The proof is the same as that of [37]. A dual version of Theorem 5.1 is the following
result.

Theorem 6.6. The following statements hold.

(i) For .N; h/ a compact Kähler manifold with quasi-positive dCQB,

H 1.N; T 0N/ D ¹0º:

In particular,N is deformation rigid in the sense that it does not admit nontrivial infinites-
imal holomorphic deformation.

(ii) If a compact Kähler manifold .N; h/ has dCQB2 > 0, its Ricci curvature is 2-positive.

(iii) If .N; h/ is compact with dCQB1 > 0, then N is projective and simply-connected.

Proof. For (i) one may use the conjugate operator # W A0;1.T 0N/! A1;0..T 0N/�/

which is defined for � D �i˛dz
˛ ˝Ei , with ¹Eiº being a unitary frame of T 0N , as

#� D �i˛dz
˛
˝Ei :

Since #.à�/ D à.#.�//, it implies that à�.#.�// D #.à
�
�/. Together # induces an isomor-

phism between H
p;q

à
.N; T 0N/ and H

q;p
à .N; .T 0N/�/. To prove the result, it is sufficient to

show that any  2 H
1;0
à .N; .T 0N/�/,  D 0. Now we apply the Kodaira–Bochner formula
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for �à operator, and get for  D  i˛dz
˛ ˝Ei that

(6.3) .�à /
i
 D �h

˛ˇ
r
ˇ
r˛ 

i
 CR

i �
j
 j� C .Ric/� 

i
� :

Taking product with  , as before under the unitary frame, if �à D 0 we have that

0 D

Z
N

jr j2 C

Z
N

�
.Ric/˛� i�  i˛ CRij˛� 

j
�  

i
˛

�
:

The claimed result follows in the similar way as in the proof of Theorem 5.1.
For part (ii), for any unitary frame ¹Eiº, let A be the rank 2 skew-symmetric transfor-

mation: A.E1/ D E2, A.E2/ D �E1, and A.Ek/ D 0 for all k � 3. Then as in the CQB > 0

case, the second part in the expression of dCQB vanishes and the first part yields

Ric.E1; E1/C Ric.E2; E2/:

Part (iii) follows from that dCQB1 > 0 is the same as RicC > 0 and Theorem 2.7.

By a similar argument (comparing the Einstein constant with the smallest eigenvalue of
the symmetric curvature Q obtained in tables of [19]) as in the proof of Theorem 5.4 we also
have the following corollary concerning Kähler C-spaces.

Theorem 6.7. Let N n be a classical Kähler C-space with n � 2 and b2 D 1, or a com-
pact exceptional Hermitian symmetric space with n � 2. Then the (unique up to constant
multiple) Kähler–Einstein metric satisfies dCQB > 0. In particular, for a classical Kähler
C-space N with b2 D 1, H q.N; T 0N/ D ¹0º with 1 � q � n, and N is deformation rigid in
the sense that it does not admit nontrivial infinitesimal holomorphic deformation.

Proof. To check dCQB > 0, writingA.Ei / D AtiE t , we then apply an argument similar
to the case of CQB. First decompose A into A1 C A2, the symmetric and the skew symmetric
parts. As in the proof of Theorem 5.4,

dCQB.A/ � �jA1j2 CRikst .A1/
s
i .A1/

t
k :

Here � is the Einstein constant of the canonical metric. The problem is now reduced to check
that �C �1 > 0 with �1 being the smallest eigenvalue of Q. Recall the Hermitian symmetric
linear operator Q is defined as

Q.X � Y;Z �W / D RXZYW

for X � Y D 1
2
.X ˝ Y C Y ˝X/ and extended linearly on the space of symmetric tensors.

This quadratic curvature was considered previously in [6, 19]. We apply their results below.
The Hermitian symmetric case again follows from [6, Table 2]. For the nonsymmetric classical
Kähler C-spaces, we check the condition �C �1 > 0 as follows. Note that in [11] and [19]
the same normalization for the canonical metric was used. For .Br ; ˛i /r�3;1<i<r , � D 2r � i .
According to [19, Table 4], �1 D �2.r � i/C 1 or �2. Since 2r � 2i C 2, clearly 2r � i > 2.
Also 2r � i � 2r C 2i C 1 D i C 1 > 0. This implies the result for both cases of �1, namely
�1 D �2.r � i/C 1 and �1 D �2.

For .Cr ; ˛i /r�3;1<i<r , � D 2r � i C 1. According to [19, Table 7], �1 D �2.r � i C 1/.
Hence �C �1 D i � 1 > 0 for i � 2. This verifies the result.
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For .Dr ; ˛i /r�4;1<i<r�1, � D 2r�i�1. According to [19, Table 10], �1 D �2.r�i/C2
or�2. Since 2r � i � 3 � i � 1 > 0 and 2r � i � 1 � 2r C 2i C 2 D i C 1 > 0, this also ver-
ifies the result.

This proved theH 1.N; T 0N/ D ¹0º. For q > 1, the argument of [6] implies that one only
needs to check that �C qC1

2q
�1 > 0. This is a consequence of the q D 1 case above.

For the exceptional space .F4; ˛4/ since � D 11
2

and �1 D �5, the above result also
holds. Hence it should not be surprising that the result in the corollary holds for the rest (22 of
them total) exceptional Kähler C-spaces. The deformation rigidity result above holds infinites-
imally. It would be interesting to see for a deformation with each fiber except the central is as-
sumed to be biholomorphic to a fixed manifold with dCQB > 0, whether or not the central fiber
must be the same manifold (as the main theorem of [42]). If we express A D

Pk
`D1X` ˝ Y `,

we have that dCQBk > 0 if and only if

kX
`;jD1

Ric.X`; Xj /hY`; Y j i CR.X`; Xj ; Y`; Y j / > 0;
kX
`D1

X` ˝ Y ` ¤ 0:

Non-locally Hermitian symmetric examples of compact Kähler manifold with dCQB < 0 have
been constructed in [38].

Questions similar to those in Question 1 can be asked for dCQB. We also add the follow-
ing question:

Question 2. For which k 2 ¹1; : : : ; nº, Rick;Ric?k ;RicC
k

, CQBk � 0, and dCQBk � 0
are preserved under the Kähler–Ricci flow? Is a compact manifold with Ric?k < 0 projective?

Concerning this, some Ricci-flow invariant cones have been constructed recently in [38].
It is also known that Ric?2 is preserved by the Kähler–Ricci flow.

A. Appendix: Estimates on the harmonic .1; 1/-forms of low rank

We prove a vanishing theorem for harmonic .1; 1/-forms of low rank related to the con-
dition QBk > 0 introduced earlier. This is particularly relevant given that in [38] examples of
arbitrary large b2 was constructed with CQB > 0 (in particular with Ric? > 0). First recall that

QBR.A/ D
nX

˛;ˇD1

R.A.E˛/; A.E˛/; Eˇ ; Eˇ / �R.E˛; Eˇ ; A.Eˇ /; A.E˛//

vanishes for A D � id. Hence when define QBk.A/ > 0 we require the above expression pos-
itive for A in S2.Cn/ n ¹� idº, and that A has rank not greater than k. The space of harmonic
.1; 1/-forms H

1;1

à
can be decomposed further. First we observe that an .1; 1/-form

� D
p
�1Aijdz

i
^ dzj

can be decomposed as

� D �1 �
p
�1�2 D

p
�1

2
Bijdz

i
^ dzj �

p
�1

�p
�1

2
Cijdz

i
^ dzj

�
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with
Bij D Aij C Aj i ; Cij D

p
�1.Aij � Aj i /:

If � is harmonic, then à� D à� D 0. It can be verified that �1 and �2 are both harmonic
(cf. [30, Theorem 5.4 in Chapter 3]). This shows that � can be decomposed into the sum of a
Hermitian symmetric one with �

p
�1 times another Hermitian symmetric one. Namely,

H
1;1

à
D H

1;1

à;s
�
p
�1H

1;1

à;s
;

where H
1;1

à;s
is the spaces of harmonic � with .Aij / being Hermitian symmetric. Within H

1;1

à;s
we shall consider H

1;1

à;s
n ¹C!º. To prove b2 D 1 under the assumption QB > 0, it suffices

to show that
H
1;1

à;s
n ¹C!º D ¹0º:

We can stratify the space into ones with rank bounded from above. Let H
1;1
s;k

denote the sub-
space of H

1;1

à;s
which consists of

� D

p
�1

2
Aijdz

i
^ dzj

with .Aij / being Hermitian symmetric and of rank no greater than k everywhere on N . The
following result can be shown.

Theorem A.1. Assume that .N n; g/ is a compact Kähler manifold with quasi-positive
QBk with k < n. Then H

1;1
s;k
.N / D ¹0º. In particular, Ric? > 0 implies that H

1;1
s;1 .N / D ¹0º.

Proof. Assume that � is a nonzero element in H
1;1
s;k
.N /. Applying the � operator to

k�k2, by the Kodaira–Bochner formula we have that
1

2
.rr Crr /k�k

2.x/ D kr�k
2.x/C kr�k

2.x/C 2QB.�/.x/:

Integrating on N , we have that

0 D

Z
N

�
kr�k

2.x/C kr�k
2.x/

�
d�.x/C 2

Z
N

QB.�/.x/ d�.x/ > 0:

The last strictly inequality is due to the fact that by the unique continuation we know at
a neighborhood U where QBk > 0, and � is identically zero. The contradiction implies that
� � 0.

For any holomorphic line bundle L over N with a Hermitian metric a, its first Chern
form

c1.L; a/ D �

p
�1

2
àà log a

is a Hermitian symmetric .1; 1/-form. If � is the harmonic representative of c1.L; a/, then �
is Hermitian symmetric by the uniqueness of the Hodge decomposition and Kähler identities
(cf. [30, Chapter 3]). The following is a simple observation towards possible topological mean-
ings of the rank of � (the minimum k such that � 2 H

1;1

à;k
, denoted as rk.L/).

Proposition A.1. Recall that the numerical dimension of L is defined as

nd.L/ D max¹k D 0; : : : ; n W c1.L/k ¤ 0º:

Then rk.L/ � nd.L/.
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The proof of the above theorem also shows that if QBk � 0, then any element in H
1;1
s;k
.N /

must be parallel. Thus we have the dimension estimate

dim.H1;1
s;k
.N // � k2:

In fact, the existence of a non-vanishing .1; 1/-form of rank at most k has a strong implication
due to the De Rham decomposition.

Corollary A.2. Assume that QBk � 0 and H
1;1
s;k
.N / ¤ ¹0º. Then N must be locally

reducible. In particular, if N is locally irreducible and Ric? � 0, then H
1;1
s;1 .N / D ¹0º.

Proof. By the above, we know that the nonzero � 2 H
1;1
s;k
.N / must be parallel. Its null

space is invariant under the parallel transport. This provides a nontrivial parallel distribution,
hence the local splitting.

The product example P2 � P2, which satisfies Ric? > 0 and supports nontrivial rank 2
harmonic .1; 1/-forms, shows that the above result is sharp for Ric? > 0. Irreducible examples
of dimension greater than 4 were constructed via the projectivized bundles in [36].
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