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1 Introduction

LetMm be a compact immersed minimal submanifold of dimensionm in the unit Sn(1). It

was proved by J. Simons in [S] that if kAk2 < m(n�m)

2n�2m�1
, where A is the second fundamental

form, then M is totally geodesic. It was also proved by S. S. Chern, M. Do Carmo and

S. Kobayashi using the moving frame in [C-D-K] later. For the minimal submanifolds in
Rn+1 it was proved in [Al] that there is a similar theorem for the volume growth. More
precisely, Allard showed that ifMm, a minimal submanifold of Rn+1 has Euclidean volume

growth and the density function �M(x; r) =
V ol(M\Br(x))

Vm
0
(1)rm

< 1 + Æ, for some small positive

number Æ, then M is totally geodesic. On the other hand, it was shown in [An], [F-C] and

[Ty] that when Mm is a minimal submanifold (of dimension m)in Rn+1, the total scalar
curvature

R
M kAkm dv is closed related to the topology and the Morse index of M . More

recently it was shown in [S-Z] that if M is a stable minimal hypersurface with �nite total
scalar curvature then M is totally geodesic. In this short note we will show that there are

some gap theorems for the total scalar curvature. These may be thought as the analogy

of the above mentioned Simons' theorem for the minimal submanifolds in Rn+1. More
precisely we can show the following result: (We should point out that we do not need

the stability assumption, which is essential in the above mentioned Shen-Zhu's result in
[S-Z].)
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Theorem A. Let Mn(n � 4) be a complete minimal immersed hypersurface in Rn+1.

Then there exists a constant C1(n) =

r
4(n�1)

(n�2)n
S�1(n) > 0 such that if

�Z
M
kAkn dv

� 1

n

< C1(n);

M must be totally geodesic. Here A is the second fundamental form of M and S(n) is

the constant in the L2-Sobolev inequality. (For example, using the L1-Sobolev constant

provided in [M-S], one can show that S(n) =

�
4
n+1

(2n�2)

!
1=n
n (n�2)

�
2

will be big enough, where !n

is the volume of the unit ball in Rn.)

In the proof of Theorem A we need �rst to show the following result about the ends
of minimal submanifolds, which can be viewed as a gap theorem for the number of ends.

Theorem B. Let Mm (m � 3) be a complete minimal immersed submanifold of di-

mension m in Rn+1. Then there exists a constant C2(m) =
q

m
m�1

S�1(m) > 0 such that

if �Z
M
kAkm dv

� 1

m

< C2(m)

M has only one end. Here, as in Theorem A, A is the second fundamental form and S(m)

is the constant in the L2-Sobolev inequality.

The above gap theorem further demonstrates the fact that there is a close relation
between the topology of the minimal submanifold Mm and the total scalar curvatureR
M kAkm dv.
Concerning our second result, there are a few previous results which we should men-

tion. First it was proved in [F-C], for the minimal surface in R3, that the �niteness of
the total scalar curvature implies �niteness of the Morse index as well as �nite many

ends. Later this statement was generalized to the high dimension minimal hypersurfaces

in [Ty]. More recently, using the function theory, [C-S-Z] proved that if M is a stable
minimal hypersurface in Rn+1 then M has only one end. Our Theorem B and related
results in the next section conclude that M has only one end or �nite many ends without

assuming that M is stable or of codimension one. Very recently, [L-W] proved the Liou-
ville property for minimal submanifold M , whose density function �M(x; r) satis�es that

�M(x; r) � �� < 2. Namely they showed that there is no bounded harmonic functions on

such minimal submanifolds. Combining with the observations in the next section of this
paper, as a corollary, we know that M has at most one end if its density function satis�es

�M(x; r) � �� < 2. Therefore one can view their result as a gap type theorem for the
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number of ends. The constant C1 and C2 in our theorems are far away from the sharpest

because of the dependency on the L2-Sobolev constant on minimal submanifolds. It would

be very nice if one can �nd the best constant as Simons' theorem in [S] and classify all

the minimal hypersurfaces for which the equality holds as in [C-D-K]. Finally we should

mention that the argument we used can also sharpen a lower bound estimate for the

�rst eigenvalue of a Schr�odinger operator of Li-Yau [L-Y2], therefore sharpens the upper

bound for the number of bound states obtained in [L-Y2] (cf. remarks before Theorem

3.2).

Acknowledgement. The author would like to thank Professor Peter Li for helpful

suggestions.

2 Preliminaries

We �rst establish some basic results on the harmonic function theory on minimal sub-
manifolds of Rn+1. Using the bounded harmonic functions with �nite Dirichlet integral

we then show a couple of results concerning the �niteness of the number of ends for the
minimal submanifolds in Rn+1.

Let Mm be a minimal submanifold of dimension m � 3 in Rn+1, p 2 M be a point

on M . Let A be the second fundamental form of M and kAk be the length of the second
fundamental form. Let rp(x) be the extrinsic distance function of Rn+1 with respect to p
and �p(x) be the intrinsic distance function. We shall also use the following conventions:

~Bp(a) : = the ball of radius a centered at p in Rn+1.

Dp(a) : = ~Bp(a) \M:

Bp(a) : = the geodesic ball of radius a centered at p in M .

The following lemma will be very convenient to use in the construction of bounded har-
monic functions on M .

Lemma 2.1 Let Mm (m � 3) be a m-dimensional minimal submanifold in Rn+1. Then

there exist minimal positive Green's function G(x; y) onM such that lim ry(x)!1 G(x; y) =

0.

Proof. Let Dp(a) be as the above. The heat-kernel comparison of Cheng-Li-Yau implies
that

HDp(a)(x; y; t) � �Ha(ry(x); t);
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where �Ha(ry(x); t) is the Dirichlet heat-kernel of ~B
m(a) inRm (the ball of radius a centered

at origin). This implies that

HDp(a)(x; y; t) �
1

(4�t)
n
2

exp(�
jry(x)j

2

4t
):

Taking a!1 we have that

H(x; y; t) �
1

(4�t)
n
2

exp(�
jry(x)j

2

4t
):

Integrating along the time direction, we have that

G(x; y) �
1

m(m� 2)!m
jry(x)j

2�m:

Remark. One can also construct Green's function directly as in [L-T1] by compact
exhaustion and applying the Sobolev inequality to prove that the limit exists. By using the

heat kernel estimate we can get the upper bound of the Green's function as a consequence.
As a corollary of the heat kernel estimate we have the following:

Corollary 2.2 (Mean-Value inequality) (See [C-L-Y], [M-S]) Let Mm be a minimal

submanifold in Rn+1. Suppose f is a nonnegative subharmonic function de�ned on Mm.

Then

f(p) �
1

m!mam�1

Z
@Dp(a)

f(x) dA(2.1)

f(p) �
1

!mam

Z
Dp(a)

f(x) dv(2.2)

where !m is the volume of the unit ball in Rm.

Proof. The �rst part proof can be found in [C-L-Y] or [M-S]. For the second part we
only need to apply the co-area formula and note that jrrj � 1. More precisely

f(p)!ma
m =

Z a

0

f(p)m!m sm�1 ds �
Z a

0

Z
@Dp(s)

f(x) dA ds

�
Z a

0

Z
@Dp(s)

f(x)

jrrj
dA ds =

Z
Dp(a)

f(x) dv:

Applying an argument of Varopoulos (cf. [V]), one can have Sobolev inequality as a

corollary of the heat-kernel estimate of Cheng-Li-Yau.
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Corollary 2.3 (Sobolev Inequality) (See also [M-S]). Let Mm be a minimal subman-

ifold in Rn+1, then there exists constant S = S(m) such that

�Z
M
�

2m
m�2 dv

�m�2
m

� S(m)
Z
M
jr�j2 dv(2.3)

for any compact supported smooth function � on M .

Remark. In fact, Michael and Simon proved a stronger version of Sobolev inequality,

so-called L1-Sobolev inequality, as follows:

�Z
M
�

m
m�1 dv

�m�1
m

� S1

Z
M
jr�j dv:(2.4)

In fact, they showed that S1(m) = 4
m+1

!
1=m
m

will be enough to have the above inequality.

Using this fact, we can have a lower bound for S(m) in the inequality (2.3). In fact

S(m) =

�
4
m+1

(2m�2)

!
1=m
m (m�2)

�
2

will be big enough to have inequality (2.3).

Once we have the minimal positive Green's function on M we can apply the scheme
of [L-T2] to construct barrier functions at each end of M .

Lemma 2.4 Let Mm be a minimal submanifold in Rn+1, K �M be a compact subset in

M , and let Ei be the ends with respect to K, then there exist harmonic functions gi on Ei

which satisfy that

gi(x)j@Ei
= 1; lim

x!1
gi(x) = 0;

Z
Ei

jrgij
2 dv < 1:

Proof. This result is essentially proved in [L-T2]. For the sake of completeness we

sketch the proof here. Let gji (x) be harmonic function de�ned on Ei\Dp(rj) and satis�es
g
j
i (x)j@Ei

= 1; gji (x)j@Dp(rj)\Ei
= 0. We have the estimate gji (x) � CG(p; x), for some

constant C independent of j. By taking j !1 we get the function gi, which obviously

satis�es the �rst two identities in the conclusion of Lemma 2.4. By the fact that gji (x)
minimizes the Dirichlet integral among all Lipschitz functions with the same boundary

data we know that
R
M jrgji j

2 dv is a decreasing sequence of j. This establishes the third
property of gi.

Using the barrier functions on each end we can construct linearly independent bounded

harmonic functions as in [L-T2].
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Lemma 2.5 Let Mm be a minimal submanifold in Rn+1, K � M be a compact subset

in M , Ei be the ends with respect to K, then there exist linearly independent harmonic

functions ui on M which satisfy that

lim
x!1x2Ei

ui(x) = 1; lim
x!1x�2Ei

ui(x) = 0;
Z
Ei

jruij
2 dv < 1:

Proof. For the completeness we sketch the proof here too. Let uji to be the harmonic

function on Bp(rj) satisfying that

u
j
i (x)j@Bp(rj)\Ek

= 0; for k 6= i, uji (x)j@Bp(rj)\Ei
= 1:

Using the barrier functions we construct in Lemma 2.4 and taking j ! 1 we have the
bounded harmonic functions. For the proof of �nite Dirichlet integral one can apply
Lemma 1.4 of [L-T2].

Proposition 2.6 Let Mm be a minimal submanifold in Rn+1. If Mm has Euclidean

volume growth, i. e.

lim
r!1

V ol (Dp(r))

rm
<1

then Mm has �nite many ends.

Proof. By Lemma 2.5 we know that the number of ends is controlled by the dimension

of bounded harmonic functions with �nite Dirichlet integral. In the case when M has
Euclidean volume growth, combining with the fact that V ol(Dp(r))

rm
(cf. [Ty]) is a increasing

function of r, we know thatM has the volume doubling property. Since, by Corollary 2.2,
the mean value property holds for the subharmonic functions, applying a general theorem
of Peter Li (cf. Theorem 1 in [L2], also [C-M]) we know that the polynomial growth

harmonic function space is of �nite dimension. In particular, the dimension of bounded

harmonic function space is �nite. Therefore M has only �nite many ends.

Remark. By a result of M. Anderson (cf. [An]), we know that if M has �nite total

scalar curvature
R
M kAk

n dv then M has at most Euclidean volume growth. Therefore we
have the following corollary, which can also be proved using the scaling argument and the

Gromov compactness theorem (cf. [G-L-P]):

Corollary 2.7 Let Mm be minimal submanifold in Rn+1 with �nite total scalar curvature.

Then M has �nite many ends.

Similarly, we can have the following results on the �niteness of the number of ends.
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Proposition 2.8 Let Mm be minimal submanifold of dimension m in Rn+1 and let

kAk2(x) be the square of the length of the second fundamental form. If we have kAk2(x) �

k(�(x)), where k(t) is a nonincreasing continuous function such that
R1
0
�n�1k(�) d� <1,

then M has only �nite ends.

Proof. As in the previous proposition it suÆces to prove that the bounded harmonic

function space is of �nite dimension. Since in the case M is a minimal submanifold in

Rn+1 we have RicciM(x) � �kAk2(x) � �k(�(x)), a theorem of Li-Tam (See [L-T 2])

says that under the assumption of our proposition the bounded harmonic function space

is of �nite dimension. Therefore M has only �nite many ends.

At the end we write the following result for the case when M is a K�ahler manifold.

Proposition 2.9 Let Mm (m � 4), a K�ahler manifold of real dimensionm, be a complete

minimal submanifold in Rn+1, and let kAk2(x) be the square of the length of the second

fundamental form. If kAk is of square integrable then M has only one end.

Proof. Just as what we did before we only need to show that there is no nonconstant

harmonic function u on M such that u has �nite Dirichlet integral.
First since u has �nite Dirichlet integral, by Lemma 3.1 of [L1] (see also [G]) we

know that u is in fact a pluriharmonic function. Let v = jruj2. Once we know u is

a pluriharmonic function we can sharpen the Bochner formula for v = jruj to get the
following inequality:

�v �
jrvj2

v
� �kAk2(x)v:

The interested reader can consult Lemma 3.2 of [L1] for a proof of the above inequality.

Since we also know that there exists positive Green's function on M by Lemma 2.1, we

can apply Li-Yau's theorem (cf. Corollary 2.2 of [L-Y]) to conclude v is zero, i.e u is a

constant.

Remark. Note that the situation here is totally di�erent from the complex dimension
one case. When M is a Riemann surface one can �nd examples of minimal surfaces with

�nite total curvature and many ends. On the other hand a known result says that if M

is a complete minimal immersed surfaces in R3 with �nite total curvature and only one

embedded end then M is a plane.

3 Gap theorems

First we can show the following gap theorem on the number of ends of minimal subman-

ifolds in Rn+1.
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Theorem 3.1 Let Mm(m � 3) be a complete minimal immersed submanifold in Rn+1,

and let S(m) be the Sobolev constant in Corollary 2.3. If

�Z
M
kAkm dv

� 1

m

< C2(m) =

s
m

m� 1
S�1

then M has only one end.

proof. We argue by contradiction. By the construction of last section we learn that if

M has more than one end then there exists a nontrivial bounded harmonic function u(x)

on M which has �nite total energy. Let f(x) = jruj. The Bochner formula from [S-Y]
yields

f�f + kAk2(x) f 2 �
1

m� 1
jrf j2:(3.1)

Let ' be a cut-o� function such that

'(x) =

(
1 if x 2 Bp(r)
0 if x 2M nBp(2r),

and

jr'j �
C

r
;with C = 2;

Multiplying '2 on both sides of the above inequality (3.1) and integrating by parts we

can write

�
Z
M
jrf j2'2 dv � 2

Z
M
< rf;r' > f' dv +

Z
M
kAk2f 2'2 dv �

1

m� 1

Z
M
jrf j2'2 dv:

Using Schwartz inequality, for any positive number I > 0, we have

Z
M
kAk2f 2'2 dv +

1

I

Z
M
f 2jr'j2 dv � (

m

m� 1
� I)

Z
M
jrf j2'2 dv(3.2)

On the other hand, the Sobolev inequality yields

Z
M
jr(f')j2 dv � S�1

�Z
M
(f')

2m
m�2 dv

�m�2
m

:

Simple calculation together with Schwartz inequality yields

(II + 1)
Z
M
jrf j2'2 dv � S�1

�Z
M
(f')

2m
m�2 dv

�m�2
m

� (1 +
1

II
)
Z
M
f 2jr'j2 dv;(3.3)
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where II is a positive real number which will be chosen later. Combining (3.2) and (3.3)

we haveZ
M
kAk2f 2'2 dv �

( m

m�1
� I)S�1

II + 1

�Z
M
(f')

2m
m�2 dv

�m�2
m

�

 
1

I
+

m

m�1
� I

II

!Z
f 2jr'j2 dv:

Now applying H�order inequality to the left hand side of the above inequality we can have

�Z
M
kAkm dv

� 1

m
�Z

M
(f')

2m
m�2 dv

�m�2
m

�
( m

m�1
� I)S�1

II + 1

�Z
M
(f')

2m
m�2 dv

�m�2
m

�

 
1

I
+

m
m�1

� I

II

! Z
M
f 2jr'j2 dv:

Finally we have 
1

I
+

m
m�1

� I

II

!Z
M
f 2jr'j2 dv �

 
( m
m�1

� I)S�1

II + 1
�

�Z
M
kAkm dv

� 1

m

!�Z
M
(f')

2m
m�2 dv

�m�2
m

:

Choosing I and II small enough one can make 
( m

m�1
� I)S�1

II + 1
�

�Z
M
kAkm dv

� 1

m

!
� � > 0:

Then we have  
1

I
+

m
m�1

� I

II

!Z
M
f 2jr'j2 dv � �

�Z
M
(f')

2m
m�2 dv

�m�2
m

:

Letting r!1 we will have Z
M
f

2m
m�2 dv � 0;

which implies that f � 0 and therefore u is a constant function. The contradiction here

shows that M has at most one end.

Remarks. The �rst remark we want to make is that the similar argument can give
an improvement of a lower bound estimate of Li-Yau (cf. [L-Y2]) on the eigenvalue of the

Schr�odinger operator. More precisely we can have the following results.

Let q(x) be a positive function de�ned onD, a domain in Rn. We consider the operator

�

q(x)

The lower bound estimate for the �rst eigenvalue of the above operator proved by Li-Yau

concludes that

�1 �
n(n� 2)

4e
(
n�1)

2

nkqk�1
L
n
2
;
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where 
n�1 is the area of the unit (n � 1)-sphere, e is the Euler number. The same

argument as in the proof of Theorem 3.1 gives a slight improvement on the above estimate.

A direct trace of the calculation can show

�1 �
n(n� 2)

4
(
n�1)

2

nkqk�1
L
n
2
:

The second remark is that we do not know whether the assumption m > 2 is necessary

or not. There is a theorem by Fischer-Colbrie [F-C] saying that if M is a minimal surface

in R3 with �nite total curvature then M has �nite Morse index. By Huber's theorem

we also know that M has �nite many ends. In [C-S-Z], using the Liouville type theorem

of Schoen-Yau for the stable minimal hypersurfaces they showed that if M is a stable

hypersurface in Rn+1 then M has only one end. Comparing to their result we neither
assume that M is a stable nor M is a hypersurface.

Now we begin the proof of Theorem A. Namely we will show that if the total scalar

curvature is smaller than a constant C1(n) then the minimal hypersurface M has to be a
hyperplane. We believe that the similar result also holds for minimal submanifolds.

Theorem 3.2 Let Mn(n � 4) be a complete minimal immersed hypersurface in Rn+1,

and let S(n) be the Sobolev constant in Corollary 2.3. If

�Z
M
kAkn dv

� 1

n

< C1(n) =

vuut4(n� 1)

(n� 2)n
S�1

then M has to be a hyperplane.

Before we prove Theorem 3.2, we need the following Lemma.

Lemma 3.3 Let Mn(n � 4) be a complete minimal immersed hypersurface in Rn+1. If

the total scalar curvature
R
M kAk

n dv is �nite then
R
M kAkn�2 dv is also �nite.

Proof. First, by Theorem 3.3 of [S-Z] we know that the rescaling sequences Mi = f 1

ri
Mg

converging smoothly to a 
at open Riemannian manifold M1 in the sense of Cheeger-
Gromov, to which we can attach one point O such that M1 = M1 [ O is the union of

several hyperplanes through the origin O and O is the only singularity of M1. At the

mean time, by Corollary 2.7 we know that M has only �nite many ends. Therefore we

only need to show that
R
E kAk

n�2 dv is �nite for each end E. Because of the convergence

of the rescaling sequences fMig we know that the end E, with respect to big enough
compact subset is a graph over the tangent space at in�nity. Now we can use an estimate

of Schoen (Proposition 3 of [Sc]) to get the following uniform estimate of kAk (x):

kAk (x) �
C

rn
;
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for x 2M \ @Dp(r) and r >> 1.

On the other hand, by Theorem 4.1 of [An], we have

V ol(Dp(k + 1) nDp(k) ) � C 0(k + 1)n;

for some uniform constant C 0. Therefore we have

Z
M
kAkn�2 dv =

1X
k=0

Z
M \ (Dp(k+1)nDp(k))

kAkn�2 dv

� C3 + C4

 
1X
k=0

(k + 1)n

kn(n�2)

!

< 1:

Now we can prove Theorem 3.2.
Proof of Theorem 3.2. We �rst need the following sharp version of Simon's inequality

due to Simon, Schoen and Yau on the length of the second fundamental form.

kAk�kAk + kAk4 �
2

n
jrkAk j2:(3.4)

One can consult [S-S-Y] for the proof of a more general formula.

Let ' be a cut-o� function as in the proof of Theorem 3.1. Multiplying kAkn�4'2 on
both sides of the above inequality and integrating by parts we have that

� (n� 3)
Z
M
jrkAk j2 kAkn�4'2 dv � 2

Z
M
< rkAk;r' > kAkn�3 'dv

+
Z
M
kAkn'2 dv �

2

n

Z
M
jrkAk j2 kAkn�4'2 dv:

Applying Schwartz inequality, we can write

�
(n� 3) +

2

n
� II

� Z
M
jrkAkj2 kAkn�4 '2 dv �

1

II

Z
M
kAkn�2jr'j2 dv+

Z
M
kAkn '2 dv;

(3.5)

for any positive number II.

On the other hand, direct calculation yields the following inequality, after using the
Schwartz inequality.

Z
M
jr(kAk

n�2
2 ')j2 dv � ( 1 + I)(

n� 2

2
)2
Z
M
jrkAk j2kAkn�4 '2 dv

+

�
1 +

1

I

�Z
M
kAkn�2jr'j2 dv;
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for any positive number I.

Combining (3.5) and and above inequality together we have

Z
M
jr(kAk

n�2
2 ')j2 dv �

(1 + I)(n�2
2
)2

n� 3 + 2

n
� II

Z
M
kAkn '2 dv

+
(1 + I)(n�2

2
)2�

n� 2 + 2

n
� II

�
II

Z
M
kAkn�2jr'j2 dv

+ (1 +
1

I
)
Z
M
kAkn�2jr'j2 dv:

Applying Sobolev inequality one can write

S�1
�Z

kAk
n�2
2

2n
n�2'

2n
n�2 dv

�n�2
n

�
(1 + I)(n�2

2
)2

n� 3 + 2

n
� II

Z
M
kAkn'2 dv

+
(1 + I)(n�2

2
)2�

n� 3 + 2

n
� II

�
II

Z
M
kAkn�2jr'j2 dv

+ (1 +
1

I
)
Z
M
kAkn�2jr'j2 dv:

Now let r!1. Use Lemma 3.3 we have0
@S�1 � (1 + I)(n�2

2
)2

n� 3 + 2

n
� II

 �Z
M
kAkn dv

� 1

n

!2
1
A�Z

M
kAkn dv

�n�2
n

� 0:

Choosing I and II small enough one can easily �nd a positive number � such that

S�1 �
(1 + I)(n�2

2
)2

n� 3 + 2

n
� II

 �Z
M
kAkn dv

� 1

n

!2

� � > 0:

Then we can conclude that kAk � 0. Therefore M is a totally geodesic hyperplane.
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