Math. Z. 232, 331355 (1999)

Mathematische
Zeitschrift

© Springer-Verlag 1999

Hermitian harmonic maps from complete Hermitian
manifolds to complete Riemannian manifolds

Lei Ni*

Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
(e-mail: Ini@math.purdue.edu)

Received June 25, 1997; in final form May 19, 1998

1 Introduction

In this paper we study a nonlinear elliptic system of equations imposed on
a map from a complete Hermitian (nor&Kler) manifold to a Riemannian
manifold. This system is more appropriate to Hermitian geometry than the
harmonic map system since it is compatible with the holomorphic structure
of the domain manifold in the sense that holomorphic maps are Hermitian
harmonic maps. It was first studied by Jost and Yau in [J-Y], and was ap-
plied to study the rigidity of compact Hermitian manifolds. We extend their
existence and uniqueness results to the case where both domain and tar-
get manifolds are complete. Hopefully the results will be useful to study
corresponding rigidity of complete Hermitian manifolds.

Let M be a complex manifold with Hermitian metrié,,5), and letNV
be a Riemannian manifold with metrig;;) and Christoffel symbolfjk. A
Hermitian harmonic map : M — N satisfies the following elliptic system
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The related heat equation is
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As it was pointed out in [J-Y] we know (1.1) is just the usual harmonic map
equation ifM is Kahlerian. Geometrically if we define the tension field by
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o(u) = Ve, (du)(ea),and we use a holomorphic torsion-free connection on

M instead of the Levi-Civita connection, theriu) = 0 gives the equation
(1.1). Since (1.1) has neither a divergence nor a variational structure it is
harder to solve than the usual harmonic map system. One example in [J-Y]
shows that even wheN is nonpositively curved the existence of Hermitian
harmonic map in each homotopy class is not always guaranteed. However
they proved the following solubility of the Dirichlet problem under the
assumption thadV is nonpositively curved.

Theorem 6 [J-Y] (Jost-Yau).Let M be a compact manifold with smooth
boundaryoM and Hermitian metriqh,,3), and letN be a complete Rie-
mannian manifold with nonpositive sectional curvature. hetdM/ — N

be a continuous map. Then there exists a unique Hermitian harmonic map
u: M — N such thatu|sys = h|ga andu is homotopic tar w.r.t. the fixed
boundary value.

We will use their result to prove the existence of Hermitian harmonic map
from complete Hermitian manifolds to complete Riemannian manifolds by
a compact exhaustion procedure under the assumption that the holomorphic
Laplacian has positive first eigenvalue. This result can be thought as an
analogy of the existence result for harmonic maps of Ding[D] and Li-Tam][L-
T]. The key point is to get a uniform energy density estimate. Here we
derive the energy density estimate through the homotopy distance integral
estimate, the mean value type inequality and a differential inequality for
the homotopy distance functions. Even for the harmonic maps our method
provides a different, perhaps simpler, proof of the previous existence results
of Li-Tam and Ding. We also treat the parabolic equation in our paper.
More precisely we first prove the existence of the global solution for the
heat equation under the assumption that the holomorphic Laplacian has
nonnegative first eigenvalue. Then we discuss when the solution of the heat
equation converges to a Hermitian harmonic map.

The authorwould like to thank Prof. Peter Lifor his generous supportand
many helpful discussions. The author would also like to thank the referee
for many valuable comments. The thoroughness of the referee report were
great help in presenting the paper in a readable form.

2 Hermitian harmonic maps

In this section we first sketch the definition of the Hermitian harmonic maps.
Then we briefly state some basic properties of the Hermitian harmonic map
and point out the difference and relation to usual harmonic maps and holo-
morphic maps.

Let M be a Hermitian manifold of complex dimensionLet{es}, A =
1,---,2m be alocal orthonormal frame(real) &f. If .J is the almost com-
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plex structure we can always choasesuch thafe} = {e1,e2," - , em,
Jei, Jeg, -+, Jem}. The complex unitary frame will b¢F,,, £} satis-
fying e, = Eo + Eq, Jeq = \/%T(Ea — E,) and that{E,} spans the

complex tangent spacé&%(M ) locally.

Let V be a Riemannian manifold of real dimensianand letu be a
smooth map from\/ to N. On N we always choose the Levi-Civita con-
nection which is compatible with the Riemannian structure dnow we
choose connection such that it is compatible with the holomorphic struc-
ture onM instead of the Riemannian structure. But for the convenience of
the calculation we choose the connection to be torsion free. Of course the
choice of the connection here is not unique and it is well-known that when
M is a Kahler manifold the Levi-Civita connection is both holomorphic and
torsion free. In the following we denote the Levi-Civita connection\by
and a chosen holomorphic torsion free connectiofvbyCorrespondingly
we denote byA the standard Beltrami-Laplacian and Aythe Laplacian of
the holomorphic torsion free connection. ldet: TM @ C' — TN ® C' to
be the tangent map af Then one can defin€du(X,Y) by

Vdu(X,Y) = Vydu(X) — du(VxY).

The torsion free assumption makes the above definéd -, -) symmetric.
It is natural to define the tension fields of the magpo be the trace of
Vdu(-,-), namely

2m
1
o(u) = 1 Z Vdu(ea,ea)
A=1
1 m m
=1 (; Vdu(eq,eq) + az::l Vdu(Jeg, Jea)> )

The factor} here is used to normalize the notation such that the Laplacian
operator of this connection for functions is given by

82

A — 1587
A=h 0280z7"

By definition we call a smooth map to be Hermitian harmonic if the
above defined tension fietd ) = 0. A direct calculation as follows shows
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that in the complex local coordinates it is equivalent to the equation (1.1):

o(u) = % (Z:l Vdu(eq,eq) + Z Vdu(Jeg, Jea))

= a=1

1 (& _ _
= (; Vdu(Eq + Eqo, Eo + Ey)
+Y  Vdu(Ey — Eq, Eo — E@)
a=1
= Vdu(E,, Ea)

a=1
_ o 9

_ B85 =

Zh Vdu (aﬂ’aw)
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If we denote the tension field for the usual harmonic map (@), then the
difference is given by

(0(u)" = (r(w))’ = (A - A)'.

The difference of the two Laplacians is given by a first order differential
operator as follows

(A= A)f =(Vesea—Ve,ea)f =(V,VS),

whereV is the holomorphic connection afdis a well-defined vector fields
on M, which depends on the first derivativesiof’.

The basic properties of Hermitian harmonic maps contain

1) If N is a Kahler manifold, a holomorphic map is a Hermitian harmonic
map.

2) If ¢ : M7 — Ms> is holomorphic and: : Ms — N is Hermitian
harmonic, the composition o ¢ is a Hermitian harmonic map.

3) If u : M — Nj is a Hermitian harmonic map and: Ny — Ns is a
totally geodesic immersion themo « is Hermitian harmonic.

There might be other ways to defiHermitian harmonic mapahich are
compatible with the holomorphic structure. For example the most natural
choice is the Hermitian holomorphic connection, which is widely used in the
study of Hermitian holomorphic vector bundle and Hermitian geometry. Or
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we can use Hermitian holomorphic connections on both domain and target
manifolds when they are both complex. The problem for this connection is
that it is not torsion free whef/ is not a Kahler manifold. This makes the
analysis even harder since we no longer have nice differential inequalities.
At last we should point out that even when our choice of connection on
the domain manifold is not compatible with the metric, the Levi-Civita
connection on the target manifold implies that the pull-back connection
over the pull-back bundle*T N is Riemannian. This fact is very important

in our basic estimates in the next section.

3 Basic differential inequalities

Let M be a complex manifold with Hermitian metrié,, 3), and letN be
a Riemannian manifold with metrig;;) and Christoffel symbolfjk. We
will always assume thaV has nonpositive sectional curvature. kebe a
smooth map from/ to N. The energy density(u) of the mapu is defined

as||du||?, orin local coordinates‘;aﬂgij(u)g%ﬁig%. The first useful lemma
is the following differential inequality on the energy density function proved

by Jost-Yau [J-Y].

Lemma 3.1 (J-Y).Suppose tha¥ has nonpositive sectional curvature and
wis aHermitian harmonic map frod/ to N then the energy density function
e(u) satisfies

(3.1) Ae(u) > %IIVduHZ — Ce(u),

where C depends on the pointwise upper bound of both first and second
derivatives of,*0.

Proposition 3.2. Let N be a Riemannian manifold with nonpositive sec-
tional curvature. Ifu; and us are two smooth maps defined over some
domainf2 to N, andU (z, s) : £2 x [0,1] — N is the geodesic homotopy
between them (It always exists by [S-Y]), then
1
ds > —(e(u1) — 3e(uz)).

1
(3.2) /O Vau <§S) 5

Proof. We first prove the following lemma.

2

Lemma 3.3. Let e(s) be the energy density function of(z, s), where
U(z, s) is the geodesic homotopy betwegrandus, then

() )20

i.e.e(s) is a convex function of.
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Proof of Lemma 3.3.
Let e, be the local orthonormal frame faZ, thene(s) = ||dU (e4)||?
by definition. Then we have the following calculation:

d

7568 =2(V g dU(ea),dU(ea))

0
=2 <V6AdU (85) ,dU(eA)> ,
and

L ets) = 2(Veutt (57) Vertt (5))
e <v6A <V51dU <§s)> ,dU<eA>>
—2 <RN (dU (68 > dU(eA)> dU <§ ) dU(eA)>
<V6AdU ( g ) V., dU ( g )>
-2 <RN <dU <§8> ,dU(eA)> dU (i) ,dU(eA)>

> 0.

Here we have used the fact that the connection over domain manifold is
torsion free and that the connection over target manifold is Riemannian as
well as the fact thal/ (s, -) is a geodesic.

Remark 3.1.The convexity of the energy density might be an interpretation
of the convexity of the distance functions on nonpositive curved manifolds.

Now we can begin to prove Proposition 3.2. From Lemma 3.3 we have

1
(3.3) /O e(s)ds < %(e(ul) +e(up)).
On the other hand we have
(3.4) e(ur) —e(ug) = e(1) — e(0)

1
_ 2/ <V g dU(ea). dUes) > ds

/HVdU< )||2ds+/ 14U (e.4)2ds

/ HVdU( >H ds + ;( (u1) + e(u2)).

Rewriting (3.4) we have the claim of Proposition 3.2.
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Lemma 3.4. Letu andv be two smooth maps froif into N with nonpos-
itive sectional curvature and 1éf(x, s) be the geodesic homotopy between
them. If we denote lyy? the square of the homotopy distance betweand

v, then we have

(35) Ay >2/ IVdU<a> I*ds —2p (Jo(u)]| + o (v)Il).-

Proof. The proof is just direct calculation.

By definition
P
p2=/ ||dU( )||2ds

o\ |12
w (4

— ds
2

ds

Therefore

1
Ap2 = (eaea — @eaea) /
0
1 0
=2 . -
/0 V,.dU ( 68)
1 0
—1—2/ <V6aVadU(ea),dU <>>ds
0 s 83
1 0 0
2 /0 <vve LU <6> du < 8)> ds
>2/ ||VeadU< >||2ds

+2/01 <V§S (VeadU(eq) — dU(Ve,eq)) ,dU (aas>> ds

1 8 2
> 2/ Ve, dU () ds
0 85
+2 <(V6adU(ea) —dU(Ve,eq)),dU (ai)> E

> / IV..dU ( j) 12 = 20 (lo@)]| + o @)

As a corollary we have that if andv are all Hermitian harmonic maps

then
(3.6) Ap? > 2/ vdU < 0 )
0 88

Corollary 3.5. Let M, N andu, v as in Lemma 3.4. Then the following
differential inequality holds;

3.7) Ap >~ (o) + o))

2
ds.
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Proof. The similar inequality for the usual harmonic maps was proved by
Schoen-Yau in [S-Y].
By Lemma 3.4 and

Ap? = Ap® +(V,Vp?)
=2pAp+2p(V, p) + 2|V p|?
= 2pAp+2|Vpl,

it will be sufficient to show that
0
dU | —
v <83>

1
Vol < / ds.
0
9
VU (88>

This follows from
2
ds)
The inequality (3.8) can be proved as follows;

1
(3.8) V0% < 2 ( /0
1 0 0
/0 2 < dU <6s> , VdU (38) > ds
U ez N/ S\
<2 </0 dU <as) ds) (/0 VdU ((38) ds)
)\
=2p (/1 vdUu (;) ds) .
0 S

Remark 3.2.A point-wise gradient estimate for harmonic maps was proved
in [Ch] and corresponding estimate for heat equation was derived in [LJ]. In
the theory of harmonic maps these gradient estimates play a very important
role in both existence and Liouville type results. While one can see from
the next section that in order to prove the existence result we only need a
differential type inequality and some integral estimates due to the mean-
value type inequalities of Li-Schoen and Li-Tam (for the heat equation). On
the other hand, we want to point out here that the Liouville type theorems
for the usual harmonic maps can also be proved by this approach without
using the point-wise gradient estimate. For example one canreprove Cheng’s
theorem by the following argument;

Let » be a harmonic map from/ to NV, where M has nonnegative
Ricci curvature andV is simply connected and has nonpositive sectional
curvature. Leti(-, y,) be the distance function d¥ to a fixed pointy, and
letd(x) = d(u(z), y,). The similar proof as of Proposition 3.1 shows that

Ad? > 2e(u).

2

NI

Vp?| <
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Lety = ¢(r(x)) be a cut-off function o/, wherer () is distance function
of M. Multiply »? on both sides of the above inequality and integrate by
parts we have

/e(U)wQS Ad?®
M M

~ 4 /M (Voo Vd) dip
<o ([ wore) (o)
<4 </M \V<p\2d2>§ </Me(u)902>é .

Here we used the fact thi d|?> < e(u). From the above we can easily see

that
/ e(u)¢? < 16 / Vel2d?,
M M

16
/ e(u) < =l d2.
B(r) B(2r)

It is a well-known fact that(u) is subharmonic, therefore satisfies mean-
value inequality. Once we assume that) = o(r(z)) one can easily see
from the above inequality and the mean value inequalitydfat = 0 since

C(M)
B W=V /Bm ‘)

C(M) (suppar) %) V(27)
r2V (r)

which implies that

— 0.

<

The advantage of this type argument is that not only it is simpler than the
gradient estimate but also it can be modified to allow quasi-isometries of the
domain manifoldM/. This point has been exploited by Peter Li and J. Wang
in the study of the convex hull property of harmonic maps (cf. [L-W]).

4 Existence of the Hermitian harmonic maps

In this section we prove an existence theorem for Hermitian harmonic maps
between complete manifolds. First we fix some notations. We say a second
order elliptic operator. has positive first eigenvaluk, (L, M) if for any
compact supported smooth functigrone has
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/N (Le)e = M(L M) /M @’

In particular, we simply denote; (L, M) by A1 (M) whenL is the Beltrami-
Laplacian operator and we denotg( L, M) by A1 (M) whenL is the holo-
morphic Laplacian operatat of the chosen holomorphic torsion free con-
nection.

Theorem 4.1. Assume thab/ is a complete Hermitian manifold with pos-
itive first eigenvalue\; (M) for A, N is a complete Riemannian manifold
with nonpositive sectional curvature athds a smooth map from/ to V.

If there is a positive numbes > 1 such thath has bounded|o(u)|| 2»
then there exists a Hermitian harmonic map M — N such thatu is
homotopic tah.

Remark 4.1.For the usual harmonic maps the existence result of this type
was proved by Ding [D] and Li-Tam [L-T] under the similar assumption as
ours here. The argument here in fact also provides a simple proof for the
usual harmonic maps if one replace Jost-Yau'’s theorem by using Hamilton’s
solution for the Dirichlet problem of harmonic maps.

We prove the result by the compact exhaustion procedure{ 26t be
a compact exhaustion @ff with, at least, Lipschitz boundary. By theorem
6 in [J-Y] we have{u;} which solve the Dirichlet homotopy problem

uilon, = h,u; ~ hrel 062

(4.1) {dwzo

We will argue that there exists a subsequencg®f such that it converges
to a Hermitian harmonic map on the whole manifold. In order to do that we
use the estimate in Sect. 3 to bound the energy density over the compact
domainK, or B,(R). The basic technique is to look af(z), the square
of the homotopy distance betweepandh, andpfj(x), the square of the
homotopy distance between andu;(: > j). In the following we first try
to show thap; (thereforep;;) has uniformZ?” norm.

By Corollary 3.5, after we replace by u;, a Hermitian harmonic map
and replace by the initial maph, we have

Api > ~|a(h)].
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Multiplying p2p ! on the both sides of the above inequality and integrating
by parts, we then have

~eo=1) [ [Vnp
+/ (V,Vpi) pi*~" /(Apz) et

2 1
/||a P

Here we have used the fact that= 0 on 9{2; sinceu; coincides withh, on
the boundary of2;. Multiplying p on both sides we get

2 1 2 2
/Ho o' > (2p - 1)p /rw? -

(4.2) —p /M (V,Vpi) pt,

On the other hand, by the assumption that)/) > 0, we have that for any
compact supported functign

or

[over = [ wvaezhon [ o

Letting o = p¥, we get

(4.3) p2/ 2p— Q\sz\g—p/ <V,Vpi>p?p_1 ijl(M)/Mp?p

Adding (4.2) and (4.3) we have

(4.4) p/ lo(R)]l " > (* —p / V07~ 2+§1(M)/Mpfp-

In particular, forp > 1 we have

(4.5) / lo (2" = A (M) /Q o

i

Here we replacelf by (2; sincep; is compact-supported if;. Holder
inequality and (4.5) together imply that

o([ )T ([ o) = h0n [
(L) ™ (o) = han |
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Therefore
p o 2
(4.6) ( ) / o (1) > / o,
san) o ez [
By Pij < p;+ pj we have
(4.7) 1pijll L2r(2;) < C.

The standard iteration argument in [G-T], or [Li] (for a geometric version),
implies || pi; || < (x is uniformly bounded over any compact domain by
some constant’ independent of andj, whereK is a relatively compact
subset of/. For the completeness we sketch the argument here.

We can reduce the estimate to the’ estimate ofp;; over balls. In the
following, let B,,(2R) C {2; (or briefly just B(2R)) be a ball of fixed
radius2 R centered at a fixed poinf. For the simplicity, we denotg;; by
f , which satisfies that

[ precun
B(2R)

for some constant’. By Corollary 3.5f also satisfies

(4.8) Af >0.

We will show that there exists a constarnt such that
supp(r) f < Cil fllz2»-

Here the constartt;, only depends on the geometryfafand is independent

of f. (This is a variant of the standard mean-value type inequality. One can
consult Theorem 8.17 of [G-T], chapter 11 of [Li] or [L-S] for more detailed
argument.)

The major geometric-analytic property 8f which we are going to
use is the Sobolev inequality oB(R). Namely, there exists a constant
Cs only dependent on the geometry bf aroundB(R) such that for any
¢ € C(B(R))

m—2

4.9 Vo|? > C, an ) "
4.9) /B(R) o2 > </B(R)¢ )

always holds.
Before we begin the Moser iteration scheme we choose a cut-off function
pto be

1 onz € By(d)
o(x) = { 0=t ong € B(d+ o)\ B(d)
0 onz € B(R)\ B(d+ o).
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Leta > p > 1. Multiplying f2%~1¢©? on both sides of (4.8) and integrating
by parts we get

—(2a — 1)/ V2 f2022 — 2/ <V Vo> 2y
B(R) B(R)
+ [ wepi s
B(R)

Multiplying « on both sides and using Cauchy inequality we can write

1 a 2 r2a 2
5T o VI

_ZCL/ <Vf, V(‘p> f2a71(p > (1 — 6)(2a2 _ a)/ |Vf’2f2a72(p2
B(R) .

for anye > 0.
On the other hand, letting = f“¢ we can write the following by direct
calculation

aQ/ |vf|2f2a—2g02
B(R)

12 / (V£ V) 2+ / PP = / V()2
B(R) B(R) B(R)

Choosingl — ¢ = 5% and adding the above two inequalities we have

a

/ VP22 + / PP > / V(o).
a—1Jpr) B(R) B(R)

Applying (4.9) tog = f*p we finally have

m=2
1 2a a(2m) | "
(4.10) C(M,V,p)(1+ =) = frme2 .
o B(d+o0) B(d)
If we letv = = the above inequality can be rewritten as

1
1 1\
[ £l L2ev (B(ay) < C'a <1 + 02> I £l 222 (B(d+0))-

Let us now choose sequencea@fd;, ando; such that

7
ag =p, a1 =pv, -+, A =PV, -+,

1 i
o0 = R, 01 =2"00, -+, 03 =2 ‘oo, o,
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d1=R,dy=R—0p,dy=R—0g—01, -+, di=R-> o5, -
7=0

Observe thatim; o, d; = g. The Moser-iteration argument completes the
proof of our claim after we iterate (4.10). If we treat the usual harmonic maps
we can apply Li-Schoen’s mean value inequality directly since hers

a subharmonic function. The argument above needs 1, but a general
argument in [Li] shows that > 0 case follows fronp > 1. As a conclusion

we have mean-value type inequality for gny- 0.

Proof of theorem 4.1. In order to prove the theorem we only need to get a
uniform bound fore(u;). By Lemma 3.1

(4.11) Ae(ui) > —Ce(u;),
for some constant’ only dependent oA/ and N. Therefore
Ae(u;) + (V,Ve(u;)) > —Ce(u;).

One can easily check that the similar argumentin the last paragraph can show
that the mean-value type inequality also holds herefay). Therefore we
can reduce the point-wise estimate=0i;;) to an integral estimate ef u; ).
This implies that in order to get the uniform estimate=(f;) over the ball
B,(R) we only need to estimate the integral of them algfr) for r > 2R.

Let G(x,y) be the positive Green’s function aB,(2r) satisfying the
Dirichlet boundary condition, and let be a cut-off function supported in
B,(2r) with ¢ = 1in B,(r). Then we have

o) == [ Glan)Alerd)
Bo(2r)
Using Lemma 3.4 and the fact that, «; are Hermitian harmonic, we have

S 1 o
A2 >9 av (<
Pii 2 A VU(%)

Hence we can write

Alpsi0) = (Api;)e +2(V 55, Vo) + (Ap)py;
= (Apzzj)SD + <V7 V,O?j> +2 <vpz2j7 V<P> + (ASD)P%]‘

2(2/01 vw(i) 2d8><p

—VIIIVpiile — 21Vl Voii| + (Ap)p:;

2
ds.
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1
2 3
ds> %)

Applying (3.8) we have

! )
— VIV le = =2V 0 (/ VdU <a>
0 S

> 1 /1 vav (2 2d 2|V ||?p?
=72\ J, Ds S|® Pij P

2Vl = <4l [ |vav ()] as

1 2 2
>_1 (/ VdU <8> ds> o gVl o
2\ Jo 0s %
Therefore

1]
: : 9 \|I
A(piip) = /0 VdU<88) ds | ¢
V 2
- <2HV||2 - s’j‘ - Aw) 2

\V4 2
3 (e(u) = 3e(w)) o - (21V1? -2~ ag) g,

and

—_

>
In the last step we have used Proposition 3.2. Now we have

pii(0) = — / G(z,y)A(pp;)
Bo(2r)

1
< 5[, o, Gl wpletun) = selus))as

+C G, y)p3;-
Bo(2r)

Fixing j and using the fagt;; is uniformly bounded we can get

/ e(u;)G(x,y) < C.
B, (r)

Here C is independent of. From the above inequality and the fact that
G(z,y) is positive onB,(r) we can easily see

/ e(u;) < C.
o(r)



346 L. Ni

Hence we have(u;) < C for some constant’ which is independent of
Therefore the{u;} has a subsequence which converges,ta solution of
(1.1). Thus we complete the proof of Theorem 4.1.

We should point out here that by our construction we can see easily
that p(u(z), h(z)), the homotopy distance between the initial niapnd
u, belongs toL?(M). We will show in the next section that under this
condition the solution is also unique if we assume that the difference vector
fieldsV has bounded.*® norm.

5 Uniqueness

Inthis section we will show that the Hermitian harmonic map we constructed
in last section is in fact unique if we assume that the vector fiéldatisfies
|V Lo < 00.

Theorem 5.1. Assume thaf\/ has positive first eigenvaluk, (M) for A,
N has nonpositive sectional curvature. et and us be two homotopy
Hermitian harmonic maps from/ to N, and letp(z) be the homotopy
distance between them. If there is a positive numberl such thaty(z) €
L?’(M) and the difference vector field$ satisfies|| V||~ < oo, then

ui(z) = ug(x).

Proof. By the remark after the proof of Theorem 4.1 we know iat(x),
h(zx)) € L?’(M) if u is the solution of (1.1) from our construction. There-
fore if u; anduy are two solutions from our construction we have that

plur (), u2(2)) < plus(), h(x))+p(us(x), h(x)) and belongs a2 (M)
also. Because of that Theorem 5.1 gives the uniqueness result corresponding
to Theorem 4.1.
The proof follows closely from thé.” Liouville type theorem of Yau
(See [Li], Sect. 7). By Corollary 3.5 we have

ANpZ().

Let » be a cut-off function. Multiplyp??~'x? on both sides of the above
inequality and integrate by parts. Then

(61 (@ 1) / Vpl2p% 20" / <Up, V> P

+ [ Wi zo
M

Letting ¢ = pP¢ and using the assumption that

[ a0 =nan [
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We can write the following inequality
pz/ P2V pPe? +2p/ (Vp, Vo) p2p‘1s0+/ P |Vol?
M M M
—p/ (,V,Vp) p?~1p? —/ (V,Ve) p?Pe
M M
Zil(M)/ PP’
M

Multiplying (5.1) by p and adding (5.1) to the above inequality, then we
have

/ PPVl —/ (V, V) pPe > MM)/ P
M M M
+(p2—p)/ R R
M
which implies
1 1
L p2p+”V||L°°/ p2p2/ p2p|V¢\2—/ (V, V) p*Pe
% JB(r) r B(2r) M M

> 1(M)/ p?P
B(r)

+(p2—p)/ p*P 2|V p|?.
B(r)

R

Lettingr — oo we have that the left hand side of the above inequality goes

to 0. Hence
/ p? <0
M

which implies the conclusion of Theorem 5.1.

6 Global existence for the heat equation

In this section we will treat the heat equation (1.2). We are going to show
that the heat equation (1.2) has a global solution under the assumption that
A1(M) > 0, which is weaker than the assumption of Theorem 4.1. Also we
show that the solution of the heat equation will converges to a Hermitian
harmonic map if\; (M) > 0 and||V||L~ < oco. For existence it does not

tell more than Theorem 4.1 but it provides the homotopy explicitly by the
heat flow and coincides with the uniqueness result of Sect. 5.
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Theorem 6.1. Let M be a complete Hermitian manifold with nonnegative
A1(M) > 0,and letN be a complete Riemannian manifold with nonpositive
sectional curvature. Lét be a smooth map with boundgd(h)||2,, p > 1.
Then there exists a solutiar{z, t) : M x [0,00) — N, which solves (1.2)
and is homotopic td with u(x,0) = h(z).

Proof. Here we use the compact exhaustion argument as beforeR,Let
be a sequence of exhaustion domaimdf From [J-Y] we know that the
following Dirichlet problems have solutions(x, t) on §2; x [0, c0);

% = ow)
(6.1) u(z,0) = h(x)

ui(z,t)|on, = h(x),u; ~ hrel 062;.

We will show that there exists a subsequence converging to a solition)
by establishing uniform gradient estimates for ev&ry [0, 7], where K
is a compact subdomain of.

First we are going to show thﬁ%“ are uniformly bounded o™ x

[0, ). From [3-Y] we know thaf| 9% || = ||o(u;)|| satisfies
A 8 8u7_
6.2) { (4-3) 1% >0,
1% ;= 0.

In fact it was shown in [J-Y] (See the paragraph before Lemma 1 of [J-Y])

that
= 00U 0
_ > N
(8- )15 =2]van (3)

which is weaker than what we need. Since it is easy to check that

2

0
< ||V S —
—H duz<8t>

One can get (6.2) from the above two inequalities easily.

It is not hard to check that the Moser-iteration argument of Sect. 4 ap-
plies to parabolic equations also. Therefore we can reduce the point-wise
estimates to thé 2" estimates, which can be done as follows.

2

I

2
8ui

)

v
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For the simplicity of the notation we dendt% |(x,t)byg(x,t).Direct
calculation shows that

9 2
el P — 9 2p—1
8'5/91-9 p/g_g 9t

g / g1 (Ag + (V. Vg))

——2p2p—1/ IVg|?g 2p2+2p/ <V,Vg>g?r7!

i

< —2p(2p — 1) / IVg|?g*P~ 2+2pHV||oo,rzi/Q Vglg®~!

< 2p(2p— 1) / Vg2g? 2

2;

1 1
2
2]V ( / Vgl2g? 2) ( /Q g%)

< BVl [
2]) -1 0;

Vs
19l <exp<”2p””) lo ()L zanan

forallt € [0, T]. Therefore we conclude that for any compact subset (2;
there exists a constatt = C(T, M, V, K) such that

|| ou;

forany(z,t) € K x|0, T].The restisto get uniform estimates ér;). This

can be done similarly to the elliptic case of Sect. 4. First we derive the esti-
mates of| pi;|| Lo (k x[0.x1)» Which rely onthe estimates (b || .o (x x [0,x])-

Then, using the mean value inequality, we can reduce down tb¥hes-
timates ofp;. Before we start the proof we should point out here thaf if
solves (1.2) , the Hermitian harmonic map heat equation, one can have all
those differential inequalities of Sect. 3 after replacihpy (A — %) . For

example p; satisfy the following

(A= 5)pi= o),
(6.3) pi(,0) =0,
pilag, = 0.

Hence

= llo(w)l <C
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And p;; satisfy

(6.4) {(A gt)p 20,
Pw( 0):

Multiply p?p*I on both sides of (6.3) and integrate by parts. With the help
of the boundary and initial conditions we have

—(2p—1)p / Vil PP~ 2+p/ (V,Vpi) o7~ — /(pz)tpfp !
—p/ (Apz) ol /(m)tp/’_l
£2;
/ lo(h)lloZ "

By our assumption we have that for any smooth cut-off functipn

| over = [ wve = [ o

Letting ¢ = p! in the above inequality we have

/ |vpz|2 A / <V,Vp; > pfp ! > 5\1(]\4)/ p?p'
£2;

Adding this to the inequality after (6.4) we have

p(/gi||a<h>||2p);p</ pl) w >p/ lo(h) o2~

Together with the initial condition that;(z,0) = 0 the above differential
inequality implies that

_1
lpill L2 < ((4p — Dllo(A) || 22 T) ¥=1 .
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Because of thap;; < p; + p;, (6.4) and the mean-value type inequal-
ity(which can be proved by a Moser-iteration argument as in the Sect. 4)
there exists a constatt = C(V, M, K, T) such that

1pij Lo (5 x [0,y < C-

After we establish the > estimates forp;; we can finally derive the
uniform estimates foe(u;). Just as in the elliptic case the key point here
again relies on a differential type inequality. First from [J-Y] we have the
following inequality for the energy density functiefu;)

(6.5) <A — ;) e(u;) > —Ce(u;), for someC independent ofi;,

by which we can reduce the> estimates to the integral estimates as in
the elliptic case. The key point here is that the differential inequality (6.5)
implies a mean-value type inequality.

Furthermore we have the similar inequality as Lemma 3.4pf9ras

follows
0
vdUu <8s>

AP '
(6.6) (A at) iz

This is a parabolic version of Lemma 3.4. Here we also have used the fact
thatu; andu; solve the parabolic Hermitian harmonic map equation (1.2).
Now we can derive the integral estimates &r;) as what we did in
the Sect. 4. By the reasoning above it will be sufficient to estimate the
integral ofe(u;) over B, (r) x [0, 7] as what we did in the Sect. 4. (Since by

the parabolic mean-value inequality we know thapBo(%)X[Qﬂ e(u;) is
bounded from above by the sum of the average of) over B,(r) x [0, T]
and2 supp, (9, €(h). One can consult Theorem 1.4 of [L-T] for more details
on the mean-value type inequality for parabolic equations.)

Let H(x,y,t) be the Dirichlet heat kernel oB,(2r), and lety be a
cut-off function supported iB,(2r) andy = 1 in B,(r). Then, using the
fact thatp;;(x,0) = 0, we have

2
ds.

T 0
61 so-—[ | L HE (a- 5) eyavar
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Similar to the last part of the proof of Theorem 4.1 one can write
AN 2o = ((a-2) 2 2(Vpz,V Ap)p?
ot (pijp) = ot ) Pii | # + < Pijs 90> + (Ap)pi;

~ 0
= <<A - 8t> P?j) ¢+ (V, VPZZ]‘> + 2 <sz2jaV<P>

+(Ap)p;

' 9 2
> <
(2/0 VdU ( s)H ds> o = VIVl

—2|Vol||Vpi| + (Ap)pi;.

In the last inequality we have used inequality (6.4). By the same calculation
as in the last part of the proof of Theorem 4.1 we can have

Alpiyp) > (/01 vdU (085) 2ds> 0

v 2
- <—2||vu2 —8’;0’ _ A@) E

ij

2
> L efus) — Be(us) o - (—2qu _glVel® ASO) 3

N

Plug the above inequality into (6.7). Then we have

g )
P?j(O) = —/ / H(z,y,t) (A — 6t> (gpp?j) dv dt
0 0 (2r)

1 T

T
+C'/ / H(z,y, t)p?j dv dt.
0 0 (2r)

Fixing j and using the fact that;; is uniformly bounded we have

T
/ H(x,y,t)e(u;) dv dt < C.
0 Bo(r)

T
/ / e(u;) dv dt < C,
0 o(2r)

for some constant’ independent of. Then we complete the proof of The-
orem 6.1.

Therefore
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Remark 6.1.From the proof we can see that we did not use a lot of our
assumption\; (M) > 0. By the knowledge about the usual harmonic maps
we believe that the existence of the heat equation can be proved under
much more relaxed conditions. Since we won't use it for our purpose of
constructing Hermitian harmonic maps we leave it to the interested reader.

Corollary 6.2. Assume thaid/ has positive first eigenvalu?el(M) for A,

N has nonpositive sectional curvature ahds a smooth map fromd/ to

N. Furthermore we assum@) ||~ < oo. If there is a positive number
p > 1 such that the initial map has boundedio (u)||72» (p > 1) then there
exists a solutiom(z, t) for the Hermitian harmonic map heat equation such
thatu(x,0) = h(z) andu(x,t) converges to a Hermitian harmonic map as
t — oo.

Proof. From Theorem 6.1 we know that there exists a global solutient)

for the Hermitian harmonic heat equation (1.2). The only thing we need to
show here is the convergence of thie:, t) ast — oo. It will be sufficient to
prove the result of Corollary 6.2 if we can show ttﬂ%{—” — 0 ast — oo.
Recall that from [J-Y] (Or see the proof of (6.2)) we have

6.8) {( 5) 15 >0,
194(|(2,0) = [l (R)]].

Let f(x,t) = H 7 ||. Since

Af*=af* "Af +ala = )PV +af Tt <V, V>
— afo‘_ljf + a(a— l)fo‘_z\Vf|2

and
—[*=aff,

we have that
6.9) {(A_gt ey
f e
Hence we have
(151.0) " = 70

g/Hu%nw>ww

1 1
Py Y

< (fmtemom)” ([ tewr)
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HereH (z,y,t) is the heat-kernel oft andJ; + 1 = 1. We choosex andp/

such thatyp’ = 2p anda close td2p > 2 such thap' is close tal. Therefore
the proof depends on the? estimate of the heat-kernél (z, y,t) of A.
By the choice ofp’ we can assume that > 2. The similar estimate for
the Laplacian-Beltrami heat-kernel was derived in [L-T] and [Gr]. For the
completeness we include a proof here. (It has been modified a little for our
case.)

Let ¢ be a cut-off function on\/ and2q = ¢. Direct calculation gives

d _ _ _
- </ H?(z,y, 1) dy) = 2q/ H* 1 Hyp? dy
dt \Jm M

= 2q/ H*7Y(AH)@* dy
M
—-2(2q-1) [ HVHPS
M
+2¢ / 21 (V, V)
M
—4q/ H?a1 (VH, V)¢
M
By the assumption on; (M) with ¢ = H% we have that
2¢° / H*172VH|?p? + 4q / H*17 Y (VH, V)
M M

+2/ H2q|V<p|2—2q/ H*71* (VH, V) —2/ H* (Vp,V)p
M

—2</ vor- [ VW>>>
> 2\ (M) /M 2
=2\ (M) /M H?1p?

Adding the above two inequalities we have
7 </ H*(z,y, )0 dy>+2A1 </ H? (3, y, 1) dy>
~d~2) [ BHVAPS
M
+2/ ﬁ?qw?—z/ 72 (Ve V)
M M

<2 / BVl — 2|V / Vg,
M M
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Lettingr — oo we have that

(6.10) L </ H?!(2,y,t) d:y) + 21 (M) </ H?!(2,y,1) dy) <0.
dt M M
Therefore we have

([ w0 ay) <es-2u0ne-1) ([ #ep0a).
M M
Now we complete our proof of Corollary 6.2.

Remark 6.2.From the proof one can see that the above argument also works
forl > p > % if one assume the existence of the heat equation. Even
though we need the assumptip¥i ||~ < oo to prove the convergence to

a Hermitian harmonic map this assumption coincides with the assumption
for the uniqueness.
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