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Abstract
Here we provide refinements of the stability results of Simons and Xin, concerning the
stability of Yang–Mills fields and harmonic maps respectively. The result also implies the
earlier Morse index estimates for both cases.
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1 Introduction

The stability is a central issue in the variational problems studied in analysis and geometry.
It was proven that there is no nontrivial stable Yang–Mills fields on S

m for m ≥ 5 [1, 2, 13]
and there is no nonconstant stable harmonic maps from S

m for m ≥ 3 [16]. The stability of
minimal surfaces was studied also extensively [12].

Later the above results were strengthened by effective estimates on the lower bound of
the Morse index. Before we state the results let’s first recall some notations and definitions.

Let u : (Mm, g) → (N n, h) be a smoothmap between twoRiemannianmanifolds. Define

E(u) = 1

2

∫
M

|du|2 dμg, where |du|2 =
m∑

i=1

|du(ei )|2.

Here {ei } is an orthonormal basis of Tx M for any x ∈ M . The Einstein convention is applied
below. If us = u(s, ·) : (−ε, ε)× M → N is a family of maps (a variation), we can consider
the first and second variations of E(us). The critical point is called a harmonic map. The
second variation formula [3, 16] gives that, at a harmonic map u = u0,

d2

ds2
E(us)

∣∣∣∣
s=0

=
∫

M
〈∇∗∇V − RN

V ,du(ei )
du(ei ), V 〉 dμg (1.1)

Here V is the variational vector field along u : M → N , namely V = dus(
∂
∂s )

∣∣
s=0, which

can be viewed as a section of bundle E = u−1(T N ) over M , and ∇∗∇V = −∇2
ei ,ei

V is
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−1 times the trace of the Hessian operator of the bundle E . The convention of the curvature
is that 〈RX ,Y Y , X〉 > 0 for the standard sphere S

n . The second order self-adjoint elliptic
operator Ju = ∇∗∇ − RN

(·),du(ei )
du(ei ) is called the Jacobi operator. The harmonic map

is called stable if all the eigenvalues of Ju is nonnegative. The constant map clearly is the
minimizer of E(u). For geometric applications theminimizer within a homotopy class or with
other geometric/topological constraints are also considered. The stable maps are the local
minimizers. The total number of negative eigenvalues (multiplicity counted) of Ju is called
the Morse index of u (denoted as ι(u)). The dimension of null space N = {V |Ju(V ) = 0}
is called the nullity of u. The result of Xin [16] asserts that any stable harmonic map from
S

m into any compact Riemannian manifold must be a constant map. The following result of
[5], due to El Soufi, improves Xin’s theorem.

Theorem 1.1 For m ≥ 3, and any Riemannian manifold (N , h), let u : Sm → (N , h) be a
nonconstant harmonic map. Then the Morse index of u, ι(u) ≥ m + 1.

Xin’s theorem was preceded/motivated by a corresponding important result of Simons
for Yang–Mills fields and Yang–Mills connections [1, 13], which is defined to be the critical
points of the Yang–Mills functional YM(D) for connections D. Recall that for a connection
D on a principal G-bundle and associated G-vector bundle E over a Riemannian manifold
(M, g):

YM(D) = 1

2

∫
M

‖RD‖2 dμg.

Here RD is the curvature of the connection D on E . The norm is taken with respect to the
Riemannian metric of M and the Ad(G)-invariant metric on the Lie algebra g of G (usually
a subalgebra of so(n) where n = dim(E)). The first and second variations of YM(Ds) can
be defined and calculated similarly for a family of connections Ds . In particular, a critical
point is called a Yang–Mills connection with its curvature RD being called a Yang–Mills
field. The second variational formula (cf. Theorem 2.21 of [2]) at a Yang–Mills connection
is given by

d2

ds2
YM(Ds)

∣∣∣∣
s=0

=
∫

M
〈(dD)∗dD B + RD(B), B〉 dμg (1.2)

where B = d
ds Ds

∣∣
s=0 ∈ �1(gE ) is the variational 1-form of the connections. The operator

dD is the exterior derivative on �∗(g) and (dD)∗) is its conjugate. One can consult [2] (also
Proposition 2.2 below) for details of the notations. Theminimizers include the self-dual (anti-
self dual) ones in dimensional four and the flat connections. The associated second order self
adjoint operator JD = (dD)∗dD +RD is the corresponding Jacobi operator. One defines the
Morse index and nullity of D similarly. Due to the actions of the gauge group, in the definition
of the nullity (index and the multiplicity) one needs to restrict to the infinitesimal variations
which is orthogonal to the tangent space of the orbits of the gauge groups (cf. (6.10) of [2]).
The celebrated result of Simons [1] asserts that any nontrivial Yang–Mills field on S

m with
m ≥ 5 must be unstable. The following result of [9], due to Nayatani and Urakawa, extends
Simons’s theorem.

Theorem 1.2 For any nonflat Yang–Mills connection D on any vector bundle E over the
m-sphere S

m, m ≥ 5 with the standard metric, the Morse index ι(D) ≥ m + 1.

The goal of this note is to prove the following refinement of Theorems 1.1 and 1.2.
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Theorem 1.3 (i) For m ≥ 3 and any Riemannian manifold (N , h), and any nonconstant
harmonic map u : Sm → (N , h), let Ju be the Jacobi operator. Let Eu

λ := {X |Ju(X) = λX}
be the space of the eigenvector fields with eigenvalue λ. Then dim(Eu

−(m−2)) ≥ m + 1. In
particular, the smallest eigenvalue has the estimate λ1(Ju) ≤ −(m − 2).

(ii) For any nonflat Yang–Mills connection D on any vector bundle E over the m-sphereSm,
m ≥ 5with the standard metric, letJD be the Jacobi operator. Let E D

λ := {B |JD(B) = λB}
be the space of the eigenforms with eigenvalue λ. Then dim(E D

−(m−4)) ≥ m +1. In particular,
the smallest eigenvalue has the estimate λ1(JD) ≤ −(m − 4).

Since the multiplicity of negative eigenvalues −(m − 2), or −(m − 4), in each case
above, is given by the dimension of the eigenspace, which contributes to the Morse index,
the theorem above does imply the earlier results of Simons [13], Xin [16], El Soufi [5],
Nayatani and Urakawa [9]. The proof of the part (i) is perhaps known to experts even though
we did not find the explicit statement of the result anywhere in the literature. If that was
the case, the contribution here would be a very simple proof of the statement. A result for
minimal submanifolds in S

n is also obtained. In particular, Theorem 4.1 generalizes the
famous Simons eigenvalue estimate for the Jacobi operator for the minimal hypersurface
in S

n , which holds the key to the regularity theory of the minimal hypersurfaces, to high
codimensional case. A result (Proposition 4.1), which is dual to Ruh-Vilms’ result [11] for
manifolds with parallel mean curvature, can facilitate the computations in the proof to give a
unified treatment. We remark that besides the stability and Morse index estimate, the nullity
estimates for non totally geodesic closed minimal spheres/varieties in higher dimensional
spheres were obtained in [12] much earlier. The stability issue for Yang–Mills fields was also
studied in dimension four (which is the critical dimension for the Yang–Mills functional) in
[15]. It is interesting to study for what manifold N (M) and the property of the map u (of
Yang–Mills connection D) the equality cases in the above theorem for either harmonic maps
and for the Yang–Mills fields hold. It is also interesting to study the problem with additional
topological constraints such as within a nontrivial homotopy class for the harmonic maps.
TheMorse index estimate for harmonic 2-sphere plays an important role in the application of
harmonic maps to geometry [8], where a lower estimate was proved for harmonic 2-sphere
into a manifold with positive isotropic curvature. The proof of [8] used a different approach
which relied on some curvature conditions of N and a decomposition theoremof holomorphic
vector bundles over S2. The way of using the complex structure of the normal bundle and the
construction of holomorphic sections have their precedences in [4] (cf. also Theorem 3.1.5 of
[12] and [14]). There exist more recent lowerMorse index estimates [6, 7] for two-sphere and
projective planes inside a high dimensional spheres, related to the extremal metrics for higher
eigenvalues, in terms of the so-called spectral index. Another interesting question is to have
a lower estimate on the multiplicity and Morse index for the maps or minimal submanifolds
which are not holomorphic or anti-holomorphic between Kähler manifolds when one of them
is an irreducible Hermitian symmetric space.

2 Preliminaries

Let E be a Riemannian vector bundle over a Riemannian manifold (M, g) and let D be a
connection compatible with the metric. We shall denote the Riemannian curvature of (M, g)

by RM . The curvature of D shall be denoted as RD . Recall that RD
X ,Y = DX DY − DY DX −
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D[X ,Y ] is valued in the endomorphism bundle of E . In fact the image is in so(n)with n being
the dimension of E . Recall that (cf. (2.3) of [10]) for any A ∈ so(n),

〈A, z ∧ w〉 = 〈A(w), z〉. (2.1)

In the case of the Riemannian curvature we have RX ,Y = R(X ∧Y ) and with our convention

〈R(X ∧ Y ), Z ∧ W 〉 = 〈RX ,Y W , Z〉 = R(X , Y , Z , W ).

Let �p(E) be the p-forms valued in E . The following Bochner formula is well known (cf.
Proposition 1.3.4 of [17]).

Proposition 2.1 Let ω ∈ �p(E). Then

�dD ω �
(
dDd∗

D + d∗
DdD

)
ω = −�ω + S

where � = ∑n
j=1 ∇2

e j ,e j
, S is defined for any X1, . . . , X p ∈ X (M) that

S(X1, . . . , X p) = −
m∑

j=1

p∑
k=1

(Re j ,Xk · ω)(X1, . . . , ˆ(e j )k, . . . , X p).

Here {e j } is an orthonormal basis of Tp M. The curvature term Reα,Xk ·ω acts on ∧pT ∗M ⊗E
as a derivation. Precisely, RX ,Y · ω involves both the curvature of E and the curvature of
(M, g) in the following way

(RX ,Y · ω)(X1, . . . , Xk, . . . , X p) = RD
X ,Y

(
ω(X1, . . . , Xk, . . . , X p)

)

−
p∑

j=1

ω(X1, . . . , RX ,Y Xk, . . . , X p).

The result follows from the corresponding formulae for dD and d∗
D .

Lemma 2.1 For ω ∈ �k(E) and vector fields X0, . . . , Xk,

dDω(X0, . . . , Xk) =
k∑

i=0

(−1)i DXi (ω(X0, . . . , X̂i , . . . , Xk)) (2.2)

+
∑

0≤i< j≤k

(−1)i+ jω([Xi , X j ], X0, . . . , X̂i , . . . , X̂ j , . . . , Xk).

Lemma 2.2 Let ∇ be a torsion free connection on T M. For ω ∈ �k(E),

dDω(X0, X1, . . . , Xk) =
k∑

i=0

(−1)i (DXi ω)(X0, . . . , X̂i , . . . , Xk). (2.3)

Here (DY ω)(X1, . . . , Xk) = DY (ω(X1, . . . , Xk)) − ∑k
i=1 ω(X1, . . . ,∇Y Xi , . . . Xk). If

{es} is any frame with (gst ) = (〈es, et 〉),
(d∗

Dω)(X1, . . . , Xk−1) = −
∑
s,t

gst (Des ω)(et , X1, . . . , Xk−1).

We also apply the formula to the case E = so(E ′)with E ′ being a Riemaniann vector bundle.
The curvature of E ′ acts on so(E ′) via the adjoint action in this case.

Let u : (M, g) → (N , h) be a harmonic map. Let E = u−1(T N ) be the pull back
bundle equipped with the Riemannian metric h. The curvature of E will be the pull back of
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RN , namely u∗ RN . Now du : T M → T N can be viewed a 1-form valued in E . Namely
du ∈ �1(E). In fact for any smooth map dDdu = 0. The harmonic equation amounts to
d∗

Ddu = 0. In this case du is dD-harmonic with D being the associated connection on E .
Hence one can apply Proposition 2.1 and expresses the curvature term more explicitly to
arrive the well-known formula for a harmonic map u:

�du = −
∑
α

RN
du(·),du(eα)du(eα) + du(RicM (·)). (2.4)

For the case of Yang–Mills fields concerning a Riemannian vector bundle E over (M, g),
we apply the formula to the p-forms valued in so(E). In particular for the 1-form B and 2-form
ϕ the following results (cf. Theorem 3.2 and Theorem 3.10 of [2]) follow from Proposition
2.1.

Proposition 2.2 Let B ∈ �1(so(E)). Then

�dD B = −�B + B(RicM (·)) + RD(B) (2.5)

with RD(B)(X) = ∑m
j=1[RD

e j ,X , B(e j )]. Let ϕ ∈ �2(so(E)). Then

�dD ϕ = −�ϕ + ϕ · (2RicM ∧ id−2RM ) + RD(ϕ). (2.6)

Here RD(ϕ)(X , Y ) = ∑m
j=1

(
[RD

e j ,X , ϕe j ,Y ] − [RD
e j ,Y

, ϕe j ,X ]
)

.

Here we use the convention as in [10] about A ∧ B, namely

A ∧ B(x ∧ y) = 1

2
(A(x) ∧ B(y) + B(x) ∧ A(y)) .

We also view the Riemannian curvature as an operator RM : so(Tp M) → so(Tp M) defined
as above, namely 〈RM (x ∧ y), z ∧w〉 = RM (x, y, z, w). Moreover, for a 1-form B valued in
so(E), the derived action (RX ,Y (BZ ))(s) = RD

X ,Y (BZ (s))− BZ (RD
X ,Y (s)) for any s ∈ �(E).

The action on the 2-form ϕ valued in son(E) is given by a similar formula. These contribute
to the operator RD in the above result.

3 Proof of Theorem 1.3

We first derive some useful, also well-known, formulae for the linear functions of Rm+1

restricted to the unit sphere Sm . We use D to denote the standard derivative/connection on
R

m+1 and∇, the derivative/Levi-Civita connection of Sm . For linear function �(x), it is well-
known that 〈D�, x〉 = �. Hence ∇� = D� − � · x . Since D2� = 0, it is easy to compute that
for X , Y tangent to S

m we have

(∇2�)(X , Y ) = XY� − 〈∇�,∇X Y 〉 = XY� − 〈D�,∇X Y 〉
= XY� − 〈D�, DX Y 〉 + 〈D�, B(X , Y )〉 = 〈� · x, B(X , Y )〉 = −�〈X , Y 〉.

Here we have followed the convention of [12] defining the second fundamental form

B(X , Y ) := DX Y − ∇X Y

and used that the second fundamental form of the sphere satisfies that B(X , Y ) = −〈X , Y 〉·x .
This then implies that

∇X∇� = −�X; �∇� = −∇�. (3.1)
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The first one is obvious. The second one can be done via the first and the commutator formula
(using RicS

m = (m − 1) id). Or we choose a normal frame {eα} with ∇eβ eγ = 0 at the point
concerned, and compute

�∇� = ∇eα∇eα∇� = −∇eα (�eα)

= −〈eα,∇�〉eα = −∇�. (3.2)

Now we prove the part of Theorem 1.3 concerning the harmonic maps. It follows from
the two propositions below.

Proposition 3.1 Assume that u : Sm → (N , h) is a harmonic map. The associated section
X� = du(∇�) of E satisfies

Ju(X�) = −(m − 2)X�.

Namely if X� �= 0, it is an eigenvector of the Jacobi operator with eigenvalue −(m − 2).

Proof Direct calculations with the help of (2.4) yield that

�(du(∇�)) = (�du)(∇�) + 2(∇e j du)(∇e j ∇�) + du(�∇�)

= −RN
du(∇�),du(e j )

du(e j ) + du(RicM (∇�)) + 2(∇e j du)(∇e j ∇�) + du(�∇�)

= −RN
du(∇�),du(e j ),

du(e j ) + (m − 1)du(∇�) − 2�(∇e j du)(e j ) − du(∇�)

= −RN
du(∇�),du(e j )

du(e j ) + (m − 2)du(∇�).

In the above, from line 2 to line 3 we used (3.1), (3.2), and that RicS
m = (m − 1) id. From

line 3 to line 4 we used the harmonic map equation (dD)∗du = −(∇e j du)(e j ) = 0. ��
Proposition 3.2 If for a smooth map u and for some linear function �, X� = du(∇�) = 0, u
must be a constant map.

Proof This was proved in [5] for harmonic maps. We provide an argument below for the
above general result for any C1-maps. It is easy to see that � attains a unique maximum point
and a unique minimum point on Sm . Consider the flow �s generated by ∇�. It has two fixed
points. One of them is a source p−∞ and the other is a sink p∞ due to the explicit Hessian of
� provided in (3.1). Consider the image curve u(�s(p)). Since it stays in a compact region,
lims→∞ u(�s(p)) = u(lims→∞ �s(p)) = u(p∞), if at s = 0, �s(p) = p �= p−∞. On the
other hand

d

ds
(u(�s(p)) = du

(
d

ds
�s(p)

)
= du

(∇�|�s (p)

) = 0.

This implies that u(p) = u(p∞) for any p ∈ S
m for all p �= p−∞, which proves the claim.

��
Since the space H1 of all linear functions of Rm+1 is of dimension m + 1, the gradient

of their restrictions on S
m is of the same dimension due to the homogeneity. The above

proposition asserts that {X� = du(∇�) |� ∈ H1} is also a (m + 1)-dimensional linear space
if u is not a constant map. This proves the harmonic map part of Theorem 1.3.

Now we prove the part of Theorem 1.3 concerning Yang–Mills fields. We need the fol-
lowing lemma (cf. Lemma 7.3 of [2]), which can also be obtained by simple calculations.

Lemma 3.1 (Bourguignon–Lawson) Let B = ι∇ f ϕ for some ϕ ∈ �2(so(E)) with (dD)∗ϕ =
0, where f is a smooth function on M. Then (dD)∗ B = 0.
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The proof of the theorem follows a parallel strategy. The above result asserts that B� =
ι∇� RD belongs to the space of infinitesimal deformations of D (cf. Page 195 of [2]).

Proposition 3.3 Assume that RD is Yang–Mills of a Yang–Mills connection D of E. Let
B� = ι∇� RD = RD

∇�,(·). Then

JD(B�) = −(m − 4)B�.

Namely if B� �= 0, it is an eigenform of the Jacobi operator with eigenvalue −(m − 4).

Proof By calculations similar to that in the proof of Proposition 3.1 we have that

�(ι∇� RD) = �(RD
∇�,(·)) = �(RD)∇�,(·) + 2

(
De j RD

)
∇e j ∇�,(·) + RD

�∇�,(·)

= RD(RD)∇�,(·) + (2m − 4)RD
∇�,(·) − RD

∇�,(·)
= RD(RD)∇�,(·) + (2m − 5)RD

∇�,(·).

Recall that the operator RD acting on the 1-forms and 2-forms valued in a Lie algebra
is defined in Proposition 2.2. From the line 1 to 2 we have used the Yang–Mills equation
(dD)∗ RD = − (

De j RD
)

e j ,(·) = 0 and ∇e j ∇� = −�e j to annihilate 2
(
De j RD

)
∇e j ∇�,(·).

Here we also used (3.1), (3.2), Proposition 2.2, precisely (2.6), and that on S
m , 2RicM ∧

id−2RM = (2m − 4) I, with I being the identity map I : so(m) → so(m). Summarizing
the above we have that

�B� = RD(RD)∇�,(·) + (2m − 5)B�. (3.3)

Now apply Lemma 3.1 and Proposition 2.2 again, precisely (2.5), and have that

JD(B�) = �dD (B�) + RD(B�)

= (m − 1)B� + 2RD(B�) − RD(RD)∇�,(·) − (2m − 5)B�.

In the second line abovewe have also used (3.3). The claimed result follows after we establish
that

2RD(B�) − RD(RD)∇�,(·) = 0. (3.4)

Indeed for any X ,

2RD(B�)(X) − RD(RD)∇�,(X) = 2
m∑

j=1

[RD
e j ,X , B�(e j )]

−
m∑

j=1

(
[RD

e j ,∇�, RD
e j ,X ] − [RD

e j ,X , RD
e j ,∇�]

)

=
m∑

j=1

[RD
e j ,X , RD∇�,e j

] + [RD∇�,e j
, RD

e j ,X ] = 0.

This completes the proof of the proposition. ��
Proposition 3.4 If for a linear function �, B� = ι∇� RD ∈ �1(so(E)) vanishes on S

m, then
RD is flat.
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Proof This was proved in Proposition 4.3 of [9]. Here we provide an alternate simple argu-
ment. Let�s(p) be the flow generated by∇�. Let �̃s be its lift on the related principal bundle.
Let Ds = �̃−s D be a family of connections. It is known (cf. (2.34) of [2], and Lemma 3.7
of [9]) that

B� = ι∇� RD = d

ds

∣∣∣∣
s=0

Ds .

Here the definition of the lifting �̃s depends on D via a horizontal lifting of ∇� requiring
that �s is identity map when s = 0. Hence if for some � B� = 0, it implies that Ds is
constant. This shows that D is the connection of the pull back from the fiber over one point,
namely p∞. This implies that RD is flat. If one expresses D as the G-invariant field of linear
maps/projections π : T P → V (as on page 199 of [2]), with V being the canonical vertical
subspace, then B� = 0 implies that �̃∗

s π is independent of s. Hence the imagine of π is
same as π |p∞ . One can also see this by defining the D and Ds via the connexion (namely
mappings between the fibers over the two ends of smooth pathes, which smoothly depends
on the paths satisfying some additional axioms) as on page 445 of [10]. The argument does
not assume that RD is a Yang–Mills field. ��

The part of Theorem 1.3 concerning the Yang–Mills fields now follows exactly as the
previous case for harmonic maps.

4 Minimal submanifolds in S
n

The argument of the previous section also implies a similar result for minimal submanifolds
in S

n . Let N (M) denote the normal bundle of M . Here the key is the Codazzi equation,
namely for X , Y , Z tangent to M

(∇X B)(Y , Z) − (∇Y B)(X , Z) = 0, where B(X , Y ) = ∇̄X Y − ∇X Y (4.1)

where ∇̄ being the Levi-Civita connection of Sn and ∇X Y being the induced connection of
M via the isometric immersion. Recall that (∇X B)(Y , Z) = ∇⊥(B(X , Y ))− B(∇X Y , Z)−
B(Y ,∇X Z) and ∇⊥

X V = (∇̄X V )⊥ for any section V of N (M). Here (·)⊥ stands for the
projection to the normal bundle. To put into the setting of our previous discussion we define
β : Tp M → Tp M ⊗ Np(M) as

〈β(X), Y ⊗ V 〉 := 〈B(X , Y ), V 〉 := 〈AV (X), Y 〉.

The last equation defines AV : Tp M → Tp M , a the symmetric tensor of Tp M (given any
p ∈ M) for any V ∈ Np(M). The connection D on T M ⊗ N (M) is defined via ∇ and ∇⊥.
The 1-form β defined as above is a 1-form valued in T M ⊗ N (M). Direct calculation shows
that the Codazzi equation is equivalent to dDβ = 0.

The trace of the second fundamental form B : Tp M × Tp M → Np(M), namely H :=∑m
j=1 B(e j , e j ) = 0, for an orthonormal basis {ei } of Tp M , is called the mean curvature.

M is a minimal submanifold if and only if H = 0. Below we show that H = 0 implies that
β is a d∇ -harmonic 1-form. In fact for an orthonormal basis {ei } of Tp M with the property
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∇ei e j = 0 at a given p,

〈−(dD)∗β, X ⊗ V 〉 =
m∑

i=1

〈(∇ei B)(ei , X), V 〉

=
m∑

i=1

∇ei 〈β(ei ), X ⊗ V 〉 − 〈β(∇ei ei ), X ⊗ V 〉

=
m∑

i=1

∇ei 〈B(ei , X), V 〉 − 〈B(∇ei ei , X), V 〉

=
m∑

i=1

〈(∇X B)(ei , ei ), V 〉 = 0. (4.2)

In the above we also used the Codazzi equation. Summarizing the discussion we have that the
vanishing of the mean curvature implies that β satisfies (dD)∗β = 0. Note that dD involves
the induced connection∇⊥ (which defined as (∇̄X V )⊥) on N (M). In fact the argument above
also proves the following proposition.

Proposition 4.1 Let M be an isometric immersed submanifold in S
n (or in any space forms

with constant sectional curvature). Then M has parallel mean curvature H if and only if
1-form β defined above is dD-harmonic.

This gives a characterization of submanifolds with parallel mean curvature, similar to that
of Ruh-Vilms [11], which is formulated in terms of the harmonicity of the Gauss map into
the corresponding Grassmanian manifolds. The proposition above seems easier to use. The
second variation of the area A for a minimal submanifold M (inside another Riemannian
manifold N ) has the following form ([12], Theorem 3.2.2):

d2

ds2
A(Ms)

∣∣∣∣
s=0

=
∫

M
〈∇∗∇V − R̄(V ) − Ã(V ), V 〉 =:

∫
M

〈JM (V ), V 〉, (4.3)

where V is the variational vector field, which in this case belongs to �(N (M)). Here ∇∗∇ =
−� of N (M) (namely with respect to ∇⊥). For two sections of the normal bundle V , W , the
following defines the operators R̄ and Ã, which are symmetric transformations of Np(M):

R̄(V ) =
m∑

j=1

(RN
V ,e j

e j )
⊥, 〈 Ã(V ), W 〉 =

m∑
j=1

〈(∇̄e j V )T , (∇̄e j W )T 〉.

Here (·)T stands the projection to Tp M at any given point p ∈ M . In the case that N = S
n ,

we have that R̄(V ) = mV . Motivated by Proposition 4.1 and the results of last section we
have the following result for minimal submanifolds.

Theorem 4.1 Let Mm be a minimal submanifold ofSn. Let N (M) denote the normal bundle of
M inside Sn. For the associated Jacobi operator JM , let E M

λ = {V ∈ �(N ) |JM (V ) = λV }
be the eigenspace. Then dim(E M−m) ≥ n −m. The equality holds if and only if M is isometric
to S

m. In particular λ1(JM ) ≤ −m.

Proof Let V� be the projection of ∇̄� to the normal bundle N (M). It is a section of N (M).
Denote the tangential projection of ∇̄� to T M by T�.We calculateJM (V�). Pick an orthogonal
frame {e j }m

j=1 with ∇ei e j = 0 at a fixed point p ∈ M . Then for a section W of N (M),
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〈JM (V�), W 〉 = −
〈

m∑
j=1

∇̄e j

(∇̄e j V�

)⊥
, W

〉
−m〈V�, W 〉

−
m∑

j=1

〈(∇̄e j V�)
T , (∇̄e j W )T 〉;

−
〈

m∑
j=1

∇̄e j

(∇̄e j V�

)⊥
, W

〉
= −

〈
m∑

j=1

∇̄e j

(∇̄e j (∇̄� − T�)
)⊥

, W

〉

=
〈

m∑
j=1

∇̄e j

(
B(e j , T�)

)
, W

〉

=
〈

m∑
j=1

B(e j ,∇e j T�), W

〉
.

From line 2 to 3 we have used (3.1) and from line 3 to 4 we have used that the Codazzi
equation and ∇⊥

X (
∑m

j=1 B(e j , e j )) = 0. Finally
〈

m∑
j=1

B(e j ,∇e j T�), W

〉
=

m∑
j=1

〈AW (e j ),∇e j T�〉 =
m∑

j=1

〈AW (e j ), ∇̄e j T�〉

=
m∑

j=1

〈AW (e j ), ∇̄e j (∇̄� − V�)〉

= −〈W , �

m∑
j=1

B(e j , e j )〉 +
m∑

j=1

〈(∇̄e j W )T , (∇̄e j V�)
T 〉

=
m∑

j=1

〈(∇̄e j W )T , (∇̄e j V�)
T 〉.

Here we have used that AW (e j ) = −(∇̄e j W )T and
∑m

j=1 B(e j , e j ) = 0. Putting the above
together we have that

〈JM (V�), W 〉 = −m〈V�, W 〉
for any local section W of N (M). This proves that V� ∈ E M−m . Now let S = {V� | � ∈ H1}.
Since for any p ∈ M ⊂ S

n , dim({∇�(p) | � ∈ H1}) = n. Hence dim(Sp) = n − m with
Sp = {V�(p)| V� ∈ S}. This proves the lowermultiplicity estimate since dim(S) ≥ dim(Sp).

It is easy to see that the standard embeddingofSm → S
n attains the equality of the theorem.

Let G := {∇� | � ∈ H1}. As before dim(G) = n + 1. Let rp : G → TpS
n be the restriction

map. Let N and T be the projections from G to N (M) and T (M). Then S = N (G). If the
equality holdswehave that dim(S) = n−m. This implies that dim(ker(N )) = n+1−(n−m).
Clearly kerN ⊂ ker(Np · rp). Since dim(ker(Np · rp)) = n + 1 − (n − m), we have that
kerN = ker(Np · rp) for any p ∈ M . Namely if (∇̄�)⊥(p) = 0, (∇̄�)⊥ ≡ 0 on M . This
implies that

0 = ∇X V�(= ∇⊥
X V�) = (∇̄X (∇̄� − T�))

⊥ = ((−�X) − B(X , T�))
⊥ = −B(X , (∇̄�)T ).

Since such (∇̄�)T spans Tp M as � varies, the above equation implies that M is totally
geodesic. ��

123



Geometriae Dedicata           (2023) 217:92 Page 11 of 12    92 

We remark that the Morse index estimate of minimal submanifolds in S
n was proved

in [12], and the above proof for the equality case is similar to the corresponding rigidity
for the Morse index of [12]. Since that the equality holds for the multiplicity lower bound
estimate does not necessarily imply that theMorse index (which can be strictly larger than the
multiplicity) lower estimate holds the equality, the result above does not follow fromSimons’s
result. When M is a hypersurface, which is not a totally geodesic sphere, an eigenvalue
estimate for JM was obtained in [12] (cf. Lemma 6.1.7 there). It played a crucial role in
Simons proof of Bernstein conjecture by applying it to the analysis on the cone over M .
The above result provides a high codimensional analogue. It is expected that the eigenvalue
estimate of Theorem4.1 plays some role in the study of high codimensionalminimal surfaces.
TheMorse index of fully immersed (non-stable) S2 in S2n was calculated in [4] to be 2(n(n +
2) − 3).
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