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Gap theorem on Kihler manifolds with
nonnegative orthogonal bisectional curvature

By Lei Ni at San Diego and Yanyan Niu at Beijing

Abstract. In this paper we prove a gap theorem for Kédhler manifolds with nonnegative
orthogonal bisectional curvature and nonnegative Ricci curvature, which generalizes an ear-
lier result of the first author [L. Ni, An optimal gap theorem, Invent. Math. 189 (2012), no. 3,
737-761]. We also prove a Liouville theorem for plurisubharmonic functions on such a mani-
fold, which generalizes a previous result of L.-F. Tam and the first author [L. Ni and L.-F. Tam,
Plurisubharmonic functions and the structure of complete Kihler manifolds with nonnegative
curvature, J. Differential Geom. 64 (2003), no. 3, 457-524] and complements a recent result of
Liu [G. Liu, Three-circle theorem and dimension estimate for holomorphic functions on Kéhler
manifolds, Duke Math. J. 165 (2016), no. 15, 2899-2919].

1. Introduction

In [13, 14], the following result was proved.

Theorem 1.1. Let (M™, g) be a complete noncompact Kiihler manifold with nonnega-
tive bisectional curvature. Then M is flat if for some 0 € M,

(1.1) S(y)du(y) = o(r™?),

Vo(r) JB,(r)

where V,(r) is the volume of By(r) and S(y) is the scalar curvature.

A result of this type was originated by Mok, Siu and Yau in [10], where it was proved
that M is isometric to C™ under much stronger assumptions that (M, g) (with m > 1) is
of maximum volume growth (meaning that V,(r) > §r?™ for some § > 0) and §(x) decays
pointwisely as r(x)~2¢ for some € > 0. Let n = 2m be the real dimension. A Riemannian
version of this result in [10] was proved by Greene and Wu [7] shortly afterwards (see also [6]
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2 Ni and Niu, Gap theorem

for related results). In [11, Theorem 5.1], with a parabolic method introduced on solving the
so-called Poincaré—Lelong equation, the result of [10] was improved to the cases covering
manifolds of more general volume growth. Since then there are several further works aiming
to prove the optimal result. See for example [3, 16]. In particular, the Ricci flow method was
applied in one of these papers. In [17], using a Liouville theorem concerning the plurisubhar-
monic functions on a complete Kéhler manifold, and the solution of Poincaré—Lelong equation
obtained therein, Theorem 1.1 was proved with an additional exponential growth assumption
on the integral of the square of the scalar curvature over geodesic balls, which was removed
in [13] using a different method.

The approach of [13] toward Theorem 1.1 is via the asymptotic behavior of the optimal
solution obtained by evolving a (1, 1)-form with the initial data being the Ricci form through
the heat flow of the Hodge—Laplacian operator. The key component of the proof is the mono-
tonicity obtained in [12] (see also [15]), which makes the use of the nonnegativity of the bisec-
tional curvature crucially. On the other hand, in [19], the authors proved that the method of
deforming a (1, 1)-form via the Hodge—Laplacian heat equation and studying the asymptotic
behavior of the solution can be applied to solve the Poincaré—Lelong equation and obtain an
optimal solution for it. Namely, the following result was proved.

Theorem 1.2. Let (M™, g) be a complete noncompact Kcihler manifold with nonnega-
tive Ricci curvature and nonnegative quadratic orthogonal bisectional curvature. Suppose that
0 is a smooth closed real (1, 1)-form on M and let f = ||p|| be the norm of p. Suppose that

o0
(1.2) / kr(r)dr < oo,
0
where
1
Vo(r) JB,(r)
for some fixed point o € M. Then there is a smooth function u so that p = ~/ —100u. Moreover,
forany 0 < € < 1, u satisfies

kyp(r) = |fldu,

2r

(1.3) Olll’/z k||p||(s)ds+ﬂ1/0 sk”p”(s)ds

o0

2r €r
>u(x) > B3 /0 Sk"p” (s)ds — Otzi‘/z k“p” (s)ds — ﬁz[) Sk"p” (s)ds
r
for some positive constants a1 (n), oz (n, €) and B;(n),1 <i <3, where r = r(x).

Recall that a Kéhler manifold (M™, g) is said to have nonnegative quadratic orthogonal
bisectional curvature (NQOB for short) if, at any point x € M and any unitary frame {e¢;},
Z?jj=1 Ri{jj(ai — aj)2 > 0 for all real numbers a;. A Kihler manifold (M™, g) is said to
have nonnegative orthogonal bisectional curvature (NOB for short) if for any orthogonal (1, 0)
vector fields X, Y, one has R(X, X.vY, }_’) > 0. The example constructed in [8] shows that the
curvature condition (NOB) is stronger than (NQOB). On the other hand, examples constructed
in this paper show that the (NOB) is weaker than the nonnegativity of the bisectional curvature.

A natural question is whether or not the gap theorem remains true under the assump-
tion of Theorem 1.2, or less ambitiously under the nonnegativity of the orthogonal bisectional
curvature, and the nonnegativity of the Ricci curvature.
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Ni and Niu, Gap theorem 3

Related to the gap theorem, a Liouville-type theorem was proved in [17] for plurisubhar-
monic functions.

Theorem 1.3. Let M be a complete noncompact Kdihler manifold with nonnegative
holomorphic bisectional curvature. Let u be a continuous plurisubharmonic function on M.
Suppose that

(1.4) fim sup ) —
x—oo logr(x)

Then u must be constant.

Very recently, using a partial maximum principle the same Liouville result was proved [9]
for complete Kihler manifolds with nonnegative holomorphic sectional curvature. On the other
hand, there exists an algebraic curvature [22] which has positive holomorphic sectional curva-
ture, positive orthogonal bisectional curvature (hence positive Ricci curvature), but with nega-
tive bisectional curvature for some pair of vectors. In the last part of this paper we also illustrate
an example metric, which is unitary symmetric Kéhler, with (NOB), but whose holomorphic
sectional curvature is negative somewhere. This indicates that the (NOB) condition is in some
sense independent of the nonnegativity of the holomorphic sectional curvature. The (NOB)
condition is also a Kéhler analogue of the nonnegativity of the isotropic curvature (cf. [23]).
Generalizing the Liouville theorem to manifolds with (NOB) becomes an interesting itself.
Note that the solution constructed in Theorem 1.2 above for p being the Ricci form satisfies
the estimate (1.4) if the scalar curvature satisfies assumption (1.1). In fact, assumption (1.1)
implies that

[ee) 2r
r/zr k||p||(s) ds = 0(1), /0 sk”p"(s) ds = o(logr).

Hence to obtain the gap theorem under the weaker assumptions of nonnegative orthogonal
bisectional curvature and nonnegative Ricci curvature, one only needs to prove the above
Liouville theorem for the manifolds with these weaker assumptions.

The main purpose of this paper is to prove Theorem 1.1 and Theorem 1.3 under the
weaker assumptions of nonnegative orthogonal bisectional curvature and nonnegative Ricci
curvature. In fact, the following more general result is proved.

Theorem 1.4. Let (M, g) be a complete Kiihler manifold with nonnegative orthogonal
bisectional curvature and nonnegative Ricci curvature. Assume that p > 0 is a smooth d -closed
(1, 1)-form. Suppose that

-
(1.5) |5 el duntr ds = ottogn)
0 By (s)
for some o € M. Then p = 0.

Note that there exists an algebraic curvature [22] which has positive holomorphic sec-
tional curvature, positive orthogonal bisectional curvature (hence positive Ricci curvature), but
with negative bisectional curvature for some pair of vectors. Hence the Liouville-type result
can be viewed complementary to the case of [9]. In the last part we show that the perturbation
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4 Ni and Niu, Gap theorem

technique of Huang and Tam [8] based on the unitary construction of Wu and Zheng [24] can
be adapted to construct examples of complete Kédhler metrics with unitary symmetry such that
its curvature has (NOB), but not nonnegative bisectional curvature. More recently, in [20], uni-
tary symmetric complete Kéhler metrics have been constructed on C” which has (NOB) and
nonnegative Ricci curvature, but holomorphic sectional curvature can be negative. This shows
that the (NOB) condition is completely independent of Ric > 0 and the result proved here is
completely independent of the result of G. Liu [9].

As partially explained above, there have been two approaches towards the gap theo-
rem and the Liouville-type theorem for plurisubharmonic functions on manifolds up to very
recently. The first approach of proving the Liouville-type theorem was developed in [17], which
is based on the induction on the dimension of the manifold, and a result of the first author
in [11] for splitting. Then the gap theorem can be derived via solving the Poincaré-Lelong
equation along the original work of Mok, Siu and Yau [10]. The second approach is via the
study of the large asymptotics of the solution to parabolic equations. For gap theorem it is via
the Hodge—Laplace heat equation, developed by the first author in [13, 14] and further applied
in [19]. For the Liouville-type theorem it involves the heat equation deformation of a plurisub-
harmonic function and was developed in [12,17]. The key of this parabolic approach is a mono-
tonicity built upon a differential Harnack estimates of both authors [15]. In view of [23], such
a estimate seems elusive under the positivity of isotropic curvature (as well as (NOB)) here we
follow the first approach towards both results. Even though the parabolic three-circle theorem
has been explicit in [12], it is only in a recent article of Liu [9], the elliptic version was proved,
which supplies the third approach towards the Liouville-type theorem.

It remains an interesting question if the gap theorem still holds under condition (NQOB)
and Ric > 0.

2. Proof of the Liouville and the gap theorems

In [17], the authors proved a Liouville-type theorem for plurisubharmonic functions on
a Kéhler manifold with nonnegative holomorphic bisectional curvature. A key ingredient of the
proof is a maximum principle for Hermitian symmetric tensor satisfying the Lichnerowicz heat
equation. In fact, the same results still holds on a Kéhler manifold with the weaker conditions
of (NOB) and nonnegativity of the Ricci curvature. We first recall the maximum principle for
Hermitian symmetric tensor 1(x, t) satisfying the Lichnerowicz heat equation

0 1
2.1 (5 - A)flag = R,g,5M57 — E(Raﬁﬂpg + R 5lap)-

Here the expressions above are with respect to a unitary frame {ey} and the repeated indices
are summed from 1 to m.

Theorem 2.1. Let (M™, g) be a complete noncompact Kiihler manifold with nonnega-
tive holomorphic orthogonal bisectional curvature and nonnegative Ricci curvature. Let n(x, t)
be a Hermitian symmetric (1, 1) tensor satisfying (2.1) on M x [0, T with0 < T < ﬁ such
that ||n|| satisfies

2.2) / I71l(x,0) exp(—arz(x)) dx < +00
M
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Ni and Niu, Gap theorem 5

and

T
(2.3) liminf/ / 112 Cx, 1) exp(—ar?(x)) dx dt < +o0.
0 B,(r)

r—00
Suppose att = 0, Naf = —bgaB for some constant b > 0. Then there exists To, 0 < Ty < T,
depending only on T and a so that the following are true:
(i) 1y 5(x.1) = —bgoz(x) forall (x.1) € M x [0, To).
(ii) For any Ty > t’ > 0, suppose there is a point x’ in M™ and there exist constants v > 0
and R > 0 such that the sum of the first k eigenvalues Ay, ..., A of n, k; satisfies
A4+ A = —kb 4+ vkpy R

forall x at time t’, where ¢ : [0, 00) — [0, 1] is a smooth cut-off function such that ¢ = 1
on0,1]and ¢ = 0on[2,00), ¢y’ R(X) = ¢(%), the eigenvalues of  are of ascend-
ing order. Then for all t > t' and for all x € M, the sum of the first k eigenvalues of
Nof (x,t) satisfies

A4+ A = —kb + vk f r(x, 1 — 1),
where [y R is the solution of(a% — A) f = —f withinitial value ¢/ r(x).

Proof. The proof is to observe that the argument of [17, Theorem 2.1] only requires the
nonnegativity of the orthogonal bisectional curvature and nonnegativity of the Ricci curvature.
For the sake of the completeness we include some details of the argument here and pay spe-

cial attention on the places where the nonnegativity of the orthogonal bisectional curvature is
needed. By (2.1), one has

0 N ) 5
(5 B A) 1= = =lnggsI” = s ™ + 2Ry 5 pgMa5Mpa — 2Rapm,gNpa

2
I

< —lmgs % = Imggs 1%

where we choose {ey} so that Nuf = AO‘SaB' Thus
2
2R, g pglainpe — 2Raj,gpa = Z(Z Ryapphars =) Raaka)
o

==Y Ryapi(ha —2p)* <0,
o.p

provided that (M, g) has nonnegative quadratic orthogonal bisectional curvature (which is
a weaker condition than nonnegativity of the orthogonal bisectional curvature).
Combining with the inequality

20Vl < Iyl + g g5l

0
——A <0.
(3 - )i <
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6 Ni and Niu, Gap theorem

With [17, Lemma 1.2] which holds on the manifold with nonnegative Ricci curvature and (2.2),
then

hxat) = /M Hx.y.0)llnll () dy

is a solution to the heat equation on the set M x [0, ﬁ] with initial value ||n|/(x). With
assumption (2.3) and [18, Theorem 1.2], there exists 0 < Tp < T such that

Inll(x,2) < h(x,t)

on M x [0, Ty].
For any r, > ry, let Ay(r1, r2) denote the annulus B,(r2) \ By(r1). For any R > 0, let
or be the cut-off function which is 1 on 4, (£, 4R) and 0 outside Ao(g, 8R). We define

hR(xt) = /M H(x.y.0)0R0) [0l (7.0) dy.

Then h g satisfies the heat equation with initial value og || n||. Moreover, [17, Lemma 2.2] holds
when Ricci curvature is nonnegative. That is, there exists 0 < Ty < T depending only on a
such that:

(1) There exists a function T = t(r) > 0 with the property that lim, .~ 7(7) = 0 such that
for all R > max{+/To, 1} and for all (x,7) € A,(£,2R) x [0, To],

h(x,t) <hg(x,t) + 1(R).

(2) Forany r > 0,
lim sup  hgp=0.
R=20 B, (r)x[0.To]
By [17, Lemma 1.2 and Corollary 1.1], we can find a solution ¢ (x, 1), (a% —A)p=2¢
such that

¢(x,1) = exp(c(r?(x) + 1)

forsomec > O0forall0 <t <T.

As in [17] we only need to prove (ii) by assuming (i) since the proof of (i) is similar, but
easier. Without the loss of generality, we assume that 7/ = 0 and there exist x’ € M, v > 0 and
Ro > 0 such that the first k eigenvalues A1, ..., Ax of n, 3 satisfy

A+ 4+ Ak > —kb + Vk¢x’,Ro

for all x in M at time ¢ = 0. For simplicity, we assume that v = 1.
Let e > 0, for any R > 0, define

Y(x.te R) = = furo(x.1) + €d(x.1) + hr(x.1) + T(R) + b

and let
(MR g = Mg T V84p-

Then at ¢ = 0, at each point the sum of the first k eigenvalues of ng is positive. We want
to prove that for any 7o > ¢ > 0 and R > 0, the sum of the first k eigenvalues of ng in the
set By(R) x [0, Tp] is positive, provided R is large enough. Then one can argue by contradic-
tion similarly as in [17, proof of Theorem 2.1]. The only attention to pay is [17, proof of (2.14)].
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Ni and Niu, Gap theorem 7

That is, if ng has eigenvectors v, = azip for 1 < p < m with eigenvalues A,, then

1 1 3
Y [Rypap(n,s + V8,5 — S Rap (g +¥8,5) = 5 R, 5(Nap + V8ap))g®”
o,f=1

I
MW
NWE

Ry)?aoc Z Raaka

a=1y=1 a=1
k m k m
=D ) Ryjuahy = 3 ) Rysoala
a=1y=1 a=1y=1
k k m
= Z yyaot Z Z Ryyota
a=1y=k+1

[l
M- 1
<

Ry)?a& (Ay - Aoe)

%

S R
Il
<
Il
bl
+
—

where we only used the fact that M has nonnegative orthogonal bisectional curvature and
Ay > Ay fory > a.
The rest of the proof is the same as that of [17, Theorem 2.1]. O

The next observation is that one still has the following corollary, as [17, Corollary 2.1],
under the weaker condition (NOB).

Corollary 2.2. Let M and n be as in the Theorem 2.1 with b = 0. That is, n(x,0) >0
forall x € M. Let Ty be such that the conclusions of the theorem are true. For 0 <t < Ty, let

K(x,t) ={w e THOM): N (¥, HW® = 0 for all B}

be the null space of N Then there exists Ty, 0 < T1 < Ty, such that for any 0 <t < Ty,
K (x,t) is a smooth distribution on M.

Proposition 2.1. Let n(x,t) be a Hermitian symmetric tensor satisfying (2.1). Assume
thatn(x,t) > 0on M x (0, T) and M has nonnegative orthogonal bisectional curvature. Then
K (x,t) is invariant under parallel translation. In particular, if M is simply-connected, there
is a splitting M = My x M, with n being zero on M1 and positive on M», and M; has non-
negative orthogonal bisectional curvature.

One can modify the original argument in [17] for this slightly more general result. On
the other hand the strong maximum principle of Bony adapted by Brendle and Schoen [2] (cf.
Bony [1]) can be applied to obtain this result. In this case one formulates everything on the
principle U(n)-bundle. For any unitary frame e = {e;}7L, define u(e) = n(er,ej). Let Y be
the horizontal lifting of the vector ﬁeld -on M x (0,T). Ate, let X; ; be the horizontal lifting
of e;. Similar computation as in [2] ylelds that

(Y_ Z’)\(J"}?")u = Z Riis(ss —m17) = —Ku,

§>2
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8 Ni and Niu, Gap theorem

where K is a local constant depending only on M. Here we have used that R;j,57s5 > 0
for s > 2. This is enough to conclude that K (x, ) is invariant under the parallel translation. In
fact, the following slight general version of Bony’s strong maximum principle holds.

Theorem 2.3 (Bony, Brendle—Schoen). Let Q2 be an open subset of R". Let { X; }f‘zl be
smooth vector fields on Q2. Assume that u : Q — R is a nonnegative smooth function satisfying

k
> (D2u)(X;, Xi) = —K min{o, Jnf (D2, §)] + KIVul + Ku,
=1
i=1
with K being a positive constant. Let Z = {x : u(x) = 0} be the zero set. Let y(s) : [0, 1] = Q
be a smooth curve such that y(0) € Z and y'(s) = Zf;l ai (s)X;(y(s)) with a;(s) being
smooth functions. Then y(s) € Z forall s € [0, 1].

Since KX (x, t) is invariant under the parallel translation and clearly it is a clear subspace,
the decomposition follows from the De Rham decomposition theorem.

Proof of Theorem 1.3 under (NOB) and the nonnegativity of the Ricci curvature. The
proof is similar to that of [17, Theorem 3.2].

Without loss of generality, we may assume that M is simply connected (by lifting the
function to the universal cover, the growth condition clearly is preserved). For any fixed con-
stant ¢, we let u, = max{u, c}. It is well known that u is plurisubharmonic and u. satisfies

(2.4) lue(x)| < Cexpar?(x))

for some constant C > 0 and a > 0. By adding a constant, we can also assume that u, > 0.
Then u. is a nonnegative continuous plurisubharmonic function satisfying (2.4). Now we con-

sider the heat equation
0
(E — A)vc(x,t) =0,

ve(x,0) = uc(x).

Then the above Dirichlet boundary problem has a solution v.(x,#) on M x [0, ﬁ], obtained
in [17, Lemma 1.2] which holds on the manifold with nonnegative Ricci curvature.

Since Theorem 2.1 and Corollary 2.2 (and Proposition 2.1) hold on the manifold with
(NOB) and nonnegative Ricci curvature, one can go through [17, proof of Theorem 3.1] to
see that there exists 0 < To < T such that v.(x,?) is a smooth plurisubharmonic function
on M x (0, To]. Moreover, there exists 0 < 77 < Tp such that the null space of (vc),, g (x,1),

K(x,t) ={weTHO(M): (vc)an“ = 0 for all 8},

is a distribution on M for any 0 < ¢ < T7. Moreover, the distribution is invariant under parallel
translation. Then by Proposition 2.1, for any 79 > 0 small enough, M = M| x M, isomet-
rically and holomorphically such that when restricted on My, (vc), 3 is zero, and (v¢), 3 is
positive everywhere when restricted on M> by the De Rham decomposition. We want to con-
clude that M, factor does not exist. By [17, Corollary 1.1], we have

L 1
(2.5) fim sup Je 1) _
x—o0 logr(x)
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Ni and Niu, Gap theorem 9

Hence when restricted on M, (if the factor exists), (2.5) still holds. This contradicts with the
fact that (v¢),, 3 is positive when restricted on M, since by [11, Proposition 4.1], which asserts
that if a plurisubharmonic function p(x) on a Kdhler manifold with nonnegative Ricci curvature
satisfies the growth condition (2.5), then (90p)™ = 0, where m is the complex-dimension of
the manifold. Hence (vc),j(x, ) = 0 on M for all 7o small enough. By the gradient estimate
of Cheng and Yau [4] and (2.5), we can conclude that v (x, #p) is a constant, provided f¢ is small
enough. Hence u, is a constant. Since c is arbitrary, it shows that u(x) is also a constant. O

Proof of Theorem 1.1 under the assumptions of (NOB) and nonnegativity of the Ricci
curvature. Let p be the Ricci form, which is a smooth nonnegative closed real (1, 1)-form
on M. Itis easy to check that forany y € M,

ol (y) < S(y) < Vulpll(y).
Then

(2.6) kjpy(r) = o(r™2)

and (1.2) follows when (1.1) holds for some fixed point 0 € M. Since the curvature condition
(NOB) is stronger than (NQOB), Theorem 1.2 still holds with the assumptions of (NOB) and
nonnegativity of the Ricci curvature. Moreover, the solution u to the Poincaré—Lelong equation
p = V—100u is a plurisubharmonic function and (1.3) holds. In fact, (1.3) implies that

u(x)

X100 log r(x) -

since (2.6) implies that

/2 k||p||(s) ds = 0(r_1),
2r
/0 skjp|(s)ds = o(logr),

/0 skjp|(s)ds = o(logr).

By the generalization of the Liouville theorem proved above, we conclude that ¥ must
be constant. This implies that Ric = 0. For any unitary frame {eq}”"_,, (NOB) implies that for

a=1’

any @ # B, by considering e, = %(ea +eg).ég = %(ea —ep),
R(Co.eq.2p.6p) = 0,
which is equivalent to that
2.7 Rad“&+Rﬂl§33_RaBa/§_Rﬂdﬁ& > 0.
If we replace eg by V-1 ep in ey and eg, then
(2.8) Rogaa + Rggpp + Rypog + Rpapa = 0.
By summing (2.7) and (2.8), we obtain the following inequality:

Rogaa + RﬂBﬂB > 0.
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10 Ni and Niu, Gap theorem

But
Ra&,BE >0,
Roa = Rogaa + Z Ra&y}? =0,
y#a
Rgp = Rpgpg+ D Rpgyy =0
y#B
Then Rygag = O for any o, which implies that M is flat and the generalization of Theorem 1.1
follows. =

Proof of Theorem 1.4. By Theorems 1.2 and 1.3, it suffices to establish the estimate

[e.e]
2.9 r/ kjp)(s)ds = o(logr).
2r
From (1.5), we know
,
[r skyp)(s)ds = o(logr).

2
For any %r < s < r, by volume comparison,

om Vol(B,(3))
272"k (%) = W"npu(g)
1

< kjp(s) = Vol(Bo®)) 3,6 ol () di(y)

Vol(B, i
< %knpu(ﬂ < 22" k) (r).

From this and .

skyp)(s)ds = o(logr),

1
k) (1) = 0( Orfa;r).

o0
fn d2r Kiet®)ds 2k 2r)
r—oco  r~llogr r—oo logr —1

o

we derive

This implies (2.9), for

’

and completes the proof of the theorem. O

We note that the proof of the gap theorem via the Liouville theorem and the solution of
the Poincaré—Lelong equation also suggests the following gap theorem, in view of the Liouville
theorem proved by Liu.

Theorem 2.4. Let (M, g) be a complete Kihler manifold with nonnegative quadratic
orthogonal bisectional curvature and nonnegative holomorphic sectional curvature. Assume
that p > 0 is a smooth d-closed (1, 1)-form. Suppose that

[sf iolrdueyas = ottogn)
0 Ba(s)

for some o € M. Then p = 0. In particular, if (1.1) holds, (M, g) is flat.
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Ni and Niu, Gap theorem 11

Proof. By [8, Proposition 3.1] (see also [21]) the nonnegativity of the quadratic ortho-
gonal bisectional curvature implies that

Rad - Ra&a& > 0,

which together with the nonnegativity of the holomorphic sectional curvature implies that the
Ricci curvature is nonnegative. Hence Theorem 1.2 can be applied. Namely for the d-closed
real (1, 1)-form p, there exists a function u such that ~/—100u = p. The proof of the above
theorem shows that the solution provided by Theorem 1.2 satisfies that u(x) = o(log(r(x)))
as x — 0o. Now we apply the Liouville theorem of Liu, and conclude that u(x) must be a con-
stant. Hence p = 0.

Now we prove the last part regarding the flatness of (M, g). Apply the first part to p being
the Ricci form. We conclude that (M, g) has vanishing Ricci curvature. In particular, (M, g)
has vanishing scalar curvature. On the other hand, by a result of Berger (cf. [5, Lemma E.6.3]),
for every point p € M,

S(p) = m(m + 1)

= — H,(X)do(X),
Vol(S2m=1) Jix|=1, xeT10M p(X)db(X)

where H), denotes the holomorphic sectional curvature at p. Hence the vanishing of the scalar
curvature implies that the holomorphic sectional curvature (which is assumed to be nonnega-
tive) vanishes everywhere. This proves the last claim. |

Remark 2.5. As pointed out before, algebraically even the (NOB) condition (which
implies (NQOB)) together with the nonnegativity of the bisectional curvature does not implies
the nonnegativity of the bisectional curvature. It would be interesting to construct a complete
metric with (NOB), nonnegative holomorphic sectional curvature, but with negative bisectional
curvature somewhere.

3. Examples

In this section we always assume that m > 3. In [24], Wu and Zheng considered the
U(m)-invariant Kihler metrics on C™ and obtained necessary and sufficient conditions for the
nonnegativity of the curvature operator, nonnegativity of the sectional curvature, as well as the
nonnegativity of the bisectional curvature respectively. In [25], Yang and Zheng later proved
that the necessary and sufficient condition in [24] for the nonnegativity of the sectional curva-
ture holds for the nonnegativity of the complex sectional curvature under the unitary symmetry.
In [8], the authors obtained the necessary and sufficient conditions for (NOB) and (NQOB) re-
spectively. Moreover, they constructed a U(m)-invariant Kihler metric on C™, which is of
(NQOB), but does not have (NOB) nor nonnegativity of the Ricci curvature. In this section, we
will construct a U(m)-invariant Kéhler metric on C™ which has (NOB) but does not have non-
negative bisectional curvature. The existence of such metric was pointed out in [8, Remark 4.1],
and the construction below is a modification of the perturbation construction therein.

We follow the same notations as in [24,25]. Let (z1, ..., z») be the standard coordinate
on C™ and r = |z|?. A U(m)-invariant metric on C™ has the Kéhler form

Vo1

TaéP(r),

w =
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12 Ni and Niu, Gap theorem

where P € C°°([0, 400)). Under the local coordinates, the metric has the components

3.1 g7 = f()sij + f(r)Ziz;.

We further denote

f(r)y=P(r). h@r)=(f).

It is easy to check that @ will give a complete Kéhler metric on C™ if and only if

ooﬁ
>0, h>0, / —dr = +o0.
4 0o T

Ifh > 0,then & = —’Th/ is a smooth function on [0, co) with £(0) = 0. On the other hand, if &
is a smooth function on [0, co) with £(0) = 0, one can define

h(r) = exp(— Or éi—s)a’s) and f(r) = %/Orh(s) ds

with 2(0) = 1. It is easy to see that £(r) = —rTh/. Then (3.1) defines a U(m)-invariant Kihler
metric on C™.

The components of the curvature operator of a U(m)-invariant Kihler metric under the
orthonormal frame {¢; = JLEBZI ,ey = #822, R #azm} at (z1,0,...,0) are given
as follows, see [24]:

1(r"\ &

LA
f2 hf o (rf)?
B4 € =Ryij = 2Ry5;5 = _% - (rJz’)2 (/0 hs)ds = rh)’ PE LG22

(33) B =Ry = [rh —a —E)/rh(s) ds], i>2,
0

The other components of the curvature tensor are zero, except those obtained by the symmetric
properties of curvature tensor.

The following result was proved in [24], which plays an important role in the construc-
tion.

Theorem 3.1 (Wu—Zheng). The following statements hold:
(1) If0 < & < 10n(0,00), then g is complete.

(2) g is complete and has positive bisectional curvature if and only if € > 0 and 0 < £ < 1
on (0,00), where &’ > 0 is equivalentto A > 0, B > 0 and C > 0.

(3) Every complete U(m)-invariant Kiihler metric on C™ with positive bisectional curvature
is given by a smooth function £ in (2).

Using the above notations and formulations, Huang and Tam [8] proved the following:

Theorem 3.2 (Huang-Tam). A U(m)-invariant Kcihler metric on C™ has nonnegative
orthogonal bisectional curvature if and only if A+ C >0, B> 0and C > 0.
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Ni and Niu, Gap theorem 13

Let £ be a smooth function on [0, c0) with £(0) = 0,&'(r) >0 and 0 < £(r) < 1 for
0<r <oo.Leta =1limro &(r). Then 0 < a < 1. By the above discussion this gives a com-
plete U(m)-invariant metric on C" with positive bisectional curvature. The strategy of [8] is
to perturb this metric by adding a perturbation term to £ to obtain the one with needed prop-
erty. In particular, the work of [8] produces metric with (NQOB), but does not satisfy (NOB)
nor nonnegativity of the Ricci curvature. To achieve this, in [8, 24] the following estimates
(cf. [8, Lemma 4.1]) were obtained.

Lemma 3.1. Let £ be as above with lim, o € = a (€ (0, 1]). We have the following:
(1) Forr >0, (rh—(1—§) [y h)' > 0, and

r h
lim/ h=oco. limh=0, lim —— =1—gq.
0

r—>0o0

(2) For any e > 0, and for any rog > 0, there is R > rq such that
£'(R) —eh(R)C(R) < 0.

(3) limy—o0 h(r)C(r) = 0.

(4) Forall € > 0, there exists § > 0 such that if R > 3, § > n > 0 is a smooth function with
support in [R — 1, R + 1], then for all r > 0,

h(r) <h(r) < (1 +€)h(r) and /rh S/rﬁf (1+€)/rh’
0 0 0
where h(r) = exp(— [, %_dt) and € = £ — 1.

Let ¢ be a smooth cut-off function on R as in [8] such that
(1) 0 < ¢ < co with ¢ being an absolute constant,
(i) supp(¢)  [~1.1],
(iii) ¢’(0) = 1and |¢’| < 1.

The construction is to perturb £ into § (r) = &(r) —ah(R)C(R)¢(r — R) for suitable choice
of R, a. Note that this only changes the value of £ on a compact set. Once 4 is defined, equations
(3.2)—(3.4) define the corresponding curvature components A, B, C of the perturbed metric.

Theorem 3.3. Thereis1 > o > Osuchthat for anyro > Othere is R > rq satisfying the
following: If§(r) = £E(r)—ah(R)C(R)¢(r —R), then & determines a complete U(m)-invariant
Kdhler metric on C™ such that

(i) A(R) <0,

() A+C >00n[R—1,R +1],
(iii) B(r) > O forallr,
(iv) C(r) > Oforall r.

Then § will give a compete U(m)-invariant Kdhler metric which satisfies (NOB) but does not
have nonnegative bisectional curvature, nor nonnegative holomorphic sectional curvature.
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14 Ni and Niu, Gap theorem

Proof. Let B = ah(R)C(R).Lete > 0, a suitable constant, and R > 3, a large number,
to be chosen later. Since C(R)h(R) — 0 as R — oo,  will be small constant if R is chosen
to be large. Then by Lemma 3.1 (3), for any § with @ > § > 0, for R sufficiently large we
have B > 0 with Bco < 8. Recall that ¢q is the upper bound of the cut-off function |¢|. Let
E(r) = £(r) — Bo(r — R). Such chosen & € (0, 1) determines a complete U(m)-invariant com-
plete Kéhler metric on C™. Moreover, for all r,

h(r) < h(r) < (1 + €)h(r), forhsforﬁs(we)/orh-

We shall prove that for suitable chosen « and R, é ,h, f will define a complete unitary sym-

metric Kéhler metric on C™ satisfying (1)—(4). Assuming (1)—(4) in the theorem, (1) implies

that the metric does not have nonnegative holomorphic sectional curvature (hence cannot have

nonnegative bisectional curvature). Equation (3.2) together with (4) implies that (2) is sufficient

to conclude that A + C > 0 for all 7. Hence by Theorem 3.2 the perturbed metric has (NOB).
By Lemma 3.1 (2), for any € > 0 (sufficiently small), there is R > r¢ such that

E'(R) = &(R) — B < (e — a)h(R)C(R).

Hence for (1), it suffices to choose o > €.
By formula (3.4) and [8, proof of Lemma 4.2] (precisely [8, (4.6)]), we may choose a
large r1 so thatif R > ry andforr € [R — 1, R + 1],
_ 2 5
C(r)z ———x(@—2c+ae—¢)
1462 [y h

provided a — 2¢ 4+ ae — €2 > 0. We choose € > 0 so that it satisfies this condition. Here a is
the constant from Lemma 3.1. On the other hand,

C(R) < fih(a + €)

0

if 1 is large enough depending only on € and R > r;. Hence, if € and r; satisfy the above
conditions, then forr € [R — 1, R 4+ 1],

a—2¢ + ae —e?
(@a+e)(1 +¢€)?

C(r)> C(R).

Therefore, if € > 0 satisfies @ > € and a — 2¢ + ae — €2 > 0, we can find r; > rg such that if
R > ry, thenitholds forr € [R — 1, R + 1],

Ay +C(r) > WT_’Q +C(r)

—B  a—2€+ae—é?

> i T @roater C(R)
B a—2¢+ae—€?
= T ZOhR) + (a+e)(1 + €)2 C(R)

a—2e+ae —€?
(@a+e)(1+¢)?

—B+(1-¢

- | wew)
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Ni and Niu, Gap theorem 15

In the third line we have used the fact
0
im ———— =
r—o0 h(r + rop)
established in [8, Lemma 4.1 (i)]. If we can choose @ and € with 0 < € < o < 1 such that

a—2¢ + ae — €2

(3.5) e<a<(l—e) PETREE

then
/I(r) + C'(r) >0

on [R — 1, R 4 1]. To achieve the requirement above, for any fixed a € (0, 1) we pick an « with
0 < o < 1, then there exists an € sufficiently small such that the above claimed estimate (3.5)
holds. Hence (1) and (2) follow.

To prove (3), we can appeal [8, Lemma 4.3 (i)], for r; is large enough and R > r;. First
B(r) = B(r) forr < R — 1. Hence we only need to prove (3) for > R — 1. By formula (3.4)
and Lemma 3.1 it can be seen that

.
lim C(r)/ h=2 lim (1 —r,—h) = 2a,
r—00 0 r—00 fO h

which implies that S(R) = aC(R)h(R) satisfies
R
,B(R)/ h—0 as R — o0
0

since 4(r) — 0 as r — o0. On the other hand, for any €; > 0, there exists §; > 0 such that if
Bco < 61 and R sufficiently large the conclusion in (4) of Lemma 3.1 holds with € replaced
with €; > 0. Here co > 0 is the constant in the definition of the cut-off function ¢. The com-
putation in [8, proof of Lemma 4.3 ] shows that

(3.6) r Y B() = rh— (1 - E(r) [0 i= /0 E(r) — E@)h () d.

Using €’ > 0 and 4’ < 0 the above gives, forr > R — 1,

_ _ r R
rPB(r) = /0 E(r) — EVh(1) di —251(1 + eD)h(R — 1) — coP(R) /0 h).

Using the second part of (3.6) again, we have

/O () — EOVh() dt = rh(r) — (1 - sm)/o W) di > € >0

for some § by Lemma 3.1 (1). This shows that B(r) > 0 if R > ry for some rq large. Since
h = —%hé < 0 when r > 0, it follows that

,
/ h > hr whenr >0,
0

which implies that (4) holds, by formula (3.3). This provides a simplification of [8, proof of
Lemma 4.3 (i1)]. O
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16 Ni and Niu, Gap theorem
The computation of [8] also implies the following result.

Theorem 3.4. A U(m)-invariant Kdhler metric on C™ has nonnegative orthogonal
bisectional curvature and nonnegative Ricci curvature if and only if

A+C>0, A+m—-1)B>0, B>0, C >0.

In fact, algebraically one can construct a curvature of (NOB) and nonnegative Ricci cur-
vature but does not have nonnegative holomorphic bisectional curvature. Recently in [20], using
the method of [24], an example of unitary symmetry as the above with (NOB) and nonnegative
Ricci curvature, but not nonnegative bisectional curvature has been constructed. This shows
that (NOB) is completely independent of Ricci curvature.

Acknowledgement. We would like to thank Professor Luen-Fei Tam for suggesting the
problem of the gap theorem for manifolds with nonnegative orthogonal bisectional curvature.
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