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Abstract. In this paper we study the class of compact Kähler manifolds with Ric⊥ > 0. First we illus-
trate examples of Kähler manifolds with Ric⊥ > 0 on Kähler C-spaces, and construct ones on certain
projectivized vector bundles. These examples show the abundance of Kähler manifolds which admit
metrics of Ric⊥ > 0. Secondly we prove some (algebraic) geometric consequences of the condition
Ric⊥ > 0 to illustrate that the condition is also quite restrictive. Finally this last point is made evident
with a classification result in dimension three and a partial classification in dimension four.

1. Introduction. In a recent work [24] by the first and third author, the
geometric implications of orthogonal Ricci curvature Ric⊥ on a Kähler manifold
Mn, which is defined by

Ric⊥
XX

= Ric(X,X)−R(X,X,X,X)/|X|2

for any type (1,0) tangent vector X, was studied. For a compact Kähler man-
ifold with Ric⊥ > 0 everywhere, it was shown in [24] that the manifold is al-
ways projective, has finite π1(M), and has vanishing Hodge numbers: hp,0 = 0 for
p = 1,2,n− 1, and n. Beside the results just mentioned and the comparison the-
orems relating Ric⊥ to the orthogonal Laplacian Δ⊥ (cf. [24] for the definition),
some compact and non-compact examples of Kähler manifolds with Ric⊥ > 0 were
also illustrated there. Examples summarized in Section 4 of [24] show that the Ric,
the holomorphic sectional curvature H(x) = R(X,X,X,X) and Ric⊥ are inde-
pendent except the obvious relation Ric(X,X) = Ric⊥(X,X)+H(X)/|X|2.

The goal of this paper is to continue the study of compact Kähler manifolds
with positive orthogonal Ricci curvature. Let us denote by M⊥

n the set of all com-
pact complex manifolds of complex dimension n which admit Kähler metrics with
Ric⊥ > 0. For each n≥ 2, the ultimate goal is to understand the class M⊥

n . In this
paper we shall first illustrate examples of manifolds with Ric⊥ > 0 by showing that
the Kähler-Einstein metrics on most Kähler C-spaces with b2 = 1 satisfy Ric⊥ > 0,
and then construct such Kähler metrics on some projectivized vector bundles.

In the second part of the paper we will prove some (algebraic) geometric con-
sequences of the condition Ric⊥ > 0 to illustrate that the condition is also quite
restrictive. Finally in dimension three a classification result is obtained, while in
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dimension four we obtain a partial classification result. It is our hope that this pa-
per will help to establish that M⊥

n forms an interesting class of rationally connected
manifolds, perhaps similar to the class of Fano manifolds, and worth further inves-
tigation from both the differential geometric and the algebraic geometric point of
view.

The referee gives an excellent account of the historic background here, and
with his/her permission we included the following two paragraphs from the report.
The notion of orthogonal Ricci curvature may be motivated as follows. The curva-
ture type tensor Y = g⊗Ric−H appears quite often in geometric analysis, for ex-
ample, the Weitzenböck formula in the Bochner-Kodaira technique, various second
order estimates in the complex Monge-Ampere equation, the Chern-Lu formula in
the Schwarz-Yau Lemma, etc. It is first explicitly stated in Wu-Yau-Zheng [30] as
a curvature condition that a Kähler manifold (M,g) has nonnegative quadratic bi-
sectional curvature if Y (ξ,ξ) ≥ 0 for every real (1,1) vector ξ on M . In fact, it is
formulated equivalently as

∑
i,jRiijj(ai−aj)

2 ≥ 0 in [30] for any unitary frame
and any real constant ai, in order to facilitate the estimate for the Monge-Ampère
equation.

The nonnegativity of quadratic bisectional curvature is geometrically mean-
ingful, as a first non-trivial example (which is not Hermitian symmetric) is con-
structed by Li-Wu-Zheng [18], based on the formulas of Itoh [16]. That example
is (B3;α2), i.e., the 7-dimensional Kähler C-space corresponding to the classical
simple Lie algebra B3 = so7 coupled with its second simple root α2. Based on [18],
the nonnegative quadratic bisectional curvature was expected to be the right curva-
ture condition to solve the generalized Hartshorne conjecture, which asserts every
Fano manifold with nef tangent bundle is biholomorphic to a Kähler C-space. Us-
ing the same strategy of [18] and the computer software, Chau-Tam [5] computed
out all Kähler C-spaces with b2 = 1, and found that a small amount of the Kähler
C-spaces, in both classical four and five exceptional Lie algebras, do not satisfy
the nonnegative quadratic bisectional curvature. Thus, the curvature does not fulfill
the expectation. To remedy this situation, Ni-Zheng relax the quadratic bisectional
curvature to let Y instead act on the (1,0) type vectors X. This gives rise to the
orthogonal Ricci curvature. The nonnegative orthogonal Ricci curvature is alge-
braically weaker than the nonnegative quadratic bisectional curvature, since every√−1X ∧X is a real (1,1) vector but not the converse, as not every real (1,1)
vector is decomposable.

We summarize our results on the existence side first. It is clear that the Ric⊥> 0
condition requires that the dimension of the manifold to be at least 2 since all
Riemann surfaces have Ric⊥ ≡ 0. (In higher dimensions, as we shall see in the
Appendix, any Kähler manifold Mn with n≥ 2 and Ric⊥ = 0 everywhere is either
flat, or has n = 2 and is locally holomorphically isometric to the product of two
complex curves, with constant curvature of opposite signs.) For a product manifold
with the product metric, the product will have Ric⊥ > 0 if both factors have Ric⊥ >
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0 and Ric ≥ 0. So for Xn ∈M⊥
n and Y m ∈M⊥

m, if the metrics involved also have
nonnegative Ricci, then the product manifold X×Y lies in M⊥

n+m. Observe also,
that any small deformation of a manifold in M⊥

n is again in M⊥
n .

Built upon the works by Itoh [16] as well as Chau and Tam in [5], we illustrate
that most of the Kähler C-spaces with b2 = 1 admit Kähler metrics with Ric⊥ > 0.

THEOREM 1.1. Let Mn be a classical Kähler C-space with n≥ 2 and b2 = 1.
Then the (unique up to constant multiple) Kähler-Einstein metric has Ric⊥ > 0.

Kähler C-spaces with b2 = 1 consists of four classical sequences, plus finitely
many exceptional ones. We believe that all such spaces with n≥ 2 (namely, except
P

1) have Ric⊥ > 0. However, since our computation is based upon the curvature
computations in [16], which was done only for the classical ones, plus some but
not all of the exceptional ones, we cannot claim the result for all exceptional cases
before carrying out the computation of holomorphic sectional curvature for all of
them. Since Ric⊥ > 0 always holds for metrics with positive quadratic orthogo-
nal bisectional curvature, it is interesting to note that the above result, together
with Chau-Tam’s work on the quadratic orthogonal bisectional curvature, provides
many compact homogenous examples with Ric⊥ > 0, but with negative orthogonal
quadratic bisectional curvature (see Section 2 for definition) somewhere.

For Kähler C-spaces with b2 > 1, the conclusion of Theorem 1.1 is no longer
true in general. For instance, as we shall see in discussion a bit later, the flag three-
fold P(TP2), which is a Kähler C-space with b2 = 2, cannot admit any Kähler metric
with Ric⊥ > 0. It would be an interesting question to know what kind of Kähler
C-spaces are in M⊥

n .
Since there are only two irreducible compact Hermitian symmetric spaces that

are exceptional, in view of [16], we have the following result.

COROLLARY 1.2. Let Mn be a compact Hermitian symmetric space without
any P

1 factor. Then it has Ric⊥ > 0.

On the other hand, as we shall see later, for any compact complex manifold N ,
P

1 ×N can never admit a Kähler metric with Ric⊥ > 0.
Another set of examples can be obtained by considering projectivized vector

bundles. Let (Mn,g) be a compact Kähler manifold and (E,h) be a holomorphic
vector bundle of rank r over Mn, equipped with a Hermitian metric h. Let π : P =

P(E∗) → M be the projectivization of E, namely, for x ∈ M , π−1(x) = P(Ex)

is the set of all complex lines through origin in Ex. Note that it is the tradition in
algebraic geometry to denote this space as P(E∗), instead of P(E) which is used
more by differential geometers. Consider the Kähler metric G on P with Kähler
form

ωG = λπ∗ωg+C1(L,ĥ),
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where λ > 0 is a sufficiently large constant, L is the dual of the tautological line
bundle on P , and ĥ is the metric on L induced by h. At a point (x, [v]) ∈ P , where
x ∈M and 0 �= v ∈ Ex, C1(L,ĥ) is given by

C1(L,ĥ) = ωFS −
√−1
|v|2 Θh

vv

where Θh is the curvature form of (E,h) and ωFS is the Kähler form of the Fubini-
Study metric on the fiber of π. We have the following:

THEOREM 1.3. Let (Mn,g) be a compact Kähler manifold with Ric⊥ > 0, and
(E,h) be a Hermitian vector bundle over M of rank r≥ 3 such that for any x∈M

and any 0 �= v ∈Ex,

Ricg⊥
XX

+R(detE)XX − r

|v|2R
h
vvXX

> 0(1.1)

for any tangent vector 0 �= X ∈ T 1,0
x M . Here R(detE) is the curvature of the

determinant line bundle detE =
∧rE equipped with the metric induced by h. Then

on the projectivized bundle P = P(E∗), the Kähler metric G with ωG = λπ∗ωg+

C1(L,ĥ) has Ric⊥ > 0 everywhere when λ is sufficiently large.

Note that the rank requirement r≥ 3 here is necessary, as we shall see later that
any P

1-bundle over any base space can never admit a Kähler metric with Ric⊥ > 0.
As pointed out by the referee, the Ricci analogue of Theorem 1.3 has been

established earlier by Yau in 1974 [31, p. 218, Proposition 2], which provided,
for the first time, a general curvature criterion for the projective bundle to admit a
Kähler metric with positive Ricci curvature.

The curvature condition (1.1) is independent of the scaling of metrics g or
h, as well as tensoring of E by a line bundle. When the dimension of the base
manifold is 3 or higher, the above theorem gives non-trivial examples of manifolds
with Ric⊥ > 0. For instance, when M = P

n (n ≥ 3) equipped with the standard
metric, then for the cotangent bundle ΩPn or E =O⊕2⊕O(−1), with the standard
metrics, one can easily check that the condition (1.1) is satisfied. Hence we have
the following examples:

Example 1.4. For any n ≥ 3, the (2n− 1)-dimensional manifold P(TPn) and
the (n+ 2)-dimensional manifold P(O⊕2

Pn ⊕OPn(1)) are in M⊥. Similarly, con-
sider the splitting bundle E =O(a1)⊕·· ·⊕O(ar) over Pn, where a1 ≥ a2 ≥ ·· · ≥
ar. If

n−1 >
(
a1 −a2

)
+ · · ·+ (a1 −ar

)
,

then P(E∗) will be in M⊥.
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In particular, the Fano fivefold P(O⊕2⊕O(1)) over P3, which is not a complex
homogeneous space as it has a section with negative normal bundle, admits Kähler
metrics with Ric⊥ > 0. Note by [4], this fivefold does not admits a metric with
QB ≥ 0 (QB stands for the quadratic orthogonal bisectional curvature. Please see
Section 2 for the definition.)

As an interesting contrast, when the base is two dimensional, any P
k-bundle

cannot be in M⊥ unless it is the product:

THEOREM 1.5. Let k ≥ 2, and let P be a holomorphic fiber bundle over a
compact complex surface S, whose fiber is P

k. If P admits a Kähler metric with
Ric⊥ > 0, then S must be biholomorphic to P

2 and P must be biholomorphic to
P

2 ×P
k.

So in particular, any non-trivial Pk-bundle over P2 does not admit any Kähler
metric with Ric⊥ > 0, even though both the fiber and the base do.

The non-existence side is related to an observation for the condition Ric⊥ > 0,
a result which generalizes a theorem of Frankel [7]:

THEOREM 1.6. Let Mn be a compact Kähler manifold with Ric⊥ > 0. If Y1

and Y2 are irreducible divisors in M , then Y1 ∩Y2 �= φ.

As an immediate corollary, we know that manifolds with Ric⊥ > 0 cannot be
the blow-up of an algebraic manifold at a (smooth or singular) point, or a fiberation
over a curve:

COROLLARY 1.7. Let Mn be a compact Kähler manifold with Ric⊥ > 0. Then
there exists no surjective holomorphic map from Mn onto a complex curve, and
there exists no birational morphism f : M → Z onto a normal variety Z , where a
smooth hypersurface in M is mapped to a (smooth or singular) point.

A Lefschetz type theorem can also be proved for compact Kähler manifolds
with Ric⊥ > 0. Namely for any smooth complex hypersurface Y , the induced map
ι∗ : π1(Y )→ π1(M) is surjective.

For n = 2, Ric⊥ is the same as orthogonal bisectional curvature. So the result
of [9] implies that the only M2 which admits a Kähler metric with Ric⊥ > 0 is P2.
It turns out that in dimension 3 and 4, M⊥

3 and M⊥
4 are also rather small, thanks

to the powerful cone-contraction theorems by Mori [20] and Kollár [17] and the
numerous related works afterwards. In dimension three we have the following:

THEOREM 1.8. Let M3 be a compact Kähler manifold with Ric⊥ > 0, then
M3 is biholomorphic to either P3 or Q3, the smooth quadratic hypersurface in P

4.

In dimension four, we only have a partial result:



838 L. NI, Q. WANG, AND F. ZHENG

THEOREM 1.9. Let M4 be a compact Kähler manifold with Ric⊥ > 0, then
M4 is biholomorphic to either P

2 ×P
2, or a Fano fourfold with b2 = 1 and with

pseudo index i≥ 3.

The pseudo index i(M) of a Fano manifold Mn is defined to be the minimum
of the intersection number K−1

M C , where K−1
M is the anti-canonical line bundle and

C is any rational curve in M .
Recall that a del Pezzo manifold Mn is defined as a Fano manifold with index

n− 1, where the index is the largest integer r such that K−1
M = rA for an ample

divisor A. For n ≥ 3, such manifolds were completely classified by Fujita in [8],
arranged by their degree d which is defined as An. They are:

• d = 1: Xn
6 ⊂ P(1n−1,2,3), a degree 6 hypersurface in the weighted projec-

tive space.
• d = 2: Xn

4 ⊂ P(1n,2), a degree 4 hypersurface in the weighted projective
space.

• d= 3: Xn
3 ⊂ P

n+1, a cubic hypersurface.
• d= 4: Xn

2,2 ⊂ P
n+2, a complete intersection of two quadrics.

• d= 5: Y n, a linear section of Gr(2,5) ⊂ P
9.

• d= 6: P1 ×P
1 ×P

1, or P2 ×P
2, or the flag threefold P(TP2).

• d= 7: P3#P3, the blow-up of P3 at a point.
We propose the following:

Conjecture 1.10. A compact complex manifold M4 of dimension 4 admits a
Kähler metric with Ric⊥ > 0 if and only if M4 is biholomorphic to P

4, or Q4, or a
del Pezzo fourfold: X4

6 , X4
4 , X4

3 , X4
2,2, Y 4, or P2 ×P

2.

In other words, we conjecture that for n ≤ 4, the set of all compact Kähler
n-manifolds with Ric⊥ > 0 coincide with the set of all Fano n-folds with index
r ≥ 3.

For n≥ 5, the set M⊥
n contains more examples, and the index could certainly

be 1, e.g., P2×P
3, or P(O⊕3⊕O(1)) over P3. We believe that all manifolds in M⊥

n

should be rationally connected. We do not know whether or not they should all be
Fano, even though all examples constructed so far are Fano. One could even ask
if all such manifolds admit Kähler-Einstein metrics. In any event, for n ≥ 5, M⊥

n

should form a very interesting class of algebraic manifolds, which perhaps worths
some attention from both differential geometers and algebraic geometers. Some of
the results proved in this paper were announced in our survey paper [25] before.

Acknowledgments. We would like to thank Jun Li for pointing out the fact that
any uniformly trivial vector bundle on projective space is trivial (as well as for an
outline of the proof), which is crucial to the proof of Theorem 1.5, and to thank
Hsian-Hua Tseng for the reference [6], which allows a much shorter proof of The-
orem 1.8. We thank Yanir Rubinstein for suggesting to examine the Ric⊥-Einstein
metrics (see the appendix). We would also like to thank the anonymous referee
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who made a number of excellent comments and suggestions which improved the
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2. Kähler C-spaces. First let us recall the well-known fact about Kähler
C-spaces, they are exactly the orbit spaces of the adjoint representation of com-
pact simple Lie groups. We will follow the discussion of [16] or [5] and references
therein. All Kähler C-spaces with b2 = 1 can be described as follows. Let g be
a simple complex Lie algebra. They are fully classified as the four classical se-
quences Ar = slr+1 (r ≥ 1), Br = so2r+1 (r ≥ 2), Cr = sp2r (r ≥ 3), Dr = so2r

(r ≥ 4) and the exceptional ones E6, E7, E8, F4, and G2.
Let h⊂ g be its Cartan subalgebra with corresponding root system Δ⊂ h∗, so

we have g= h⊕⊕α∈ΔCEα where Eα is a root vector of α. Let r = dimC h and
fix a fundamental root system {α1, . . . ,αr}. This gives an ordering in Δ, and let
Δ+, Δ− be the set of positive or negative roots. Fix an integer i with 1 ≤ i≤ r. For
any positive integer k, define

Δ+
i (k)�

{

α=

r∑

j=1

njαj ∈Δ+ | ni = k

}

and write Δ+
i =

⋃
k>0Δ

+
i (k). Let G be the simply connected simple complex Lie

group with Lie algebra g, and P ⊂G the parabolic subgroup whose Lie algebra is
h⊕⊕α∈Δ\Δ+

i
CEα. Then M =G/P is a Kähler C-space with b2 = 1. Conversely,

any Kähler C-space with b2 = 1 are obtained this way. Following [16], we will
denote this Kähler C-space by (g,αi).

Let {Eα}α∈Δ ∪ {Hαj}rj=1 be a Weyl canonical basis of g (see [5] and the
references therein), and write m+k =

⊕
α∈Δ+

i (k)
CEα, m−k =

⊕
α∈Δ+

i (k)
CE−α.

Then m+ =
⊕

k>0m
+k is the holomorphic tangent space of M at the base point,

and the metric g on (g,αi) given by

g =
∑

k>0

(−kB)|m+k×m−k

is the unique (up to constant multiple) Kähler-Einstein metric on M . Here B is the
Killing form on g. Let eα = 1√

k
Eα for α ∈Δ+

i (k), then {eα}α∈Δ+
i

forms a unitary
(left invariant) frame on M , called the Weyl frame.

Note that Kähler C-spaces with b2 = 1 include all the irreducible compact Her-
mitian symmetric spaces:

(
Ar,αi

)
= GrC(i,r+1), 1 ≤ i≤ r, r ≥ 1;

(
Br,α1

)
=Q

2r−1, r ≥ 2;

(
Br,αr

)
=

{
P

3, if r = 2;

IIr+1, if r ≥ 3;
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(
Cr,α1

)
= P

2r−1, r ≥ 3;
(
Cr,αr

)
= IIIr, r ≥ 3;

(
Dr,α1

)
= IIr+1, r ≥ 4;

(
Dr,αr−1

)
=
(
Dr,αr

)
= IIr, r ≥ 4;

(
E6,α1

)
= (E6,α6) =M16

V ;
(
E7,α7

)
=M27

VI ;
(
G2,α1

)
=Q

5,

where IIn = SO(2n)/U(n) is the space of orthogonal complex structures on R
2n

and IIIn = Sp(n)/U(n) is the space of complex structures on H
n compatible with

the inner product, with H being the quaternions. The former has complex dimen-
sion 1

2n(n−1) and rank [n2 ], and the latter has dimension 1
2n(n+1) and rank n.

The set of Kähler C-spaces with b2 = 1 which are not Hermitian symmetric
spaces consists of the classical sequences

(
Br,αi

)
r≥3,

(
Cr,αi

)
r≥3,

(
Dr,αi

)
r≥4,

where 1 < i < r for Br and Cr and 1 < i < r−1 for Dr , and the exceptional ones:

(
E6,αi

)
2≤i≤5,

(
E7,αi

)
1≤i≤6,

(
E8,αi

)
1≤i≤8,

(
F4,αi

)
1≤i≤4,

(
G2,α2

)
.

For a simply connected irreducible compact Kähler manifold (Mn,g), if the
bisectional curvature (or orthogonal bisectional curvature) is nonnegative, then by
the work of Mok [19] (or the work of Gu and Zhang [9]), either Mn is biholo-
morphic to P

n or (Mn,g) is holomorphically isometric to a compact Hermitian
symmetric space of rank at least 2. In [30], a weaker curvature condition was con-
sidered: a Kähler manifold (Mn,g) is said to have nonnegative quadratic orthog-
onal bisectional curvature, denoted by QB ≥ 0, if at any x ∈M , for any unitary
frame {e1, . . . ,en} at x, and for any real constants {a1, . . . ,an}, it holds that

n∑

i,j=1

Riijj

(
ai−aj

)2 ≥ 0.

M is said to have positive quadratic orthogonal bisectional curvature, denoted by
QB > 0, if the above quantity is positive whenever these ai are not all equal. The
quantity appeared first in [4] from the Bochner formula in computing the Laplacian
of the length square of a (1,1) form.

In [18], this was verified for the 7-dimensional space (B3,α2) that QB ≥ 0,
using the computation of [16]. Then it was proved that the condition QB ≥ 0 was
only satisfied by about 80% of Kähler C-spaces with b2 = 1, namely, in [5], Chau
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and Tam completely computed QB for all Kähler C-spaces with b2 = 1 excluding
the Hermitian symmetric ones, and their conclusions are the following:

THEOREM 2.1. (Chau-Tam) (i) For 1 < i < r and r ≥ 3, (Br,αi) has QB > 0
(≥ 0) if and only if 5i+1 < 4r (≤ 4r).

(ii) For 1< i< r and r≥ 3, (Cr,αi) has QB> 0 (≥ 0) if and only if 5i−3< 4r
(≤ 4r).

(iii) For 1 < i < r− 1 and r ≥ 4, (Dr,αi) has QB > 0 (≥ 0) if and only if
5i+3 < 4r (≤ 4r).

(iv) For the exceptional ones, the following satisfy QB > 0:

(
G2,α2

)
,
(
F4,αi

)
i=1,2,4,

(
E6,αi

)
i=2,3,5,

(
E7,αi

)
i=1,2,5,

(
E8,αi

)
i=1,2,8.

On the other hand, for the remaining ones, each of them does not satisfy QB ≥ 0:

E0 =
{(

F4,α3
)
,
(
E6,α4

)
,
(
E7,αi

)
i=3,4,6,

(
E8,αi

)
i=3,4,5,6,7

}
.

Clearly, if we take all but one of those ai to be zero in the definition of QB, we
see that the condition QB > 0 (or ≥ 0) implies Ric⊥ > 0 (or ≥ 0). So by the above
result of Chau and Tam, we know that at least 80% of Kähler C-spaces with b2 = 1
satisfy Ric⊥ > 0. It is probably true that all of them except P

1 satisfy Ric⊥ >

0. Proving this involves the verification of H < μ, where H is the holomorphic
sectional curvature of any tangent direction, and μ is the (constant) Ricci curvature
of M .

We will take advantage of the calculations of [5, 16] to derive Theorem 1.1
and Corollary 1.2, namely, all Kähler C-spaces with b2 = 1 except P1 or those in
E0 satisfy Ric⊥ > 0, and we believe that those in E0 should satisfy Ric⊥ > 0. But
its verification would be a digression from the main line of discussions here.

Let us start with the verification of Ric⊥ > 0, or equivalently H < μ, for any
irreducible compact Hermitian symmetric spaces Mn other than P

1. First for Pn

with n ≥ 2, in this case H is constantly 2, and μ = n+ 1, so H < μ holds. For
the quadric hypersurface Q

n, with n ≥ 3 (note that Q2 = P
1 ×P

1 is reducible), it
can be holomorphically and isometrically embedded in P

n+1, so its maximum H is
again no greater than 2, while its μ is n+2−2 = n, so again we have H < μ. For
the complex Grassmann manifold Mn = GrC(i,r+1) = (Ar,αi), where 1≤ i≤ r,
we have n = i(r+ 1− i) and r ≥ 2 (otherwise M = P

1). As is well known, Mn

can be holomorphically and isometrically embedded in P
N = P(

∧i
C
r+1), and the

Ricci curvature of Mn is μ = r+ 1, while the maximum H of Mn is no greater
than that of PN which is 2, so H ≤ 2 < μ, and Mn satisfies Ric⊥ > 0.

For type II and type III Hermitian symmetric spaces, which are Mn
II =

(Br,αr) and Mn
III = (Cr,αr), respectively, where r ≥ 3 and n = 1

2r(r+ 1), we
will postpone the verification of Ric⊥ > 0 and do it with the other classical Kähler
C-spaces with b2 = 1.



842 L. NI, Q. WANG, AND F. ZHENG

For the two exceptional Hermitian symmetric spaces, M16
V = (E6,α1) and

M27
VI = (E7,α7), again by the computation in the E6 and E7 subsections of [5], we

see that Δ+
1 (k) = φ for any k ≥ 2 and μ= 12 in the former case, while Δ+

7 (k) = φ

for any k ≥ 2 and μ = 18 in the latter case. On the other hand, let us recall the
so-called curvature operator Q defined in [16] (note that this is not the curva-
ture operator in Riemannian or Kähler geometry). Consider the symmetric product
space S2T 1,0

M equipped with the Hermitian inner product

(X ·Y,Z ·W ) =
1
2

(〈X,Z〉〈Y,W 〉+ 〈X,W 〉〈Y,Z〉),

where X ·Y = 1
2(X⊗Y +Y ⊗X). Now consider Q : S2T 1,0

M → S2T 1,0
M , the self-

adjoint linear operator defined by
(
Q(X ·Y ), Z ·W)=RXZYW .

Denote by ν the largest eigenvalue of Q. Since RXXXX = (Q(X ·X), X ·X), the
maximum of holomorphic sectional curvature H is no greater than ν. The number
ν was computed in [16] for all classical and some exceptional Kähler C-spaces
with b2 = 1. In other words, we always have H ≤ ν, so if ν < μ, then Ric⊥ > 0.

By Table 12 in [16], we know that for (E6,α1) = (E6,α6) or (E7,α7), ν = 2,
while μ = 12 or 18, so Ric⊥ > 0 for the two exceptional Hermitian symmetric
spaces.

For (Br,αi) where r ≥ 3 and 1 ≤ i ≤ r, by the computation in §3.1 in the
paragraph right before Lemma 3.2 in [5], we see that μ= 2r− i≥ r ≥ 3, while by
Table 3-5 of [16], we see that ν = 2 or 1, hence ν < μ thus Ric⊥ > 0.

For (Dr,αi) where r ≥ 4 and 1 ≤ i≤ r, §3.2 of [5] says that μ= 2r− i−1 ≥
r−1 ≥ 3, while Table 9-11 of [16] says that ν = 2, hence ν < μ and Ric⊥ > 0.

For (Cr,αi) where r ≥ 3 and 1 ≤ i ≤ r, §3.3 (the paragraph right before
Lemma 3.5) of [5] says that μ = 2r− i+ 1 ≥ r+ 1 ≥ 4, while Table 6-8 of [16]
says that ν = 2, or 4 when i = r, hence ν < μ and Ric⊥ > 0 when i < r or when
r ≥ 4. In the case r = 3 and i = 3, namely for M6

III = (C3,α3), we have μ = 4
and ν = 4, so in order to conclude Ric⊥ > 0 we need to show that the maximum of
holomorphic sectional curvature of (C3,α3) is strictly less than 4. To see that, we
will just carry out the computation in its non-compact dual, namely, the bounded
symmetric domain DIII

3 which is the set of all 3× 3 complex symmetric matrices
Z satisfy I3 −ZZ > 0, as the curvature tensor just differs by a sign.

Recall that for type I bounded symmetric domain DI
p,q which consists of all

complex p× q matrices Z such that Iq−Z∗Z > 0. Let Φ(Z) = logdet(Iq−Z∗Z).
Then ωg =

√−1∂∂Φ(Z) is the standard metric on DI
p,q. Write Z = (ziα), then at

the origin 0, the matrix of the metric is the identity matrix: giαjβ = δijδαβ , and the
curvature tensor is given by

Riαjβkγ�δ =−δijδk�δαδδγβ − δi�δkjδαβδγδ .
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So for tangent vectors X =
∑

i,αXiα
∂

∂ziα
and Y =

∑
i,αYiα

∂
∂ziα

, we have

−RXXY Y =
∑

i,α,β

XiαY kαX iβYkβ+
∑

i,α,γ

XiαY iγXkαYkγ = ρ(XY ∗)+ρ(tXY ),

where ρ(A) =
∑

i,j |Aij |2 for any matrix A= (Aij). Since

ρ(AA∗) =
∑

i,j

∣
∣
∣
∣
∣

∑

k

AikAjk

∣
∣
∣
∣
∣

2

≤
∑

i,j

ρi(A)ρj(A) =

(
∑

i

ρi(A)

)2

= ρ(A)2,

where ρi(A) =
∑

k |Aik|2, and similarly, ρ(tAA) ≤ (ρ(A))2, we obtain that for
any tangent vector X �= 0 at the origin, the holomorphic sectional curvature in the
direction of X satisfies:

−H(X) =−RXXXX/|X|4
=
(
ρ
(
XX∗)+ρ

(
tXX

))
/|X|4 ≤ 2ρ(A)2/|X|4 = 2.

Now the type III bounded symmetric domain DIII
r is a totally geodesic subspace

in DI
r,r, so its holomorphic sectional curvature in any tangent direction is greater

than or equal to −2. While for r= 3, it is easy to see from the above bisectional cur-
vature formula that the Ricci curvature of DIII

3 is −4. So its compact dual (C3,α3)

satisfies μ=4 and H≤2, thus Ric⊥>0. This completes the proof of Theorem 1.1.
For Corollary 1.2, since a product metric will have Ric⊥ > 0 if both of its fac-

tors are so and with nonnegative Ricci, we know a compact Hermitian symmetric
space will have Ric⊥ > 0 if it does not contain P

1 as a factor. On the other hand,
by Corollary 1.7, any P

1 ×N cannot admit any Kähler metric with Ric⊥ > 0. So
Corollary 1.2 holds. We should remark that the main part of the computations here
were done by [16, 5], which led us to conclude that the condition Ric⊥ > 0 is
satisfied by all Kähler C-spaces with b2 = 1 and n≥ 2 except the ones in E0:

E0 =
{(

F4,α3
)
,
(
E6,α4

)
,
(
E7,αi

)
i=3,4,6,

(
E8,αi

)
i=3,4,5,6,7

}
.

We believe that each space in E0 also satisfies Ric⊥ > 0, but we cannot claim that
since we did not go through the lengthy computation here.

3. Projectivized bundles. In this section, we will consider projectivized
bundles that admit Ric⊥ > 0 metrics. Let (Mn,g) be a compact Kähler manifold
and (E,h) be a holomorphic vector bundle over M equipped with a Hermitian
metric. Let π : P = P(E∗) → M be the projectivized bundle associated with E,
namely, for any x ∈ M , the fiber π−1(x) = P(Ex) is the projective space of all
complex lines in Ex through the origin.
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Let L be the line bundle on P dual to the tautological subbundle, determined
by the short exact sequence

0 −→OP −→ π∗E∗ ⊗L−→ TP |M −→ 0,

where TP |M = ker
(
dπ : TP → π∗TM

)
is the relative tangent bundle. As is well

known, the metric h induces naturally a Hermitian metric ĥ on L, whose curvature
form is

C1(L,ĥ) = ωFS −
√−1
|v|2 Θh

vv(3.1)

at any point (x, [v]) ∈ P , where x ∈ M and 0 �= v ∈ Ex. Here ωFS is the Kähler
form of the Fubini-Study metric on the fiber of π. Consider the closed (1,1) form
on P :

ωG = λπ∗ωg+C1(L,ĥ),(3.2)

where λ > 0 is a constant. Clearly, for λ sufficiently large, G is a Kähler metric on
P .

Historically, the metric G was used in [31, Proposition 1] to show that, for any
compact Kähler manifold Mn and any holomorphic vector bundle E of rank at
least 2 on M , the metric G on the projectivized bundle P has positive scalar curva-
ture when λ is sufficiently large. At about the same time, in [11] it was shown that,
when E =O⊕O(−k) on P

1 where k≥ 0, so P =Fk is the Hirzebruch surface, the
metric G has positive holomorphic sectional curvature when λ is sufficiently large.
In [1], this later construction of Hitchin was generalized to conclude that, when
(M,g) has positive holomorphic sectional curvature and E is any Hermitian vector
bundle over M , then for sufficiently large λ, the Kähler metric G on P = P(E∗)
always has positive holomorphic sectional curvature.

In the following, we will follow the notations in [1] to compute the Ric⊥ of
G. Fix a point (x, [v]) ∈ P , where x ∈ M , v ∈ Ex, and |v| = 1. Choose local
holomorphic coordinates z = (z1, . . . ,zn) near x in Mn, so that x corresponds
to z = 0 and gij(0) = δij , dg(0) = 0. Also, choose a local holomorphic frame
e = (e1, . . . ,er) for E near x, such that e1(0) = v, and hαβ(0) = δαβ , dh(0) = 0.

We can further assume that at 0 we have ∂i∂jh = 0 and Rh
vvij

= δijξi for any

1 ≤ i,j ≤ n. Consider the section u = e1(z) +
∑r

α=2 tαeα of E. Then (z,t) =

(z1, . . . ,zn, t2, . . . , tr) forms a local holomorphic coordinate in P near (x, [v]). For
the sake of convenience, we will write t1 = 1, and abbreviate ∂

∂zi
as i, and ∂

∂tα
as

α, etc. We then have

huu =

r∑

α,β=1

tαtβhαβ(z), ωG = λπ∗ωg+
√−1∂∂ loghuu.
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As in [1], by a straightforward computation, we get at the origin that

Gij = δij(λ− ξi), Giβ = 0, Gαβ = δαβ ;

G∗β,∗ =Gαj,β = 0, Gij,α =−Rh
αvij

, Gij,k = huu,ijk;

Giβ,kδ =Gαβ,γj = 0, Gij,αβ =−Rh
αβij

+ δαβδijξi;

Gij,kβ = huβ,ijk, Gαβ,γ δ =−hαβhγδ −hαδhγβ ;

Gij,k� = λgij,k�+huu,ijk�−huu,ijhuu,k�−huu,i�huu,kj.

Now let X = y+σ =
∑n

i=1 yi
∂
∂ zi

+
∑r

α=2σα
∂

∂ tα
be any non-zero tangent vector

of type (1,0) at (x, [v]) ∈ P . Denote by R the curvature tensor of G. At the origin,
we have

Rabcd =−Gab,cd+

n∑

j=1

1
λ− ξj

Gaj,cGbj,d

for any indices a, b, c, d which could be any i or α. Write εj =
1

λ−ξj
. We have

Ryσyσ =Ryσσσ = 0, Rσσσσ = 2|σ|4,
Ryyyσ =−huσ,yyy−

∑
εjhuu,yyyR

h
vσjy,

Ryyσσ =Rh
σσyy−|σ|2

∑

j

ξj
∣
∣yj
∣
∣2 +

∑

j

εj
∣
∣Rh

vσjy

∣
∣2,

Ryyyy = λRg
yyyy −huu,yyyy +2

⎛

⎝
∑

j

ξj
∣
∣yj
∣
∣2

⎞

⎠

2

+
∑

j

εj
∣
∣huu,yyj

∣
∣2.

Similarly, the Ricci curvature of G at the origin is given by

Rab =
∑

c

1
Gcc

Rabcc =
∑

j

εjRabjj+
∑

α

Rabαα

=−
∑

j

εjGjj,ab+
∑

j,�

εj ε�Ga�,jGb�,j−
∑

α

Gab,αα.

So we have

Ryσ =−
∑

j

εjhuσ,jjy−
∑

j �

εjε�huu,j�yR
h
uσ�j

Rσσ =
∑

j

εjR
h
σσjj

−|σ|2
∑

j

εjξj+
∑

j,�

εjε�
∣
∣Rh

σvj�

∣
∣2 + r|σ|2



846 L. NI, Q. WANG, AND F. ZHENG

Ryy = λ
∑

j

εjR
g

jjyy
−
∑

j

εjhuu,yyjj+

(∑

j

εjξj

)(∑

i

ξi|yi|2
)

+
∑

j

εj |ξj |2|yj |2

+
∑

j,�

εj ε�
∣
∣huu,y�j

∣
∣2 +

∑

α

Rh
ααyy − (r−1)Rh

vvyy+
∑

α,j

εj
∣
∣Rh

αvyj

∣
∣2.

Denote by |y|2 =∑j |yj|2, and ‖y‖2 =
∑

j(λ− ξj)|yj |2. Consider the quantity

Φ= ‖X‖2RXX −RXXXX =Φ0 +2Re(Φ1)+Φ2+2Re(Φ3)+Φ4,

where

Φ0 = ‖y‖2Ryy−Ryyyy,

Φ1 = ‖y‖2Ryσ−Ryyyσ,

Φ2 = ‖y‖2Rσσ + |σ|2Ryy−4Ryyσσ,

Φ3 = |σ|2Ryσ ,

Φ4 = |σ|2Rσσ −Rσσσσ

since Ryσyσ = Ryσσσ = 0. Let us write 1
λ = ε. When λ is sufficiently large, we

have

Φ0 = λ

(

Ricg
ỹỹ
−Rg

ỹỹỹỹ
+

r∑

α=2

Rh
ααỹỹ

− (r−1)Rh
vvỹỹ

+O(ε)

)

|y|4,

Φ1 = |y|3|σ|O(1),

Φ2 =
(
λr+O(1)

)|y|2|σ|2,
Φ3 =O(ε)|y||σ|3,
Φ4 =

(
(r−2)+O(ε)

)|σ|4

where ỹ = y
|y| . Note that the condition (1.1) in Theorem 1.3 ensures that Φ0 > 0

when λ is sufficiently large and y �= 0. So under this condition and that r ≥ 3, it
is easy to see that the quantity Φ > 0 for any 0 �= X = y+σ. Thus the metric G

has Ric⊥ > 0 at the origin, hence everywhere on P . This completes the proof of
Theorem 1.3. �

The verification of the curvature conditions in Example 1.4 is straightforward,
so we omit it. We will postpone the proof of Theorem 1.5 to the next section, after
we obtain some geometric consequences for the curvature condition Ric⊥ > 0 first.

4. Geometric consequences of Ric⊥ > 0. We begin with the proof of The-
orem 1.6, which is a slight modification of an argument of T. Frankel [7]:

Proof. Let (Mn,g) be a compact Kähler manifold with Ric⊥ > 0, and Y1, Y2 be
two irreducible divisors in Mn. We want to show that Y1 and Y2 always intersect



POSITIVE ORTHOGONAL RICCI CURVATURE 847

each other. Assume the contrary, namely, assume that Y1 ∩ Y2 = φ, we want to
derive a contradiction from that.

Let γ : [0, �] → Mn be a unit speed geodesic from Y1 to Y2 which realizes
the distance between them. Write p = γ(0) ∈ Y1 and q = γ(�) ∈ Y2. Denote by
Hp

∼= C
n−1 the J-invariant linear subspace of the tangent space TpM which is

perpendicular to γ′(0). It is just the orthogonal complement of sp{γ′(0),Jγ′(0)}.
Define Hq similarly.

Since Mn is Kähler, we have ∇J = 0 where J is the almost complex structure
of M , so the parallel translation along γ will send Hp onto Hq, as they are the
complex hyperplanes of the tangent space of M perpendicular to γ′.

For a unit vector field X parallel along γ, the second variation of arc length is
given by

L′′
X(0) = 〈∇XX,γ′〉q−〈∇XX,γ′〉p−

∫ �

0
K(γ′ ∧X)dt.

To derive at a contradiction, we want to find such an X with negative second
variation. Let {ε1, . . . ,ε2n} be an orthonormal tangent frame of Mn at p, such
that ε1 = γ′ and εn+i = Jεi for each 1 ≤ i ≤ n. Parallel translate them along
γ and denote by the same letters. We see that both Hp and Hq are spanned by
{ε2,Jε2, . . . ,εn,Jεn}.

For each 2≤ i≤n, we can find a complex curve C through p in a neighborhood
of p such that TpC is spanned by {εi,Jεi}. Extend εi to a vector field X in C , then
we have

∇XX+∇JXJX = J(−∇XJX+∇JXX) = J [JX,X].

Since [JX,X] is in C , at p it is perpendicular to γ′, hence we have

〈∇εiεi+∇JεiJεi,γ
′〉p = 0,

and similarly the same equality holds at q, so we get

n∑

i=2

(L′′
εi +L′′

Jεi) =−
n∑

i=2

∫ �

0
K(γ′ ∧ εi)+K(γ′ ∧Jεi) =−

∫ �

0
Ric⊥(γ′)< 0.

So at least one of the terms in the left-hand side will be negative. Now if both
Y1 and Y2 are smooth, then we must have TpY1 and TqY2 perpendicular to γ′,
hence Hp = TpY1 and Hq = TqY2. So the above negative second variation term
will contradict the fact that γ is the shortest geodesic from Y1 to Y2.

If p is a singular point of Y1, let us denote by Cp ⊂ TpM the tangent cone of
Y1 at p. It is a subvariety in the tangent space. We claim that the support (reduced
part) of Cp, which we will still denote by the same letter for convenience, coincides
with Hp. It suffices to show that Cp ⊂ Vp, where Vp

∼= R
2n−1 is the orthogonal

complement of γ′(0) in TpM . Since −v ∈ Cp for any v ∈ Cp, so if Cp is not
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contained in Vp, then there will be 0 �= v ∈ Cp which makes an acute angle with
γ′(0). By Theorem 11.8 of [29], we know that for any v ∈Cp, there exists a smooth
arc σ : [0, ε) → Y1 such that σ′(0) = v. In a small neighborhood of p, the minimal
geodesic from γ(ε) to σ(t) with small t > 0 would be shorter than ε, so

d(σ(t),q) ≤ d(σ(t),γ(ε))+d(γ(ε),q) < ε+d(γ(ε),q) = d(p,q).

This violates the assumption that γ is the shortest curve between Y1 and Y2. So
we have Cp = Hp, and similarly, Cq = Hq. Then the term with negative second
variation along γ will again contradict the fact that γ is the shortest curve between
Y1 and Y2. This completes the proof of Theorem 1.6. �

An equally effective approach is to work with the energy of a path γ, E(γ) (see
for example [27, 24]).

The argument can be adapted to prove a Lefschetz type result for a pair of
complex hypersurfaces (Y1,Y2), or a hypersurface Y in M . The key is that for any
pair of hypersurfaces Y1, Y2, one may define Ω to be the space all paths originating
from Y1 and ending with Y2. The energy of the path γ ∈Ω, E(γ) is defined as usual.
It is well known that the critical points of the energy functional are geodesics which
intersects Yi orthogonally (namely normal geodesics). The same argument as above
implies the following index estimate, which includes the intersecting result as a
consequence since the minimizers can be identified with Y1 ∩Y2 (cf. [27]).

COROLLARY 4.1. Let γ be a non-trivial critical point (namely a nonconstant
normal geodesic after [24]). Then the index of ind(γ)≥ 1. In particular,

π0(Ω,Y1 ∩Y2) = {0}, ι∗ : π1
(
Y1,Y1 ∩Y2

)−→ π1(M,Y2) is surjective.(4.1)

When Y1 = Y2 = Y , this implies that π1(M,Y ) = {0}.

Proof. The index estimate follows verbatim from the above argument in prov-
ing that Y1∩Y2 �= /0. For rest claims, the argument of [27] via the Morse theory and
exact sequences, applies (cf. also [23]). �

Note that in [24] it was conjectured that π1(M) = {0}. The last statement of
the corollary is clearly a consequence of an affirmative answer to the conjecture.

Next we prove the following geometric property for manifolds with Ric⊥ > 0,
which will be a key factor in determining the low dimensional cases:

THEOREM 4.2. Let (Mn,g) be a compact Kähler manifold with Ric⊥ > 0.
Let C be an irreducible curve in M , with f : C̃ → M the normalization of C .
Denote by g the genus of C̃ and KM the canonical line bundle of M . Then we
have K−1

M C ≥ 3−2g. In particular, K−1
M C ≥ 3 for any rational curve C ⊆M .
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Proof. First, note that the holomorphic sectional curvature of (Mn,g) is a
scalar-valued function H on the projectivized cotangent bundle π : P(ΩM)→M :

H([X]) =RXXXX/|X|4,

where X is any non-zero type (1,0) tangent vector in M . If U is a piece of smooth
complex curve in M , then the inclusion map i : U →M has a lift ĩ : U → P(ΩM ).
For any x ∈ U , consider

Ric⊥ |U = Ric⊥
XX

/|X|2,

where X is any non-zero type (1,0) tangent vector of U at x. It is a well-defined
function on U , and we have

0 < Ric⊥ |U i∗ωg = Ricg |U − ĩ∗H i∗ωg ≤ Ricg |U −Θ(i∗ωg),

where Ricg is the the Ricci (1,1) form of ωg, and Θ(i∗ωg) is the curvature (1,1)
form of the restriction metric i∗ωg =ωg|U . The inequality is due the non-increasing
property of curvature for complex submanifolds.

Now suppose that C is an irreducible complex curve in M , and denote by U

its smooth part. Let f : C̃ → C ⊂ M be the normalization of C , and write Ũ =

f−1(U) ⊂ C̃ . Since Ric⊥ > 0 on M , by integrating the positive function Ric⊥ |U
over U , we get

K−1
M C =

∫

C
Ricg =

∫

U
Ricg >

∫

U
Θ
(
i∗ωg

)

=

∫

Ũ
Θ
(
f ∗ωg

)
=

∫

C̃\D̃
Θ
(
f ∗ωg

)
,

(4.2)

where D is the divisor in C̃ given by the zeroes of df , and D̃ is the support of D.
Note that on C̃ , f ∗ωg is a degenerate metric, with zeroes at D. In fact, f ∗ωg is a
Hermitian metric on the holomorphic line bundle TC̃(D), with

∫

C̃
Θ
(
f ∗ωg

)
= c1

(
TC̃(D)

)
= 2−2g+deg(D),

and the integral of Θ(f ∗ωg) over C̃ \ D̃ is just 2− 2g. Since all terms involved
are integers, the strict inequality (4.2) gives K−1

M C ≥ 3− 2g, thus completing the
proof. �

For a smooth rational curve C ⊂M , we have the short exact sequence of vector
bundles over C

0 −→ TC −→ TM |C −→NC −→ 0,
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where NC is the normal bundle of C in M . By taking their first Chern classes, we
get

c1
(
NC

)
= c1

(
TM |C

)− c1
(
TC

)
=K−1

M C−2 > 0.

In other words, we have the following:

COROLLARY 4.3. For any smooth rational curve C in a compact Kähler man-
ifold Mn with Ric⊥ > 0, the normal bundle of C has positive first Chern class.

As an immediate consequence, we know that if Mn is the product P1 ×N ,
or more generally, if there is a morphism f : M → N where a generic fiber is a
smooth rational curve, then Mn cannot admit any Kähler metric with Ric⊥ > 0.
In particular, the Kähler C-space P(TP2) does not admit such a metric since it is a
P

1-bundle.
Next let us prove Theorem 1.5. We will divide the proof into three steps. In the

first step, we prove that the base surface must be P
2. In the second step, we show

that the fiber bundle must be the projectivization of a vector bundle. Finally, in step
three, we show that the vector bundle must be the trivial bundle tensoring with a
line bundle.

LEMMA 4.1. Let p : Pn → S be a holomorphic fiber bundle over a compact
complex surface S, with fiber Pn−2 where n≥ 4. Assume that Pn admits a Kähler
metric with Ric⊥ > 0. Then S must be biholomorphic to P

2.

Proof. First of all, S is projective since Pn is so. If C is a (−1) or (−2) curve
in S, namely, a smooth rational curve with self intersection number −1 or −2,
then since C can be blown down to a smooth or singular point, by considering the
proper transform of a smooth curve down stair away from that point, we know that
there exists a smooth curve D in S which does not intersect C . Then the smooth
hypersurfaces p−1(C) and p−1(D) in P do not intersect, violating Theorem 1.6.
So S cannot contain any (−1) or (−2) curve, hence is a minimal surface.

By Corollary 1.7, we know that P , hence S, cannot fiber over a curve. Let κ
be the Kodaira dimension of the minimal algebraic surface S. If κ= −∞, then the
only choice for S is P2 since it cannot be ruled. If κ = 0, then a finite cover of S
is either a complex torus or a K3 surface, which admits a non-trivial holomorphic
2-form. Pulling it back to the finite cover of P , we get a violation to the vanishing
theorem in [24, Theorem 1.7]. When κ = 1, S is an elliptic surface, which is not
possible. So we are left with the case of κ= 2, namely, S is a general type surface.

Since S does not contain any (−2) curve, its canonical line bundle KS is am-
ple. From the fact that P has finite fundamental group and does not have any holo-
morphic 1 or 2-form on it, we know that S satisfies q = pg = 0, thus

χ
(OS

)
= 1− q+pg =

1
12

(
c2

1 + c2
)
= 1,
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and S must be simply-connected. By Riemann-Roch Theorem, we get h0(2KS) =

1+c2
1 ≥ 2. Take a non-trivial global holomorphic section σ of the line bundle K⊗2

S

on S. Then s= p∗σ is a non-trivial global holomorphic section of L⊗2 on P , where
L= p∗KS is a sub line bundle of

∧2ΩP .
The Kähler metric on P naturally induces metrics on L and L⊗2. By applying

the Bochner formula for |s|2, we know that at the point x∈P where |s|2 reaches its
maximum, we have ΘL⊗2(s,s, ·, ·) ≥ 0, where Θ is the curvature form. In a small
neighborhood of p(x), we may take a local holomorphic section τ of KS , such that
τ 2 = σ. Then t= p∗τ is a local holomorphic 2-form in P such that t2 = s. We have
at x that

ΘL⊗2(s,s, ·, ·) = 2ΘL(t, t, ·, ·)≥ 0.

Note that 2-forms correspond to skew-symmetric matrices under unitary frame of
Pn, which can be diagonalized into 2×2 blocks. Since we have t∧ t= 0, we know
that there exists unitary frame {e1, . . . ,en} and dual coframe {ϕ1, . . . ,ϕn} of Pn

at x, such that t= λϕ1 ∧ϕ2 with λ �= 0. So the above curvature condition becomes

R11vv+R22vv ≤ 0

for any type (1,0) tangent vector v at x. As in the proof of Theorem 1.7 in [24],
this leads to a contradiction to the condition Ric⊥ > 0 on P . So the κ = 2 case is
not possible, and we have completed the proof of the lemma. �

The following fact might be well known in algebraic geometry, but we don’t
know the exact origin of it so we attribute it to Joe Harris, whom we learned it from
many years ago.

LEMMA 4.2. (Joe Harris) Let X be a projective manifold with h2(X,O∗) = 0,
then any holomorphic P

k−1-bundle over X is the projectiviation of some rank k

holomorphic vector bundle over X.

Proof. Denote by GLk and PGLk the (non-abelian) sheaf of holomorphic
maps from X into GLk(C) or PGLk(C), respectively. We have the short exact
sequence of sheaves on X:

0 −→O∗ −→ GLk −→PGLk −→ 0.

From the vanishing of H2(O∗), we get the surjection

H1(X,GLk

)−→H1(X,PGLk)−→ 0.

On the other hand, the isomorphism classes of holomorphic P
k−1-bundles over

X are in one one correspondence with the cohomology classes in H1(X,PGLk),
while the isomorphism classes of holomorphic rank k vector bundles are corre-
sponding to elements of H1(X,GLk), so the statement of the lemma holds. �
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In particular, for X = P
m with any m, since h2(O) = h3(Z) = 0, the exponen-

tial sequence gives h2(O∗) = 0, hence the lemma applies.
Combine Lemma 4.1 with Lemma 4.2, we know that the manifold P in Theo-

rem 1.5 must be in the form P(E) for some rank r ≥ 3 holomorphic vector bundle
E over P2. We want to show that P = P

2×P
r−1, or equivalently, E ∼=O(k)⊗O⊕r

for some integer k. We first prove the following:

LEMMA 4.3. Let E be a rank r ≥ 3 holomorphic vector bundle over P2, and
P = P(E) admits a Kähler metric Ric⊥ > 0. Then for any line L⊂ P

2, E|L is the
tensor product of a line bundle with the trivial bundle.

Proof. By Grothendieck Theorem, E|L = O(a1)⊕ ·· · ⊕O(ar) on L ∼= P
1.

Denote by p : P → P
2 the projection, and let X = p−1(L) = P(E|L). It is not hard

to see that, for the section Ci ⊂X corresponding to the quotient line bundle O(ai)

of E|L, its normal bundle Ni in X will have first Chern class

c1
(
Ni

)
= rai−

(
a1 + · · ·+ar

)
.

So the normal bundle of Ci in P will have first Chern class equal to above number
plus 1, which has to be positive by Corollary 4.3. Thus c1(Ni) ≥ 0 for each i,
implying that all ai are equal. This completes the proof of the lemma. �

The above lemma says that when P = P(E) over P2 admits a Kähler metric
with Ric⊥ > 0, E|L = O(a)⊕r for any line L ⊂ P

2. Since det(E|L) = (detE)|L,
we see that a is independent of L, and replacing E by E(−a), we may assume that
E|L is trivial for any line L in P

2. In other words, the bundle E on P
2 is uniformly

trivial. By Theorem 3.2.1 in [26] (we learn about this crucial fact from Jun Li, who
kindly supplied us with a direct proof of this theorem in our special case), we know
that E itself must be trivial. This completes the proof of Theorem 1.5.

5. Proof of Theorems 1.8 and 1.9. Let (M3,g) be a compact Kähler man-
ifold with Ric⊥ > 0. Then M is projective and the scalar curvature is everywhere
positive, thus M is uniruled and KM is not nef. By the cone-contraction theorem
of Mori [20] and Kollar [17], the contraction map φR : M → Z of an extremal ray
R⊂NE(M) could only be one of the following:

(E) dimZ = 3, φR is birational, and
(E1) Z is smooth, and φR is the inverse of the blowing up of a smooth

curve in Z ,
(E2) φR is the inverse of the blowing up of a smooth or singular (3 types)

point in Z;
(C) dimZ = 2, φR is a fibration over Z whose fibers are plane conics,

and the generic fibers are smooth;
(D) dimZ = 1, the generic fibers of φR are Del Pezzo surfaces;
(F) dimZ = 0, M is Fano.
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Note that (E1) is not possible as any ruling would be smooth rational curve
whose normal bundle has negative first Chern class. (E2) is also not possible as
the exceptional divisor is smooth in each of the four cases, and one can take a
smooth hypersurface in Z avoiding the point of blown up, and then its pull back
in M would be another smooth hypersurface not intersecting the exceptional divi-
sor, violating Theorem 1.6. Similarly, (C) is not possible as a generic fiber would
be a smooth rational curve with trivial normal bundle, and (D) is not possible by
Corollary 1.7, so we are only left with the Fano case.

In the Fano case, since we know by Theorem 4.2 that the pseudo index of M
must be at least 3, so by the recent result of Dedieu and Höring [6], which charac-
terizes projective spaces and quadrics amongst all Fano manifolds by the condition
i(M) ≥ dim(M), we know that M3 must be either P3 or Q3, thus completing the
proof of Theorem 1.8.

Alternatively, since Fano threefolds have been classified, we could also derive
the conclusion of Theorem 1.8 without using the deep theorem of [6]. First to rule
out the Picard number ρ(M)> 1 case. This can be done either by the n= 3 case of
the generalized Mukai conjecture ρ(M)(i(M)− 1) ≤ n, which forces ρ(M) = 1,
or by recalling the results of Mori and Mukai [21] on the classification of all Fano
threefolds with ρ(M)> 1, which have 88 deformation families. Such a manifold is
either imprimitive, meaning that M3 is the blowing up of another Fano threefold Z

along a smooth curve, or primitive, which means otherwise. The imprimitive cases
cannot occur as any ruling in the exceptional divisor would be a smooth rational
curve whose normal bundle has negative first Chern class. In the primitive case,
Mori and Mukai showed that (Theorem 5 of [21]) either ρ(M) = 2 and M is a
conic fibration over P

2, or ρ(M) = 3 and M is a conic fibration over P
1 ×P

1.
Neither could occur as the generic fiber would be a smooth rational curve with
trivial normal bundle.

For Fano threefolds with ρ(M) = 1, which are called prime Fano threefolds,
there are 17 deformation families, fully classified by Iskovskikh [13, 14]. Let r be
the largest integer where K−1

M = rA for some ample divisor A in M3. r is called
the index of M . It is well known that r = 4 if and only if M ∼= P

3, and r = 3 if
and only if M ∼= Q

3, the smooth quadric in P
4. When r = 1 or r = 2, it is known

that M contains a line, namely, smooth rational curve C with C ·A = 1. See for
instance [15, Theorem 4.5.8]. So the pseudo index is 1 or 2, contradicting Theorem
4.2. This completes the proof of Theorem 1.8.

Next let us focus on the 4-dimensional case. Let (M4,g) be a compact Kähler
manifold of dimension 4 with Ric⊥ > 0 everywhere. Then we know that M4 is
projective, simply-connected, and uniruled. Denote by i(M) the pseudo index of
M4, namely, the minimum of K−1

M C for all rational curve C in M . We know that
i(M) ≥ 3 by Theorem 4.2. Since M4 cannot be the blowing up of a point by
Corollary 1.7, so Theorem 1.1 of [3] implies that there is no non-nef extremal ray.
In other wards, any extremal ray R of M must be nef, meaning that the associated
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contraction map φR is of fiber type. The target space cannot be of dimension one
or three, by Corollary 1.7 or Corollary 4.3, respectively. So the target has to be of
dimension two or zero.

By Part 6 of Theorem 4.1.3 in [2], we know that either M4 is a Fano fourfold
with Picard number ρ(M) = 1, or φR is an equidimensional fibration over a normal
surface with general fiber being a del Pezzo surface. In the latter case, by Theorem
1.3 of [12], we know that φR is actually a projective bundle, and the target space
is smooth. Now Theorem 1.5 kicks in and enables us to conclude that M4 must be
P

2 ×P
2. This completes the proof of Theorem 1.9.

6. Appendix: Kähler manifolds with Ric⊥ ≡ c. It is obvious that Ric⊥ ≡ 0
for any complex curve M1, and it is natural to wonder what kind of Kähler mani-
folds in higher dimensions will have flat orthogonal Ricci curvature. This appendix
is to show that Ric⊥ ≡ 0 (as well as Ric⊥ ≡ c) has strong consequence on R. This
also indicates that M⊥ forms a very special class. We thank Yanir Rubinstein for
suggesting to examine the Ric⊥-Einstein metrics.

First on a manifold Mn with Ric⊥ ≡ 0, where n≥ 2, we have

|X|2 RicXX =RXXXX

for any type (1,0) tangent vector X. By the symmetry properties of the curvature
tensor, one can rewrite the above as

Rijk� =
1
4

(
Rijgk�+Rk�gij +Ri�gkj +Rkjgi�

)
,(6.1)

where {e1, . . . ,en} is a local tangent frame of Mn and Rij are the components of
the Ricci tensor. If we choose a unitary frame e such that Rij = riδij , then under
this frame we have

Rijk� =
1
4

(
ri+ rk

)(
δijδk�+ δi�δkj

)
.

By letting i= j and k = �, we get

Riiii = ri, Riikk =
1
4

(
ri+ rk

)
if i �= k.

Fix i and sum up over k, we get ri = ri+
1
4(n− 2)ri+S, where S is the scalar

curvature. We have S = 0 since Ric⊥ = 0, so we get (n− 2)ri = 0 for each i,
namely, when n> 2, the Ricci tensor, hence the curvature tensor, will be identically
zero.

For n= 2, since S = 0, the equation (6.1) says exactly that the Weyl curvature
tensor vanishes, hence M2 is conformally flat. By [28], we know that either M2

is flat, or it is locally holomorphically isometric to a product of complex curves
C1×C2, where C1 has constant curvature a > 0 and C2 has constant curvature −a.
To summarize, we have the following:
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THEOREM 6.1. Let Mn be a Kähler manifold Mn with Ric⊥ ≡ 0. If n≥ 3, then
Mn is flat. If n= 2, then M2 is conformally flat, which means locally it is either flat
or the product of two complex curves, with constant curvature of opposite values.

As an immediate consequence, one can state the following:

COROLLARY 6.2. Let Mn be a compact Kähler manifold Mn with Ric⊥ ≡ 0
and n ≥ 2. Then either it is a finite under cover of a flat complex torus, or n = 2
and M2 = P(E) where E is a unitary flat holomorphic vector bundle of rank two
over a compact complex curve Σg of genus g ≥ 2.

There is also an alternative way to prove the above theorem, in which we view
Ric⊥ as the holomorphic sectional curvature of an algebraic curvature operator
risen from the one acting on the two-forms via the Bochner formula. Recall the
notations from the appendix of [22] and define an algebraic (Kähler) curvature
operator

RRic = Ric ∧̄ id,

where for any A,B : T ′
xM → T ′

xM Hermitian symmetric (Ā(X) =A(X̄) = 0),

〈
A∧̄B(X ∧ Ȳ ),Z ∧ W̄

〉
� 1

2

(〈
(A∧ B̄+B∧ Ā)(X ∧ Ȳ ),Z ∧ W̄

〉

+
〈
(A∧ B̄+B∧ Ā)(W ∧ Ȳ ),Z ∧ X̄

〉)
.

It is easy to check that Ric⊥(X,X) = HRRic−R(X)/|X|2. Here H
˜R
(X) is the

holomorphic sectional curvature of R̃ = RRic −R. From this it is easy to see that
Ric⊥ ≡ 0 implies that R̃ ≡ 0. Hence Ric⊥ ≡ 0, via the decomposition of the cur-
vature operators, induces that either n = 1, or n = 2 and R is conformally flat, or
n≥ 3 and R is flat.

Similarly if the curvature operator R has Ric⊥(X,X) = c|X|2, namely R has
constant Ric⊥, then R̃ must be a multiple of the identity (namely the curvature of
P
n). This implies that either n = 2 and R is conformally flat (classified as above),

or R is a multiple of identity (namely of constant holomorphic sectional curvature).
In conclusion, Kähler metrics with Ric⊥ ≡ c forms a more special class than the
Kähler-Einstein metrics.
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