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1 Introduction.

Let M be a connected complete Riemannian manifold, f be a smooth function de�ned on
M. If f is not a constant function and there is a smooth function b : J := f(M)! R such

that
krfk2 = b(f);(1.1)

then we call f a transnormal function. This equation was �rst studied by Elie Cartan

in [C] where he �rst began the project of classifying the isoparametric hypersufaces in
space forms. Later on, this equation appeared in the series of papers [M1] [M2] [F]
[FKM] [N]. By studying the whole family of hypersurfaces de�ned by the level sets of

the corresponding transnormal functions, [M1] [M2] gave surpurising restriction on the

isoparametric hypersurfaces in sphere. On general Riemannian manifolds this equation

was �rst studied in [W]. The major result which was proved there is;

(1) There is no critical value in int(J). So the focal varieties, i.e. the singular level sets of
f , are only the level sets corresponding to the maximum or the minimum point of J (we

denote them by V+ or V�).

(2) Theorem A in [W1]. If M is a connected complete Riemannian manifold, and f is
a transnormal function on M , then

a) The focal varieties of f are smooth submanifolds of M .
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b) Each regular level set of f is a tube over either of the focal varieties.

This is a generalization of the geometry provided by the isoparametric family in [M1]

and [M2]. In this paper, we will show that the existence of transnormal functions puts

very strong restriction on the topology and geometry of the manifolds. In particular,

we can prove that if a simply-connected compact three manifold supports a transnormal

function then this manifold has to be a three-sphere. We can also show that the level

hypersurfaces of transnormal function in Sn are all isoparametric hypersurfaces(i.e. All

principle curvatures are constant on the hypersurface). The interesting point is the inter-

action between topology and geometry, i.e. that the geometry of transnormal functions

restrict the topology of the manifold where they are de�ned and the topological structure,
on the other hand, helps us to get more geometric information of the leaves of the foli-

ation provided by the functions. On complete manifold, there are plenty of transnormal
functions (See next section for examples). But we can give a complete classi�cation of

transnormal functions in Rn and Hn.

The author would like to thank Prof. P. Li for continuous support and Prof. R. Stern

Hesheng Hu, Y. L. Xin and T. Fuller for helpful discussions.

2 Transnormal foliations.

Examples. Before we study the general theory let's start with some concrete examples

of transnormal functions;
Example 1. M = Rn, f = x2

1
+ x2

2
+ : : :+ x2k.

Example 2. M = Sn, f = x2
1
+ x2

2
+ : : :+ x2k � x2k+1

� : : :� x2n+1
.

Example 3. M = Sn, all the polynomials constructed using Cli�ord algebra representa-
tions in [F-K-M].

Example 4. M is complete manifold with nonnegative Ricci curvature and a line, then

the Buseman fuction is a transnormal function (See [SY]). In this case, since the Buseman

function sati�es jrBj2 = 1 we know that all the level sets are regular and we can have, at
least topologically, splitting of the manifold by the structure theorem A of Wang in the

introduction.

De�nition 2.1 (See [B]). A partition F of a complete Riemannian manifold M is

called transnormal foliation(or transnormal system) if every geodesic of M cuts the

leaves (the connected elements) of F orthorgonally at none or all of its points. And a

transnormal foliation is called regular if all leaves has same codimension. Otherwise it's

called singular.
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Proposition 2.1.Let M be a complete manifold, f be a transnormal function over M .

Then the level sets of f yields a transnormal (might be singular) foliation of M .

Proof. The proof follows directly from the geometry described in [W], majorly the Theo-

rem A there. In fact, in our case we have codimension one foliation i.e. generic leaves are

codimension 1.

Lemma 2.1. Let M be a compact manifold, F be a singular transnormal foliation of

M with only one singular leave S. Then there exists a double cover � : ~M !M .

Proof. By the Lemma 1 in [B], we know that the exponetial map expS : NS !M preserves

the leaves of the foliations (Over theNS, the normal bundle of S inM , the foliation is given
by the sections of constant length.) and it must have conjugate locus of S. Otherwise, by

the Theorem 2 in [B] we know that M is di�eomorphic to a vector bundle over S, which
is contradictory to the compactness of M . Let's denote the �rst conjugate locus of expS
is C(S). While S is the only singular leave of F we know expS(C(S)) = S. And we can

assume that N2tS = f(s; y) 2 NSj kyk = 2tg is the �rst conjugate locus. By the above,
we know that the cut locus of S is NtS and we denote Ht = expS(NtS). Furthermore
we have expS(NtS)! Ht is a double cover. If we denote the deck transformation of this

double cover by h we can construct ~M by gluing two copies of N�tS along their boundary
through h. From the construction it's quite clear that we have double cover � : ~M !M .

Theorem 2.1.If M is a simply-connected compact 3-manifold and with a Riemannian

metric g and a smooth function f such that f is transnormal with respect to g. Then M

is a three sphere.

Proof. Let F be the transnormal foliation of M provided by f . By Lemma 2.1 and

the simply-connectness of M we know that F has more than one singular leaves. By the
Theorem 3 of [B] we know that F has exactly two singular leaves. Let S1 and S2 to be

the two singular leaves and di(i = 1; 2) to be the codimension of them in M . For (d1; d2)

we have the following three cases;
i) (d1; d2) = (3; 3). In this case, we know S1 and S2 are all points thenM = N� tfpg[

N�tfqg, is a three sphere by Brown's theorem ([BW]).
ii) (d1; d2) = (2; 2). In this case S1 = S2 = S1, andM is so-called lens space L(p; q)

(See, for example, [R] Page 234-235) and we know that L(1; q) = S3 and �1(L(p; q)) = Zp.

By the simply-connectness we also know that M is a three sphere.
iii) (d1; d2) = (3; 2). But this case can't happen in our situation by some Mayer-

Vietoris arguement and it was essentially proved in corollary 1 of [B]. For the sake of
completness we include a simple arguement here. We know that S1 = p and S2 = S1

and M = N�tfpg [ N�tS
1. In particular we have Ht = S2 = expS1(NtS

1). But it's a

contradiction since �1(S
2) = 0 and �1(NtS

1) = Z � Z.
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3 Goemetric constrains of the transnormal foliation.

In this section we will see that if M happen to be space form with nonnegative curvature

the level set of a transnormal function has some interesting geometric properties. Before

we prove our results we need to set up some preliminary results.

From (1.1) we know that gradfp
b(f)

(b(f) 6= 0) is a self-parallel vector �eld (cf.[C-R]), and

the integral curve is geodesic perpendicular to f�1(�). We give the following de�nition

according to this observation.

De�nition 3.1.A geodesic segment � : (�; �)!M is called an f-segment, if f(�(t))

is increasing and _�(t) = gradfp
b(f)

(b(f) 6= 0). �(t) is called inverse f-segment if �(�t) is
a f -segment(cf. [W]).

To give the description which Wang provided in [W], we need to de�ne the following
map �(t; p). Suppose � 2 int(J), M� := f�1(�) is a hypersurface. Let p 2 M�, and

�(p) be the unit normal vector pointing to the f -increasing direction, then expp(t�(p)) is
the arc-length geodesic starting from p. This is a f - segment. We can de�ne a smooth
map �(t; p) := expp(t�(p)), and we set �t(p) := �(t; p). We know from lemmas of [W]

that �t(M�) belongs to the level set of f . When d�t is nondegenerate for 0 � t � r,
it's a hypersurface of f , and d(M�,�r(M�)) = r. The f -segment �t(p) is the minimizing

geodesic which joins Mr to �r(M�).
Remark 1 From [W] we know that V+ = �r(M�), if r is the �rst degenerate point of

d�t.

De�nition 3.2. Let K be a submanifold of M , p 2 K, �(t) be a geodesic starting

from p, _�(0) ? Tp(K), and Y(t) be the Jacobi �eld along �(t). We call Y(t) K-Jacobi

�eld provided it satsi�es: Y (0) 2 Tp(K), and S _�(0)Y (0)+ _Y (0) 2 Tp(K)?, where S is the

second fundamental form of K(cf. [B-C]).

The relation between the K-Jacobi �elds and the function f is given in the following

proposition.

LetM� be a level set. We know from the theorem A of [W] that it's always a manifold,

and we can assume that it is connected. Let q be a point of M, but q =2M�, we can assume
� = f(q) > �, �(t) is a f -segment joining p := �(0) to q = �(l). We know from [B-C]

that for any two vector X,Y 2 Tg(M�), there exists two M�-Jacobi �elds Ji; i = 1; 2 such

that J1(l) = X; J2(l) = Y . We have the following proposition.

Proposition 3.1.

D2f(X; Y ) =
q
b(f) < _J1(l); J2(l) > :(3.2)
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Proof. We divide the proof into two cases. Case 1).M� is a hypersurface. In this case we

can compute directly by using the concrete construction of Ji. Let 
i(s) be two curves in

M� such that 
i(0) = q; _
1(0) = X; _
2(0) = Y , then by using the exponential map, we can

get two families of geodesics 
i(t; s). These two families give two geodesic variations of

�(t). Therefore, the variational vector �elds are the M�-Jacobi �elds (they are M�-Jacobi

�elds too). From the construction we know J1(l) = X; J2(l) = Y , and we can do the

following calculation:

D2f(X; Y ) = D2f(Y;X) = XY f �DXY f

= X < Y; gradf > � < DXY; gradf >

=< Y;DXgradf >=< Y;DX

q
b(f) _� >

=< Y;
q
b(f)DX _� > +

1

2

b0(f)q
b(f)

< Y;< X; gradf > _� >

=
q
b(f) < J2; DJ1 _� >=

q
b(f) < _J1; J2 > :

Case 2). M� is a focal submanifold. We can construct Jacobi �elds as Case 1). From

[W] we know that �(t) belongs to the hypersurface, provided l � � < t < l. So Case 2)
follows Case 1) by continuity.

Remark 2. If �(t) is the inverse f - segment, we can get the similar result:

D2f(X; Y ) = �
q
b(f) < _J1; J2 > :(3.3)

The above proposition relates the Hession of f to the M�-Jacobi �elds. However, we

have known the following equation on hypersurface M� (See proof in [C-R]).

< S�X; Y >= �D
2f(X; Y )q
b(f)

;(3.4)

where S is the second fundmental form of the level hypersurface, � =
gradfp

b(f)
.

From the equation (3.2) and the Proposition 3.1 we can calculate the principal curva-

tures of the level set of f . In the case that M� is a hypersurface, let �(t) be an f -segment
joining M� to another level hypersurface M�. Then the M�-Jacobi �elds are the vetor

�elds J(t) satisfying 8><
>:

�J(t) +RtJ = 0

J(0) 2 Tp(M�); S _�J(0) = � _J(0);

(3.5)
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where RtJ = R( _�(t); J(t)) _�(t). If we can solve (3.5) we can get some information about

the principal curvatures of parallel hypersurfaces.

Combining the global geometrical structure of transnormal function and the calcula-

tion given above, we can prove the following result.

Theorem 3.2 Let M = M(c) be a Riemannian manifold with nonnegative constant

sectional curvature c and f be a transnormal function on M . Then all the regular leaves

of the related transnormal foliation are isoparametric hypersurfaces, i.e. all the principal

curvatures are constant on the hypersurface.

Proof. When c > 0, we can assume c=1, and we give the proof only for the case c=1. For

c=0 one can do similarly. We divide the proof into two cases.
Case 1). V+ and V� have codimension greater than 1. In this case we can apply the

Theorem A in [W] to prove that the regular level set of f , say M�, is an isoparametric

hypersurface. The map �r(p) de�ned as before is our starting point. We know from [B-C]
that d�t(X) is the Jacobi �elds J(t) along the f -segment �t(p), which have the initial

value X. Whether d�r is degenerate i determined by whether there is a Jacobi-�eld J(t)
with nonzero initial value, but degenerate at �r(p).

We denote l1 := d(M�; V+), l2 := d(V+; V�). From the fact we describe in the in-

troduction and the assumption that V+ and V� have codimension greater than 1, we
know that when r 6= l1 + kl2; k = 0; 1; : : :, �r is a di�eomorphism from M� to another
hypersurface, and d�r degenerates if and only if r = l1 + kl2. However, we can solve

the equation (1.3) explicitly. Let the principal curvatures at p be �1;1 = �1;2 = : : : =
�1;m1

> �2;1 = �2;2 = : : : > �g;1 = �g;2 = : : : = �g;mg
, and the principal vectors be

X1;1; X1;2; : : : ; X1;m1
; X2;1; X2;2; : : : ; Xg;1; Xg;2; : : : ; Xg;mg

, where g is the number of distinct
principal curvatures. Solving the Jacobi equations

8>>>>>>>><
>>>>>>>>:

�Ji;j(t) + Ji;j(t) = 0;

Ji;j = Xi;j;

_Ji;j(0) = ��i;jXi;j;

we get the solutions

fJi;j(t) = (cost� �i;1sint)fXi;j(t);(3.6)

where fXi;j(t) is the parallel transport of Xi;j. So we conclude Ji;j = 0 if and only if
t = arcctg(�i;1). While �r is di�eomorphism if 0 < r < l1, hence we have: �1;j =

ctgl1; j = 1; : : : ; m1:
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Similarly, because �r is a di�eomorphism if l1 < r < l1 + l2 and degenerates at

r = l1+ l2, we get �2;j = ctg(l1+ l2). Inductively, we can conclude �i;j = ctg(l1+(i�1)l2):

So we complete the proof in Case 1).

Case 2). Since �r must degenerate for some r (cf [B-C]), V+ and V� can not be

hypersurfaces together. We might as well assume that V+ has codimension greater than

1. In this case, �t(p) reaches V+, at t=l1, then f(�t(p)) begins to decrease until �t reaches

V�, but �r : M� ! V� is a di�eomorphism, so d�l1+l2 does not degenerate. When

t=l1 + 2l2, �t(p) reaches V+, and d�t degenerates. By the same way as Case 1) we can

get �i;j = ctg(l1 + 2(i� 1)l2): In both cases we get M� is isoparametric.

Remark 3From the above proof we can conclude that gl2 = � for Case 1) and 2gl2 = �
for Case 2). This is just the geometry which M�unzner described in [M1]. And this result

might be helpful to the classi�cation of the isoparametric hypersurfaces in spheres.

Remark 4 In [W] there is a claim saying that the transnormal functions on Sn are

all isoparametric functions. In fact the claim is not correct and our theorem is the right

version of the claim.

Theorem 3.3 If M = M(0), then any transnormal function on M is the function of

distance to a totally geodesic submanfold.

To prove theorem 2 we will use the following lemma which is a corollary of Cartan's

fundamental equation(See [F], Proposition 4).
Lemma 2 (See [F], Theorem 5).If N is an isoparametric hypersurface in M = M(c)

of constant curvature c � 0, then the number of distinct principal curvatures is g � 2.

For g = 1, N is totally umbilic. For g = 2, the two distinct curvatures satisfy

�1�2 = c:(3.7)

Proof of theorem 3.3. From Theorem 3.2 we know that if f is a transnormal function

on M , the level hypersurface M� := f�1(�) is isoparametric. However, from Lemma 2.

we know g, the number of distinct principal curvature, � 2, and at least one of the two

principal curvatures is zero. If M� is totally geodesic then the principal curvatures are all
zero. From the proof of theorem 3.2, we know there is no level set of f with codimension

greater than one. While t =
R f
�

1p
b(x)

dx, we can conclude f = f(t), where t is the distance

from M�. In this case M has topological type M� � R or M� � S1: If M� is not totally

geodesic, from the proof of theorem we know the focal manifold always exists. If �i are the

principal curvatures of the focal manifold and M� is the l-tube of the focal manifold V ,

we can assume this focal manifold V is V�, and dimV� = m. Then through the modi�ed

calculation of Lemma 2, we can get the principal curvatures of M�:
�i

�il+1
, and 1

l
with
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multiplicity n � m � 1. From Corollary 1, we know �i = 0, i.e. the focal manifold is

totally geodesic. In the case we also have the theorem.

De�nition 3.3. (See [W] also) If f is a transnormal function on M and the second

Beltrami di�erential is also a continuous function of itself, i.e. �f = a(f) for some

continuous function a, we call f an isoparametric function. We call the corresponding

foliation an isoparametric foliation.

The further application of the sphere-bundle structure will give further properties on

the sigular leaves of the isoparametric foliation.

Theorem 3.4. Let M be a connected Riemannian manifold, F be an isoparametric

foliation on M given by an isoparametric function f . Then the singular leaves of F are

minimal submanifolds in M .

Proof. Before our proof we give the following notation: 1 � i; j; : : : ;� m, 1 � A;B; : : : ;�
n, m + 1 � �; �; : : : ;� n, where dimM = n + 1, m is the dimension of a �xed focal
manifold.

We assume M� is a focal manifold, and � is the maximum of f . Then we consider the
M�-Jacobi �elds. Let p 2M�, �(p) be a normal vector at p, and e1; e2; : : : ; en+1 be a local

orthonormal frame �eld such that e1; : : : ; em 2 Tp(M�), and en+1 = �(p), S�(p)ei = ��iei,
�(t) be an inverse f -segment starting from p with _�(0) = en+1, feA(t)g be the parallel
transport of feAg. Since D2f(en+1; en+1) =

1

2
b0(f), at �(t) we have

[4f � 1

2
b0(f)] =

nX
A=1

D2f(eA(t); eA(t)):(3.8)

Let JA(t) be the Jacobi �elds which satisfy

�JA(t) +RtJA(t) = 0;

JA(0) =

(
eA; 1 � A � m;

0; m+ 1 � A � n;

_JA(0) =

(
�AeA; 1 � A � m;

eA; m + 1 � A � n;

then from (3:8) and the Remark 2, we have

[4f � 1

2
b0(f)] = �

X
1�A;B;C�n

gABgAC < _JB; JC >
q
b(f);
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where gAB(t) is given by the equations eA(t) =
P
gAB(t)JB(t). If we set H = (hAB) :=

(gAB)
�1, then we have

[4f � 1

2
b0(f)] = �

q
b(f) trace(H�1Ht):(3.9)

In the following, we compute trace(H�1Ht). Since H(t) satis�es

�H(t)� R(t)H(t) = 0;

H(0) =

 
Im�m 0

0 0

!
;

Ht(0) =

0
BBBBBBBBBB@

�1 : : : 0 0 : : : 0
...

...
...

...
...

...
0 : : : �m 0 : : : 0

0 : : : 0 1 : : : 0
...

...
...

...
...

...
0 : : : 0 0 : : : 1

1
CCCCCCCCCCA
;

where R(t) = (RAB(t))n�n; RAB(t) = � < R( _�(t); eA(t)) _�(t); eB(t) >.
Now we have the expansion

H�1(t) =

0
BBBBBBBBBB@

1

1+t�1
: : : 0 0 : : : 0

...
...

...
...

...
...

0 : : : 1

1+t�m
0 : : : 0

0 : : : 0 1

t
: : : 0

...
...

...
...

...
...

0 : : : 0 0 : : : 1

t

1
CCCCCCCCCCA
[I�t

2

2

0
BBBBBBBBBBB@

R11(0)

1+t�1
: : : 0 0 : : : 0

...
...

...
...

...
...

0 : : : Rmm(0)

1+t�m
0 : : : 0

0 : : : 0 0 : : : 0
...

...
...

...
...

...
0 : : : 0 0 : : : 0

1
CCCCCCCCCCCA
+o(t2)];

Ht(t) =

0
BBBBBBBBBB@

�1 : : : 0 0 : : : 0
...

...
...

...
...

...

0 : : : �m 0 : : : 0
0 : : : 0 1 : : : 0
...

...
...

...
...

...

0 : : : 0 0 : : : 1

1
CCCCCCCCCCA
+ t

0
BBBBBBBBBB@

R11(0) : : : 0 0 : : : 0
...

...
...

...
...

...
0 : : : Rmm(0) 0 : : : 0

0 : : : 0 0 : : : 0
...

...
...

...
...

...

0 : : : 0 0 : : : 0

1
CCCCCCCCCCA
+ o(t):
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Hence we obtain

H�1Ht =

0
BBBBBBBBBB@

1

1+t�1
: : : 0 0 : : : 0

...
...

...
...

...
...

0 : : : 1

1+t�m
0 : : : 0

0 : : : 0 1

t
: : : 0

...
...

...
...

...
...

0 : : : 0 0 : : : 1

t

1
CCCCCCCCCCA
o(t);(3.10)

trace(H�1Ht) =
mX
i=1

�i

1 + t�i
+
n�m

t
+ o(t):(3.11)

Combining (3.10) (3.11) we have

�[a(f)� 1

2
b0(f)] =

q
b(f)(

mX
i=1

�i

1 + t�i
+
n�m

t
) +

q
b(f)o(t):

Finally we obtain

mX
i=1

�i

1 + t�i
=

1q
b(f)

[
1

2
b0(f)� a(f)�

q
b(f)

n�m

t
] + o(t):

Taking t! 0, we have

mX
i=1

�i = limt!0

1q
b(f)

[
1

2
b0(f)� a(f)�

q
b(f)

n�m

t
]

= limf!�

1q
b(f)

[(m� n)

q
b(f)R �

f
1p
b(x)

dx
� a(f) +

1

2
b0(f)]:

But the right side of the above equation is independent of the choice of �(p), so
Pm

i=1
�i = 0,

i.e. the mean curvature is zero. Then the focal manifold is a minimal submanifold.
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