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1. Extrinsic and intrinsic geometries

Because the title of the book may turn away people who are more interested in
flows such as the Ricci flow, I would like to start this review with a little history
about the intimate relation between so-called intrinsic and extrinsic geometry. The
study of geometry goes back to an era that predated Euclid. The subject of dif-
ferential geometry, after the invention of calculus, started in the hands of Euler,
who pioneered the study of plane curves through definitions of arc-length and ra-
dius of curvature. Monge, Lagrange, Cauchy, Laplace, Liouville, Gauss, Bonnet,
Minkowski, Liebmann, Hilbert, and many others worked to shape and spearhead
the study of Riemannian geometry after the transformational Habilitation of Rie-
mann. By the very nature and the evolutional history of geometry, intrinsic and
extrinsic geometries of a space/manifold are intimately entangled. More recently,
this has manifested in several important developments of geometry. For example in
the earlier proof (cf. [29]) of Hopf’s high dimensional generalization of Poincaré’s
index theorem, which identifies the sum of the indices at the nondegenerate singular
points of a smooth vector field on a closed manifold with the Euler characteristic,
one embeds the manifold into a high dimensional Euclidean space and utilizes the
associated Gauss map. The first proof of high dimensional generalization of the
Gauss–Bonnet theorem by Allendoerfer and Weil also made use of extrinsic geome-
try [2] before the intrinsic proof discovered later by Chern [14]. Before the celebrated
theorem of Nash, which provides an isometric embedding of a Riemannian mani-
fold as a submanifold in a Euclidean space, there have been a lot of developments
by the school of A. D. Aleksandrov relating the intrinsic and extrinsic geometries
concentrating on the Minkowski and Weyl problems (with more details below). An
excellent account of these developments can be read in the Buffet style value (both
monetary and mathematically) book of Busemann [12]. Such an intimate connec-
tion between the two geometries also exists in subjects such as complex algebraic
geometry.

By proving an existence theorem for the Weyl problem, the study of convex geom-
etry originating from Minkowski’s work (e.g., proving the celebrated Aleksandrov–
Fenchel inequality on the mixed volumes of convex bodies) gradually evolved into
the study of the intrinsic geometry of convex surfaces. He proved that every metric
of nonnegative curvature given on a two-dimensional sphere can be isometrically im-
mersed into three-dimensional Euclidean space in a form of a closed convex surface
[1]. The result also induces further questions:

(i) Is this immersion unique up to rigid motion?
(ii) If the metric is given on the sphere, is it a regular one and of positive

Gaussian curvature?
(iii) Is it true then that the surface with this metric is regular?
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2 BOOK REVIEWS

A. V. Pogorelov, another distinguished geometer from the school of Aleksandrov,
answered these questions by using synthetic geometric methods [33]. First, he devel-
oped geometric methods to obtain a priori estimates for solutions of Monge–Ampère
equations. He then used these equations to solve geometric problems. Based on
geometric reasons, he also constructed a generalized solution of a Monge–Ampère
equation and then proved its regularity for the regular right-hand side of the equa-
tion. L. Nirenberg simultaneously published his celebrated work [31] on the Weyl
and Minkowski problems approaching some of above mentioned questions from a
more analytic/PDE perspective. The pioneering works of H. Lewy [27], L. Niren-
berg [31], E. Calabi [13], A.V. Pogorelov [33, 34], as well as the celebrated work of
J. Nash, laid the foundation of the field of geometric analysis through the estab-
lishment of fundamental a priori estimates and the study of the Monge–Ampère
equation. The continuous influence of these works, as well as the gradient estimate
technique dated at least back to Bernstein’s work of the first two decades of 1900,
can be seen in the later important contributions made by Agmon, Douglis, and
Nirenberg; Aubin; Caffarelli, Nirenberg, and Spruck; Calabi; Chen, Donaldson,
and Sun; Cheng and Yau; Cheeger; Donaldson; Evans; Gromov; Jost; Kodaira;
Krylov and Safanov; Li and Yau; F. Lin; Morrey; Schoen; Simon; Siu; Taubes;
Tian; Trudinger; Uhlenbeck; Yau; etc. The methods and ideas evolved further in
the works of geometric flows pioneered and/or developed by Andrews; Angenent;
Böhm and Wilking; Brakke; Brendle; Colding and Minicozzi; Daskalopoulos and
Sesum; Ecker; Eells and Sampson; Evans and Spruck; Firey; Hamilton; Haslhoffer
and Kleiner; Huisken; Ilmanen; Ladyzenskaja, Solonnikov, and Ural’ceva; Naber;
Perelman; Struwe; X.-J. Wang; White; etc. (The lists, limited by author’s igno-
rance, are not intended to be exhaustive nor do they include any development of
geometric PDEs of hyperbolic/dispersive type. We apologize for any omissions.)
In particular, the book under review focuses on the flow of hypersurfaces of the
Euclidean space.

2. Geometric inequalities

Geometric flows study parabolic PDEs related to these geometric problems. Out-
side of the many various motivations and applications in applied sciences, such as
image processing and reconstruction, there are additional mathematical motiva-
tions as well. The geometric inequalities, most of which are related to the field of
convex geometry, are such motivations from geometry to study the flows instead of
motivation from PDEs.

2.1. Isoperimetric inequalities. The Dido problem, described in the famous
Aeneid by Publius Vergilius Maro, asks us to maximize the land encircled with a
bull’s hide, a problem encountered by the exiled Phoenician princess. This per-
haps was the first time the isoperimetric problem was recorded. The problem
was then studied by mathematicians throughout history varying from the stud-
ies of the ancients—Aristotle, Archimedes, and Zenodorus—to more recent works
by Steiner, Weierstrass, Schwarz, and many others. A detailed history can be found
in Blaschke’s book [8].

The mean curvature flow,
(2.1)

∂X(x, t)

∂t
= H(x, t), where H(x, t) is the mean curvature of the embedding,
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BOOK REVIEWS 3

originated to model systems such as cell, grain, and bubble growth. In the 1950s,
von Neumann studied soap foams whose interface tends to have constant mean
curvature, whereas Mullins’ work describes coarsening in metals, whose interfaces
are not generally of constant mean curvature. One motivation of the mean curvture
flow is to obtain a dynamic approach towards a solution to the Plateau problem.
However, there is a proof of the isoperimetric inequality in the plane by P. Topping
[35] via the curve shorting flow, a very special case of the mean curvature flow.
The isoperimetric ratio and its monotonicity play important roles in the study of
related geometric flows. The first three chapters of the book under review cover
more recent development of this idea by Andrews and P. Bryan [5].

2.2. Convex geometry. Many geometric inequalities arise in the modern study of
geometry. The excellent book [11] does an amazing job in surveying the subject (of
geometric inequalities) as its analogous precedents [24], [7] on inequalities in general.
Convex geometry plays an essential role concerning many geometric inequalities.

One result of pivotal importance is the Aleksandrov–Fenchel inequality for con-
vex bodies, which asserts that for bounded convex bodies K1, . . . ,Kn in R

n, the
mixed volume V (K1, . . . ,Kn) satisfies

(2.2) V (K1, . . . ,Kn) ≥ V (K1,K1,K3, . . . ,Kn) · V (K2,K2,K3, . . . ,Kn).

It is related to Brunn–Minkowski theory. Aleksandrov gave two proofs of it. One is
via the method combinatorics and the other is via a PDE method. Later, a proof
via the Hodge index theorem for complex surfaces was discovered via a theorem of
Bernstein which connects the mixed volume with the number of roots of polynomials
in n-complex variables.

In his PhD thesis, Andrews gave a proof via a geometric flow designed specifically
for the Aleksandrov–Fenchel inequality. An exposition of this is included in Chapter
18 of the book under review. There is a generalization to nonconvex setting in [22].

There are many open problems concerning geometric inequalities of convex bod-
ies, such as the famous 1945 problem of Aleksandrov conjecturing the sharp upper
bound of the area by its diameter. For some problems the geometric flow could be
a powerful tool to tackle them. There are also dynamic/PDE problems in convex
geometry which concern the behavior of the flow itself.

W. Firey, a geometer who mainly studies convex bodies of Euclidean space,
proposed several problems concerning convex bodies in R

3 and R
n. One of them is

Firey’s conjecture regarding the fate of the rolling (convex) stones, which was first
resolved by Andrews [4] for R3.

Theorem 2.1 (Andrews). The fate (asymptotical shape) of a rolling convex stone
in R

3 is a round sphere.

The book under review contains an exposition on this problem and a solution
of its generalizations to higher dimensions (and some variations of the flow) in
Chapters 15–17.

3. Geometric flows of hypersurfaces

One can study the flow of high codimension submanifolds even though that is not
the topic of the book under review. The book focuses on the flow of a hypersurface
in a Euclidean space. In fact its main focuses are mean curvature flow and Gauss
curvature flow.
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4 BOOK REVIEWS

3.1. Mean curvature flow. As mentioned previously, the mean curvature flow
has been studied in material science to model things such as cell, grain, and bubble
growth. Mullins may have been the first to write down the mean curvature flow
equation in general when he tried to model the grain boundaries in annealing metals.
Mullins also found some of the basic self-similar solutions, such as the translating
solution now known as the “Grim Reaper”.

3.1.1. The formulation in terms of geometric measure theory. In his 1978 PhD
thesis under the supervision of Almgren, Brakke formulated the mean curvature
flow via varifolds. An existence theorem (for all time) is proved for a surface moving
by its mean curvature, via an approximation procedure that yields a one-parameter
family of varifolds that satisfies the definition of motion by mean curvature. The
excellent book [18] by Ecker is based on lectures of the author devoted to the
regularity theory of Brakke from a more PDE-centric point of view.

3.1.2. The PDE approach. In [25], Huisken started the study of the flow by the
mean curvature of a smooth convex hypersurface. The study and the method were
inspired by Hamilton’s celebrated work initiating the powerful Ricci flow. The main
theorem is that any smooth compact convex hypersurface shall shrink to a point
and as it shrinks it becomes more round, and namely, the rescaled hypersurface
converges to a round sphere. The proof is done via establishing several a priori
estimates. Unlike the work of Hamilton, which is mainly based on his estimates on
the maximum principle, his work utilizes integral estimates via an iteration scheme
of Stampacchia (some also credited to De Giorgi). These integral estimates also
play an important role in the later convexity estimate of Huisken and Sinestrari.
These have been covered in book form in [36].

There is an excellent survey article [17] by Colding, Minicozzi and Pedersen,
where the reader can find some aspects of the subject missed by the book under
review. In particular, the article covers the stability theorem and the uniqueness
of the tangent flow result obtained by Colding and Minicozzi, and it provides in-
formation on possible topological applications of mean curvature flow.

3.2. Flows by a speed function which is of a homogenous degree 1 function
of the principal curvatures. Mean curvature flow is one of many flows of convex
hypersurfaces by a speed function which is a homogenous degree 1 function of the
principal curvatures (eigenvalues of the second fundamental form) satisfying certain
structure conditions since H = λ1+···+λn

n . Such functions include the square root
of the scalar curvature and nth root of the Gauss curvature (if the dimension of
hypersurface is n). These were the subject of study of two papers of B. Chow
adapting the techniques of [25]. In the PhD thesis of Andrews (part of it appeared
in [3]), formulating the flow in terms of the support function, a great simplification
was achieved on Huisken and Chow’s results. Meanwhile, the method allows much
broader choices of the speed functions. The study here was instead motivated
mainly by a series of papers of Caffarelli, Nirenberg, and Spruck on fully nonlinear
PDEs. In fact, the structure conditions on the speed function were inspired by the
above mentioned work as well. The main result proves the similar convergence to
a sphere result for all flows of closed convex hyperfurfaces with speed function of
homogenous degree 1 of the second fundamental form.

Besides the study of the flow of the hypersurfaces in the Euclidean space, the
thesis of Andrews also includes many other very interesting developments. In fact,
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BOOK REVIEWS 5

a very general differential Harnack estimate (not necessarily with degree 1 speed
function, in fact including some anisotropic flows) was obtained, which includes
the case of the mean curvature flow, the flow by the power of Gauss curvature and
harmonic mean curvature. By using the support function, the proof is done with
very few computations, unlike the previous works on the mean curvature flow and
the Gauss curvature flow. This is another example of Sylvester’s conclusion “. . . a
general proposition should be easier to prove than any special case of it.” Of course
it is only possible after a new and more general method was invented. However
such a more conceptual proof has not been found for the Ricci flow. In Andrews’
thesis, a flow approach to the Aleksandrov–Fenchel inequality was also successfully
carried out, and new entropy inequalities were obtained. Finally, by using a flow
of a hypersurface inside a Riemannian manifold, a “dented” 1/4 pinching sphere
theorem was also obtained.

3.3. The level set approach. The level set method is motivated by the mathe-
matical study of phase transition. The related flow is called an interface controlled
model. There are also motivations from crystal growth modeling and image pro-
cessing. The level set method is to represent the hypersurface as the zero set of a
smooth (at the least continuous) function. This certainly has advantages since the
zero set of a smooth function can have singularities. Hence, the method naturally
allows flowing through the singularities. The foundation of the level set method was
laid down by Chen, Giga, and Goto and, independently, by Evans and Spruck; the
numerical work of Osher and Sethian preceded both of these. It is also related to
the work on first order equations by Evans and Souganidis. The level set method
together with the concept of the viscosity solutions allows proper formulation of
flow through singularities but with a uniqueness. This advantage over the varifold
formulation of Brakke’s is important for applications. It also allows the topological
changes along the flow. For mean curvature flow, this allows much progress in the
study of mean convex hypersurface flow. The flexibility in the formulation makes
it possible to attack some geometric and topological problems. An application is to
provide the first rigorous construction of the so-called type II singularities (namely
the ones forming more slowly than predicted). The work of Evans and Spruck fo-
cuses on the mean curvature flow while Chen, Giga, and Goto also include more
general cases. The book [21] gives good coverage of the development up to the date
of its publication. The survey [17] also contains more recent developments in this
direction.

3.4. The Gauss curvature flow and the flow by a positive power of the
Gauss curvature. The Gauss curvature flow was used by Firey to model the pro-
cess of tumbling stones on the seashore. The Gauss curvature of a n-dimensional
hypersurface is a degree n polynomial of the principal curvatures. The success
of the flow by the Gauss curvature remains mostly for the convex hypersurfaces.
However, the method most often extends to the flow by some positive power of
Gauss curvature. Varying the power, the equation becomes more degenerate as
the power becomes bigger and more singular as the power gets smaller. Studying
them together gives an example of nonlinear parabolic equations with varying de-
generacy. If the hypersurface is n-dimensional, one particular power is 1

n+2 , since

K
1

n+2 is invariant under affine transformations of determinant 1. This was applied
by Alvarez, Guichard, Lions, and Morel to study image processing. A thorough
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6 BOOK REVIEWS

study of this flow was done by Andrews. Another such special power is 1
n , which

was first studied by Chow. This special case is included in the later, much more
general study of the homogeneous degree 1 case by Andrews mentioned above. The
large time behavior of Gauss curvature flow and the flow by any power bigger than
1

n+1 was studied in [23] and [6] with the classification of the limits, namely the

shrinking solitons (which was finally achieved in [10]). The work of [23] and [6]
relies on some geometric consideration in terms of entropy (also called dual quer-
massintegrals in convex geometry) of convex bodies and its monotonicity under the
flow. The entropy functional of a convex body K is defined as

(3.1) E(K) = sup
x∈K0

E(K,x),

with E(K,x) =
1

|Sn |
∫
Sn

log ux(θ) dθ, K
0 being the interior of K.

Here ux(θ) = supz∈K〈θ, z − x〉 is the support function of K with respect to x. A
special version of it has been studied before in the works of Firey and Andrews.
It only involves the support function of the convex body, does not involve any
derivatives of the support function, and is unlike most other entropy quantities
in the study of geometric flow, such as Perelman’s entropy. Hence, it plays a
fundamental role in obtaining the needed C0-estimates. The result owes itself
to the study of convex geometry since the classical Blaschke–Santalo inequality
supplies the nonnegativity of the entropy. Similar success was achieved for the mean
curvature flow, particularly in the work of Huisken and of Colding and Minicozzi
(cf. [17]). It would be a sensational result if a similar entropy quantity not involving
the derivatives of the data (e.g., the metric for the Ricci flow) could be found for
the Ricci flow.

By combining [23] and [10], the following high dimensional analogue of Andrews’
result holds.

Theorem 3.1. The fate (asymptotical shape) of the rolling convex stone in R
n+1

is a round S
n.

4. The book

As a graduate textbook the book has a lot of content with 20 total chapters,
much more than one could possibly cover in a single semester/quarter or even a
year-long graduate course. The book provides some suggestions on a possible short
course with focuses on various topics, such as Gauss curvature flow, curve shorting
flow, etc. The most suitable moment to teach a course out of the book is after a
year-long sequence of PDE and a quarter/semester course of differential geometry,
particularly the theory of submanifolds. One could also do a topic course using
the materials of the book on self-similar solutions (and ancient solutions if you are
ready to dive into the subject), though with the risk that this topic could be a
bit specialized for a broader audience. After several tries, an experienced instruc-
tor can also pick their own selections of topics from the book for a semester-long
graduate course on the flows of hypersurfaces type. The book also serves as an
excellent reference to the subject for graduate students and mathematicians inter-
ested in acquiring techniques and ideas about the flow of hypersurfaces. There are
several related earlier books concerning the flow of hypersurfaces in Euclidean space
such as [16, 18, 21, 36]. The book of [21] focuses on the level set approach, which
is almost completely orthogonal to the book under review. There are tangential
overlaps with this book [16, 18, 36]. The book [16] primarily concerns the flow of
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BOOK REVIEWS 7

curves covering anisotropic flow, while Ecker’s book [18] concerns the regularity
theorem of Brakke for the weak solution of a mean curvature flow of a hypersur-
face. The book [36] concerns the convexity estimate and the cylindrical estimate of
Huisken and Sinestrari for the mean curvature flow of mean convex hypersurfaces
with techniques which predate some of the more recent developments. The book
[36] however covers some applications in mathematical relativity which is outside
the scope of the book under review. In most cases, when overlapping, the current
book provides an updated approach to the theorems covered by the three books
mentioned above. For example, Chapter 3 contains an alternate proof of Grayson’s
theorem developed by Bryan and Andrews. Chapters 9 and 12 contain streamlined
and alternate proofs of the above mentioned convexity and cylindrical estimates
built upon the noncollapsing estimate in terms of the inscribed radius of Andrews.
The book also contains many developments after the publication of the above men-
tioned three books on the topics of solitons and ancient solutions with an extensive
list of references. A theme emphasized by the book is the interplay between differ-
ential Harnack estimates and the monotonicity formulae of entropy like quantities.
This focus was the topic of the earlier survey paper [30], which contained a sub-
stantial simplification of calculations in the proof of differential Harnack estimates,
discovered by Andrews, for the family of hypersurface flows, including mean cur-
vature flow, harmonic mean curvature flow, and the flow by positive powers of
the Gauss curvature. The survey paper [30] also illustrates at the least three dif-
ferent interplays between the differential Harnack estimates and the monotonicity
for Ricci flow, Kähler Ricci flow, Hamilton’s principle applied to mean curvature
flow, harmonic map flow, Yang–Mills flows, and many other situations including
Perelman’s entropy monotonicity.

The book contains an exposition in three chapters, Chapters 15–17, of the flow
by the power of Gauss curvature. The Gauss curvature is incarnated into the Weyl
and Minikowski problems. The study of Gauss curvature flow was motivated by
the study of the convex geometry [19]. One can deduce results in convex geometry
from the study of the flow as illustrated by the results of [15], [26], [6], etc. On the
other hand the analysis of the nonlinear PDEs also directly influenced the study
of the Gauss curvature-like flows. The entropy monotonicity involving only the C0

data (mentioned previously) seems to be known so far only for the extrinsic flows,
which play a crucial role in the proof of the convergence to a soliton part in the
resolution to the Firey’s conjecture. The influence of the convex geometry is also
obvious. In the study of convex geometry, there are extended studies of Minkowski
type problems [9,28]. Further synthesis of the techniques from the convex geometry
and nonlinear elliptic and parabolic PDEs can lead to resolutions of problems in
both fields.

Though it is a bit presumptuous to say that the book enables readers to clear
their shelves of many research papers on the subject of the hypersurface flows, it
certainly makes the road less rocky (or a little more “royal”) for those who want
to grasp some key developments and ideas of the subject. The book also contains
many open problems which are good sources for graduate students who want to
get an idea of the current status of the field. Despite its length, since on many
topics only the ideas and simple applications are illustrated in the book, the reader
should still read the research papers of the subject for further developments in
depth, original ideas, motivations, and backgrounds of the particular problem that
she or he is interested in.
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8 BOOK REVIEWS

Given the level of content and its concentration on the specialized topic of hy-
persurface flows, it is unrealistic to expect that this book belongs to the category of
“coffee table books” such as [20, 32] (which should be owned by any mathematical
club of undergraduate students or average mathematicians and should be shared
with friends, colleagues, and students—a gift for beginners and experts alike). Sim-
ilar to Mathematical omnibus [20], the book also includes photos of various math-
ematicians contributing to the subject for the purpose of inspiration. Instead of
the artistic illustrations lavished through [20], the mathematical presentation of the
book under review contains many figures to convey the ideas and insights of oth-
erwise “cold” estimates. The competence and enthusiasm of the authors certainly
inspire optimism that the content and the presentation of the book shall prevail in
the test of the time. I recommend it to any graduate student (mathematician) who
has solid background in both differential geometry and partial differential equations,
and who is serious about learning some exciting developments of the geometric flows
of hypersurfaces in the last decade.
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