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1 Introduction

The property of harmonic maps between complete Riemannian manifolds has been stud-

ied extensively by many authors(Cf. [Ch], [Sh], [T], etc). In the present paper we show

some non-existence results for quasi-conformal harmonic di�eomorphism between com-

plete Riemannian manifolds. In dimension two, harmonic maps are closely related to the

deformation theory of Riemann surfaces. One of the questions that arises naturally is:

whether Riemann surfaces which are related by harmonic di�eomorphism are necessarily

quasi-conformally related? See R. Schoen's article [S] for a general discussion on this

subject, where other questions were also discussed. The result we show in this paper pro-

vides some partial answers to the high dimension generalization of this type of questions.

In particular we prove the following result of which can be thought as a Liouville type
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theorem for harmonic di�eomorphisms.

Theorem 1.1 Let Mn be a complete manifold with RicciM � 0, and let Nn be a simply-

connected manifold with nonpositive sectional curvature, where n is the dimension of both

manifolds. If there is a point p 2 M such that limr!1 Vp(r) = o(rn), then there is no

quasi-conformal harmonic di�eomorphism from M into N with polynomial growth energy

density.

It is not surprising that the growth rate of energy density plays a role here. For ex-

ample in [W], T. Wan proved that a harmonic di�eomorphism between hyperbolic spaces

of dimension two is quasi-conformal if and only if it has bounded energy density. The

only if part of Wan's theorem was generalized to high dimension in [L-T-W]. There they

proved that if the Ricci curvature of the domain manifold is bounded from below and

the �rst eigenvalue of the target manifold is positive, then any quasi-conformal harmonic

di�eomorphism into the target manifold has bounded energy density. These results and

some other related results in [H-T-T-W] all indicate that the growth condition on the en-

ergy density is a natural assumption and is closely related to the study of quasi-conformal

di�eomorphisms. On the other hand, we can show by examples that Theorem 1.1 will not

be true if any of the assumptions is removed. We also should point out that, besides the

curvature assumption, we only use the fact that the target manifold N satis�es Sobolev-

inequality in the proof of Theorem 1.1. So Theorem 1.1 still holds for more general target

manifolds, for example, when N is a minimal submanifolds of RK, since in this case, we

know from [M-S] Sobolev inequality holds on N .

On the other hand, it is well-known that there is no non-constant holomorphic map

from a complete K�ahler manifold M into a complex Hermitian manifold N if M has

nonnegative Ricci curvature and N has holomorphic bisectional curvature bounded from

above by a negative constant. This follows easily from the generalized Schwarz lemma(Cf.

[Y]). Using a modi�ed argument of Theorem 1.1 we can generalize this result to quasi-

conformal di�eomorphisms as follows:
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Theorem 1.2 Let Mn be a complete Riemannian manifold with limr!1 Vp(r) = o(rn),

and let Nn be a complete Riemannian manifold with �1(N) > 0, where n is the dimension

of both manifolds, p 2 M is any �xed point, Vp(r) is the volume of the ball of radius r

centered at p and �1(N) is the lower bound of the spectrum of the Laplacian-Beltrami

operator. Then there is no quasi-conformal di�eomorphism form M into N .

We know that ifN is simply-connected and has sectional curvature bounded from above

by some negative constant then one has �1(N) > 0. That is why we call Theorem 1.2 a

generalization of the above mentioned result on holomorphic maps( which is derived from

the generalized Schwarz lemma). The interesting thing is that Theorem 1.2 is invariant

under the quasi-isometries while Theorem 1.1 is not.

Acknowledgements. The author would like to thank his advisor, Prof. P. Li for many

valuable advices and Prof. J. Wang for helpful suggestions. The author would also like

to thank the referee for many valuable comments. They were great help while improving

the exposition of this paper.

2 The Proof of the Theorems

Proof of Theorem 1.1. We prove by contradiction.

Assume that there is a harmonic di�eomorphism u from M into N . Let a2(x) =

inffv2TMxjkvk=1g j(du)
� Æ (du)(v)j2. By choosing a suitable orthonormal frame feig around

x in TM we have that

(du)� Æ (du) =

0
BB@
�21 : : : 0
...

...
...

0 : : : �2n

1
CCA :

We can assume that �21 � �22 � : : : �2n = a2(x). By de�nition we have e(u) = �n
i=1�

2
i and

J(u) = �1 : : : �n.
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Let �(x) be a smooth function with compact support de�ned on M . Then � Æ u�1(y)

is a smooth function with compact support de�ned on N . By the assumption on N we

know that the Sobolev inequality holds (Cf. [H-S]), i. e. we have a constant S such that

Z
N
jr'j dvN � S

�Z
N
j'j

n

n�1

�n�1

n

; for all ' 2 C1
0 (N).

Applying to � Æ u�1 we have

Z
N
j(r� Æ u�1)(y)j dvN � S

�Z
N
j(� Æ u�1)(y)j

n

n�1

�n�1

n

:(2.1)

On the other hand, direct calculation shows that

Z
N
jrN(� Æ u

�1)(y)j dvN �

Z
M
j(rM�)(x)ja

�1(x)J(x)dvM

�

Z
M
jrM�j j�1(x) : : : �n�1(x)jdvM :

Using the arithmetic-geometric inequality (�1 : : : �n�1)
2

n�1 �

P
n�1

i=1
�2
i
(x)

n�1
�

e(u)

n�1
we have

Z
M
jrN(� Æ u

�1)(y)jdvN � C(n)

Z
M
j(rM�)(x)j e

n�1

2 dvM :(2.2)

Combining (2.1) and (2.2) we have

�Z
N
j(� Æ u�1)(y)j

n

n�1

�n�1

n

� C(n; S)

Z
M
jrM�j e

n�1

2 dvM :(2.3)

Now we estimate
�R

N j(� Æ u
�1)(y)j

n

n�1

�n�1

n

using the quasi-conformity of u as follows.

Recall the de�nition of the quasi-conformal constant to be � = supx2M
�1
�n
. Then we

have �1
�i
� �, and

J(x) = �1 : : : �n � (a(x))n;

e(x) =
nX
i=1

�2i � a(x)2((n� 1)�2 + 1):
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Combining them we have

�Z
N
j(� Æ u�1)(y)j

n

n�1 dvN

�n�1

n

� C(n; �)

�Z
M
j�(x)j

n

n�1 e
n

2 dvM

�n�1

n

:(2.4)

(2.4) together with (2.3) implies

�Z
M
j�j

n

n�1 e
n

2 dvM

�n�1

n

� C(n; �; S)

Z
M
jrM�j e

n�1

2 dvM :(2.5)

The rest of the proof is just deriving a contradiction out of (2.5).

Let S(r) = supBp(r)
e(u). It is well known that e(u) is a subharmonic function under our

curvature assumptions, from the Bochner formula for harmonic maps. By the mean-value

inequality for subharmonic functions on manifolds with nonnegative Ricci curvature we

have

S(
r

2
) � C(n)

1

Vp(r)

Z
Bp(r)

e(u)(x) dvM :

By choosing � to be

�(x) =

(
1 for x 2 Bp(r);

0 for x 2M nBp(2r);

jr�j �
C

r
;with C = 2;

the inequality (2.5) yields

 
1

Vp(r)

Z
Bp(r)

e(u)
n

2 dvM

!n�1

n

� C(n; �; S)
(Vp(r))

1

n

r

Vp(2r)

Vp(r)

1

Vp(2r)

Z
Bp(2r)

e(u)
n�1

2 dvM :

Combining with Li-Schoen's mean-value inequality and the volume doubling property of

Ricci nonnegative manifolds we have

�
S(
r

2
)

�n�1

2

� C
(Vp(r))

1

n

r
(S(2r))

n�1

2 :(2.6)
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Now we use the polynomial growth condition on the energy density of u. The polyno-

mial growth assumption simply means that there exists a constant K such that S(r) �

K(1+rd) for some d � 0. But it is not hard to show that the polynomial growth condition

implies that there exists a constant A > 0 and rj !1 such that

S(2rj)

S(
rj

2
)
� A:

Applying (2.6) to rj we have

�
S(
rj

2
)

�n�1

2

0
@1� C

(Vp(rj))
1

n

rj
(A)

n�1

2

1
A � 0:

Letting rj !1 and using the fact Vp(r) = o(rn) we have

lim
rj!1

S(
rj

2
) � 0:

Since e(u)(x) is a subharmonic function and it achieves its maximum at in�nity we have

e(u)(x) � 0, which is a contradiction since u is a quasi-conformal di�eomorphism. q.e.d.

Corollary 2.1 There is no quasi-conformal harmonic di�eomorphism from Sk � Rn�k

into Rn with polynomial growth energy density.

In order to prove Theorem 1.2 we need the following lemma which is well-known to the

experts. But for the completeness we include a simple proof here.

Lemma 2.2 If there exists a positive constant Ap such that

Z
N
j'jp dvN � Ap

Z
N
jr'jp dvN ; for any ' 2 C1

0 (N):(2.7)

Then there exists a positive constant Aq such that

Z
N
jgjq dvN � Aq

Z
N
jrgjq dvN for any g 2 C1

0 (N);(2.8)

provided q � p. In other words, Lp-Poincar�e implies Lq-Poincar�e if q � p.
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Proof. Let  = jgj
q

p . Then

jr j =
q

p
jgj

q�p

p jrgj:

Applying (2.7) to  we have

Z
N
jgjq dvN =

Z
N
j jp dvN

� Ap

Z
N
jr jpdvN

= Ap

 
q

p

!p Z
N
jrgjpjgjq�pdvN

� Ap

 
q

p

!p �Z
N
jrgjq

� p

q

�Z
N
jgjq

� q�p

q

:

Then we have (2.8) with Aq = (Ap)
q

p

�
q

p

�q
.

Now we can begin to prove Theorem 1.2. By the assumption on N we have the L2-

Poincar�e inequality

�1

Z
N
j'j2 �

Z
N
jr'j2; for any ' 2 C1

0 (N):

Applying Lemma 2.2 we have that

Z
N
j'jndvN � C(�1; n)

Z
N
jr'jndvn:

As in the proof of Theorem 1.1 we apply above inequality to � Æ u�1 . Then we have

Z
N
j(� Æ u�1)(y)jn dvN � C(�1; n)

Z
N
jrN(� Æ u

�1)(y)jn dvN :(2.9)

Similar calculation as in the proof of (2.2) shows

Z
N
jrN(� Æ u

�1)(y)jn dvN � C(�)

Z
M
j(rM�)(x)j

ndvM :

On the other hand same calculation as in the proof of (2.4) shows that

Z
M
j�(x)jne(u)

n

2 dvM �

Z
N
j(� Æ u�1)(y)jndvN :
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Combining the preceding two inequalities and choosing � as in the proof of Theorem 1.1

we will have
Vp(r)

rn
� C(�1; �; n)

Z
Bp(r)

e(u)
n

2 :(2.10)

Now our assumption on the volume growth yields e(u) � 0, which completes the proof.

Combining the proof of Theorem 1.1 and Theorem 1.2 we can have the following

corollary.

Corollary 2.3 LetMn be a complete Riemannian manifold with nonnegative Ricci curva-

ture, and let Nn be a complete Riemannian manifold with nonpositive sectional curvature

and �1(N) > 0, where n is the dimension of the both manifolds. Then there exists no

quasi-conformal harmonic di�eomorphism from M into N .

Proof. From (2.10) and the mean value inequality of Li-Schoen we can write

sup
Bp(

r

2
)

e(u)
n

2 �
C(M)

Vp(r)

Z
Bp(r)

e(u)
n

2

� C(�1; �; n;M)
1

rn
:

Letting r!1, we have e(u) � 0. We complete the proof.

Finally we present two examples. They will show that in Theorem 1.1 both the volume

growth assumption and the polynomial growth assumption of the energy density are

indeed necessary.

Example 1. This example shows that if we do not assume Vp(r) = o(rn) we can't have

our theorem. Let M = N = Rn and u be the identity map between Rn's then u has

bounded energy density and satis�es all the other assumptions of Theorem 1.1.

Example 2. This example shows that if we do not have the growth condition on the

energy density our theorem also fails. Here we let M = S1 �R and N = R2 , u mapping

from M into N (in fact onto R2 n f0g) is given by � = exp(r) and ! = �, where dr2+ d�2

is the metric on M and d�2 + �2d!2 is the metric on N . We can see easily e(u) has

exponential growth energy density and satis�es all the other assumptions in Theorem 1.1.
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