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1. Introduction

In [L-Y], Peter Li and S.-T. Yau developed the fundamental gradient estimate,
which is now widely called the Li-Yau estimate, for any positive solution u(x, t)

of the heat equation on a Riemannian manifold Mn(n = dimRM) and showed
how the classical Harnack inequality can be derived from their gradient estimate.
When Mn is complete and of nonnegative Ricci curvature, the Li-Yau estimate is
sharp. Later in [H2], Richard Hamilton extended the Li-Yau estimate to the full
matrix version of the Hessian estimate of u under the stronger assumptions that
M is Ricci parallel and of nonnegative sectional curvature.

In this paper, we consider positive solutions to the heat equation(
∂

∂t
− �

)
u(x, t) = 0 (1.1)

on a complete Kähler manifold Mm of complex dimension m(n = 2m) with
Kähler metric g = (gαβ̄). Our main result is the following complex analogue of
Hamilton’s Hessian estimate for any positive solution u to (1.1):

Theorem 1.1. Let Mm be a complete Kähler manifold of complex dimension m

with nonnegative holomorphic bisectional curvature, and u(x, t) be a positive
solution of (1.1). Then, for any vector field V = (V α) of type (1, 0) on M and
t > 0, we have
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uαβ̄ + uαVβ̄ + uβ̄Vα + uVαVβ̄ + u

t
gαβ̄ ≥ 0. (1.2)

A similar result with error terms can be formulated for complete Kähler man-
ifolds with curvature bounded from below. Note that we have two advantages of
being in the Kähler category here. Namely, not only we can replace the assump-
tion of nonnegativity of the sectional curvature in Hamilton’s result by that of
the holomorphic bisectional curvature, but also we can remove the assumption
of the Ricci tensor being parallel which is a rather restrictive condition and is
definitely needed in Hamilton’s work [H2]. Therefore, our Theorem 1.1 should
be more applicable. We should mention that in a forth coming paper [N], a new
matrix Li-Yau-Hamilton inequality for Kähler-Ricci flow has been proved. It is
related to the result in Theorem 1.1 by an interpolation consideration. Some appli-
cations of Theorem 1.1 as well as the new matrix Li-Yau-Hamilton inequality for
Kähler-Ricci flow, in particular to heat kernel comparisons, Nash-like entropy and
Perelman-like reduced volume monotonicity, to name a few, are also shown there.

If we choose the optimal V = −∇u/u and take the trace in (1.2), we obtain
the gradient estimate of Li-Yau in the Kähler case:

ut − |∇u|2
u

+ m

t
u ≥ 0. (1.3)

We remark that Li-Yau [L-Y] proved the Riemannian version of the trace estimate
(1.3) under the assumption of nonnegative Ricci curvature only. Moreover, we will
need to use Li-Yau’s result in the proof of Hessian estimate (1.2) when the mani-
fold is noncompact (see Remark 3.1 for more details). However, the conclusion in
our result is stronger and therefore the result is expected to have more applications.

An immediate application of Theorem 1.1 is the following complex Hessian
comparison theorem for the distance function on a complete Kähler manifolds of
nonnegative holomorphic bisectional curvature:

Corollary 1.1. Let M be a complete Kähler manifold with nonnegative holomor-
phic bisectional curvature. Let r(x) be the distance function to a fixed point o ∈ M .
Then in the sense of currents, we have

(r2)αβ̄(x) ≤ gαβ̄(x). (1.4)

In particular, when M is noncompact, Busemann functions with respect to geo-
desics are plurisubharmonic.

Proof of Corollary 1.1. Applying Theorem 1.1 to the heat kernel H(x, y, t) with
V = −∇H/H , we have

(log H)αβ̄ + 1

t
gαβ̄ ≥ 0.

Now it is well known that H is positive and −t log H → r2(x, y) as t → 0,
therefore −(t log H)αβ̄ → (r2)αβ̄ in the sense of distribution/barriers. The result
then follows. ��
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Such a Hessian comparison theorem seems to be elusive from the literature
even though Greene-Wu (cf [G-W]) have proved the plurisubharmonicity of the
Busemann function on such manifolds. We should mention that Corollary 1.1
was also proved in [L-W] using a different and more direct method. The argument
there also works for the negative curved manifolds. It is interesting to see if one
can have the parabolic version of their results similar to Theorem 1.1.

Now we turn our attention to the trace and matrix estimates for the potential
function of the Kähler-Ricci flow on a compact or complete noncompact Kähler
manifold. In the study of the Kähler-Ricci flow

∂

∂t
gαβ̄(x, t) = −Rαβ̄(x, t), (1.5)

it is often useful to consider the time-dependent heat equation:
(

∂

∂t
− �t

)
u(x, t) = 0. (1.6)

Here �t denotes the Laplace operator with respect to the evolving metric gαβ̄(x, t)

at time t . For example, when M is compact and the first Chern class c1(M) = 0,
the Kähler-Ricci flow was studied by the first author in [C1]. In this case, (1.5) can
be reduced to the following scalar complex Monge-Amperé flow of the (unknown)
function ϕ(x, t):

∂

∂t
ϕ(x, t) = log

det(gγ δ̄(x, t))

det(gγ δ̄(x, 0))
+ f (x), (1.7)

where gαβ̄(x, t) = gαβ̄(x, 0)+ϕαβ̄(x, t) and fαβ̄ = −Rαβ̄(x, 0). It is then easy to
check that u = −ϕt is a potential function of the evolving Ricci tensor Rαβ̄(x, t),
i.e., the complex Hessian uαβ̄(x, t) = Rαβ̄(x, t), and satisfies the heat equation
(1.6). It is often useful to obtain gradient estimate for positive solutions of (1.6) in
general, and in particular for the potential functions of the evolving Ricci tensor. It
turns out that the trace estimate of Li-Yau always holds for the positive potential
functions of the evolving Ricci tensor without any assumptions on the sign of
curvature:

Theorem 1.2. Let Mm be a compact Kähler manifold with c1(M) = 0. Let ϕ and
u be given as above, and assume u > 0. Then we have, for t > 0,

ut − |∇u|2
u

+ m

t
u ≥ 0. (1.8)

A similar result also holds for the c1(M) > 0 case. See the statement of
Theorem 2.1 in next section.

If we assume that M is complete noncompact with nonnegative holomorphic
bisectional curvature, then the matrix gradient estimate holds for the positive
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potential function u. (The compact case would not be of much interests since
under the assumptions c1(M) = 0 and M has nonnegative holomorphic bisec-
tional curvature, M is in fact holomorphically isometric to a flat complex tori.)
Namely, we have

Theorem 1.3. 1 Let gαβ̄(t), 0 ≤ t < T , be a complete solution to the Kähler-Ricci
flow (1.5) on a noncompact complex manifold M with nonnegative holomorphic
bisectional curvature. Let u(x, t) be a positive potential function of the evolving
Ricci tensor. Then u satisfies the matrix estimate (1.2).

Notice that if the initial metric g(0) has bounded nonnegative holomorphic
bisectional curvature, it was proved in [Sh], following the earlier work of Bando
[B] and Mok [M] that (M, g(t)) has nonnegative bisectional curvature for t > 0
if the curvature is uniformly bounded. Hence we can replace the assumption on
nonnegativity of g(t) by that the bisectional curvature is bounded for g(t) and
nonnegative for g(0).

In the process of proving Theorem 1.3, we in fact prove a matrix gradient
estimate for any positive solution u to the heat equation (1.6) coupled with the
Kähler-Ricci flow (1.5), provided u is plurisubharmonic. See Theorem 3.1 in the
last section.

Acknowledgements. The authors would like to thank the National Center for Theoretical Sci-
ences at National Tsing Hua University in Hsinchu, Taiwan for the hospitality provided during
the writing of this paper. Part of the work was carried out while the first author was visiting
the Mathematics Department of Harvard University. He would like to thank Professor S.-T. Yau
for making the visit possible and for his encouragement. Finally, we thank the referee for very
helpful comments which greatly enhanced the readability of the article.

2. The compact case

Throughout this section, we assume that Mm is compact so that one can apply
the tensor maximum principle of Hamilton in [H1] without worrying about any
growth assumption on the tensor. We shall first present the proof of Theorem 1.1
in the compact case, and then the proof of Theorem 1.2 as well as the analogous
case of c1(M) > 0. The proof of Theorem 1.1 in the noncompact case will be
given in Section 3.

Proof of Theorem 1.1 (The compact case). As in [H2], it suffices to prove that for
t > 0, the Hermitian symmetric (1,1) tensor

Nαβ̄ := uαβ̄ + u

t
gαβ̄ − uαuβ̄

u
≥ 0. (2.1)

1 In [N], the author proved a new matrix Li-Yau-Hamilton estimate for Kähler-Ricci flow. The
estimate is shown to be related to Perelman’s entropy formula in [P] also by an interpolation.
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As always, we first apply the heat operator to the tensor Nαβ̄ . From direct calcu-
lations (cf. Lemma 2.1 in [N-T1]), we have(

∂

∂t
− �

)
uαβ̄ = Rαβ̄γ δ̄uδγ̄ − 1

2
Rαs̄usβ̄ − 1

2
Rsβ̄uαs̄ . (2.2)

Using the fact that � = 1
2 (∇s∇s̄ + ∇s̄∇s), we also obtain

(
∂

∂t
− �

) (
−uαuβ̄

u

)
= 1

u

(
uαsus̄β̄ + uαs̄usβ̄

) + 2

u3
uαuβ̄ |us |2

+ 1

2u
(Rαs̄usuβ̄ + Rsβ̄uαus̄)

− 1

u2

(
uαsus̄uβ̄ + uβ̄suαus̄

+uαs̄uβ̄us + uβ̄s̄uαus

)
, (2.3)

and (
∂

∂t
− �

) (u

t
gαβ̄

)
= − u

t2
gαβ̄ . (2.4)

Combining (2.2)-(2.4), we have(
∂

∂t
− �

)
Nαβ̄ = Rαβ̄γ δ̄Nδγ̄ − 1

2
(Rαs̄Nsβ̄ + Nαs̄Rsβ̄) + 1

u
Nαs̄Nsβ̄ − 2

t
Nαβ̄

+1

u

(
uαs − uαus

u

) (
us̄β̄ − us̄uβ̄

u

)
+ 1

u
Rαβ̄γ δ̄uδuγ̄ . (2.5)

Now according to the tensor maximum principle of Hamilton in [H1], to prove
Nαβ̄ ≥ 0 it suffices to show that the right hand side of (2.5) is non-negative when
applied to any null vector of Nαβ̄ . However, it is easy to check that in fact each
term on the right hand side of (2.5) is nonnegative when evaluated at any null
vector of Nαβ̄ . Thus the proof of Theorem 1.1 is proved in the case of M being
compact. ��
Proof of Theorem 1.2. As in [L-Y], let v = log u. Define G = t

(|∇v|2 − vt

)
. It

suffices to show that G ≤ m. Direct calculations show that

�tv − vt = −|∇v|2, (2.6)

�t |∇v|2 = |vαγ |2 + |vαγ̄ |2 + (�tv)αvᾱ + vα(�tv)ᾱ + Rαβ̄vαvβ̄, (2.7)

and

∂

∂t
|∇v|2 = Rαβ̄vαvβ̄ + (vt )αvᾱ + vα(vt )ᾱ. (2.8)



H.-D. Cao, L. Ni

Here the first term on the right hand side of (2.8) is due to the fact that we have a
time-dependent metric evolving by the Kähler-Ricci flow (1.5).

From (2.6) we also have

vtt − �t(vt ) = Rαβ̄(vβᾱ + vβvᾱ) + (vt )αvᾱ + vα(vt )ᾱ. (2.9)

From (2.7)–(2.9) it follows(
�t − ∂

∂t

)
(|∇v|2 − vt ) = |vαγ |2 + |vαγ̄ |2 + Rαβ̄(vβᾱ + vβvᾱ)

−(|∇v|2 − vt )αvᾱ − (|∇v|2 − vt )ᾱvα

≥ |vαγ̄ |2 − (|∇v|2 − vt )αvᾱ

−(|∇v|2 − vt )ᾱvα. (2.10)

Here we have used the fact that Rαβ̄(vβᾱ + vβvᾱ) = Rαβ̄uβᾱ/u = |Rαβ̄ |2/u ≥ 0.
From (2.10), we obtain(

�t − ∂

∂t

)
G ≥ t |vαγ̄ |2 − 2〈∇G, ∇v〉 − G

t

≥ t

m
(�tv)2 − 2〈∇G, ∇v〉 − G

t

= G2

tm
− 2〈∇G, ∇v〉 − G

t
. (2.11)

Applying the maximum principle argument to the above inequality, it then
follows that G ≤ m, which completes the proof of the theorem. ��

In the case of compact M with first Chern class c1(M) > 0, we can obtain a
similar result. In this case, consider the normalized Kähler-Ricci flow

∂

∂t
gαβ̄(x, t) = −Rαβ̄(x, t) + gαβ̄(x, t) (2.12)

with the initial metric g(x, 0) and its Kähler form ω such that c1(M) = π [ω].
Similar to (1.5), (2.12) can also be reduced to a complex Monge-Amperé flow of
the form

∂

∂t
ϕ(x, t) = log

det(gγ δ̄(x, t))

det(gγ δ̄(x, 0))
+ ϕ(x, t) + f (x). (2.13)

Here again gαβ̄(x, t) = gαβ̄(x, 0) + ϕαβ̄(x, t) and fαβ̄ = gαβ̄(x, 0) − Rαβ̄(x, 0).

Furthermore, it was shown by the first author [C1,C2] that the solution to (2.13),
hence also (2.12), exists for all time.

Set w = −ϕt . Then w is a potential function satisfying

wαβ̄(x, t) = Rαβ̄(x, t) − gαβ̄(x, t) (2.14)
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and

(
∂

∂t
− �t

)
w = w. (2.15)

Similar to Theorem 1.2, we have

Theorem 2.1. Let Mm be a compact Kähler manifold with c1(M) > 0. Let ϕ and
w be defined as above, and assume w > 0. Then we have, for t > 0,

wt − |∇w|2
w

+ m

t
w ≥ w > 0. (2.16)

Proof of Theorem 2.1. Let u = e−tw, then u is a positive solution to the heat equa-
tion (1.6) coupled with (2.12). As in the proof of Theorem 1.2, we let v = log u

and define G = t
(|∇v|2 − vt

)
. It follows from similar calculations there that

(
�t − ∂

∂t

)
(|∇v|2 − vt ) = |vαγ |2 + |vαγ̄ |2 + (

Rαβ̄ − gαβ̄

)
(vβᾱ + vβvᾱ)

−(|∇v|2 − vt )αvᾱ − (|∇v|2 − vt )ᾱvα + |∇v|2
≥ |vαγ̄ |2 − (|∇v|2 − vt )αvᾱ

−(|∇v|2 − vt )ᾱvα. (2.17)

Here we have used the fact that

(Rαβ̄ − gαβ̄)(vβᾱ + vβvᾱ) = (Rαβ̄ − gαβ̄)uβᾱ/u = |Rαβ̄ − gαβ̄ |2/w ≥ 0.

Hence G satisfies the same differential inequality (2.11), and we can conclude the
same way that G ≤ m. Therefore, the function u = e−tw satisfies the estimate
(1.8). Expressing this in terms of w, we obtain the desired estimate (2.16) and
thus proves Theorem 2.1. ��

Remark 2.1. Due to the equations (2.13) and (2.15), one can ensure w(x, t) > 0
by choosing ϕ(x, 0) such that −w(x, 0) = ϕ(x, 0) + f (x) < 0.

Remark 2.2. We also should point out that Perelman also derived certain gradient
estimate for the Ricci potential function w, which is anchored in a clever way
through his entropy. The gradient estimate there plays a important role in obtain-
ing geometric estimates for the Kähler-Ricci flow for c1(M) > 0 case. At this
moment, it is still unclear to us at this moment what is the relation between his
estimate and ours.
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3. The complete noncompact case

Now we consider the case when M is a complete noncompact Kähler manifold
with nonnegative holomorphic bisectional curvature. Due to the fact that unique-
ness of the solution to the scalar heat equation fails to be true in general on a
noncompact manifold, one normally needs to impose some kind of growth con-
ditions on the function u as well as its first and second order derivatives in order
to be able to apply Hamilton’s tensor maximum principle (or its argument) to the
tensor Nαβ̄ defined in (2.1). However, in our case of proving Theorem 1.1, we
shall see that we can get away without imposing any growth assumptions on u

and its derivatives. The key here is that we are working with a positive solution
of the heat equation, thus we can make use of the available estimate of Li-Yau to
obtain the required growth estimates at any positive time. First let us collect some
basic facts.

Lemma 3.1. Let u(x, t) be a positive solution to (1.1). Then we have(
∂

∂t
− �

)
|∇u|2 ≤ −|uαβ̄ |2 − |uαβ |2 (3.1)

and (
∂

∂t
− �

)
|uαβ̄ |2 ≤ 0. (3.2)

Proof. Both (3.1) and (3.2) can be verified by direct calculations. Here the non-
negativity of the Ricci curvature is used in (3.1) and the nonnegativity of the
holomorphic bisectional curvature is used in (3.2). The elliptic version of the
computation for (3.2) goes back to Bishop-Goldberg [B-G] (see also [M-S-Y,
Proposition on page 185] ). For more details, see for example Lemma 1.1 in
[N-T1] and Lemma 1.5 in [N-T2] (or Lemma 2.1 of [N-T4] for a slightly more
general, but published version). ��

We also need to use the result of Li-Yau on the Harnack inequality for positive
solution to the heat equation. Let o ∈ M be a fixed point, and let u(x, t) be a
positive solution of (1.1). Since our focus here is to obtain a upper bound on u for
positive time we can assume, without the lose of generality, that u(x, t) is defined
on M × [0, 2]. By the Harnack inequality in [L-Y] (Theorem 2.2(i), page 168) we
have, for 0 < t < 1

u(x, t) ≤ C

tm
u(o, 2) exp(ar2(x)). (3.3)

Here a > 0 is a constant and r(x) is the distance function from the point o. In
particular, for 2 − δ ≥ t ≥ δ > 0, there exists a constant b > 0 (might depends
on δ and u(o, 2)) such that

u(x, t) ≤ exp(b(r2(x) + 1)). (3.4)
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In fact using (3.1) and (3.2) together with the mean value inequality of Li-Tam
we can push further to obtain the similar control on the gradient and the complex
Hessian of u for t > 2δ. In fact, we have the following

Lemma 3.2. For 2 − δ ≥ t ≥ 2δ, there exists b1 ≥ b > 0 such that

|∇u|2(x, t) ≤ exp(b1(r
2(x) + 1)) (3.5)

and

|uαβ̄ |2(x, t) ≤ exp(b1(r
2(x) + 1)). (3.6)

Proof. First we prove that for some b2 > 0, for any T ≤ 2 − 2δ,∫ T

δ

∫
M

exp(−b2(r
2(x) + 1))|∇u|2(x) dx dt < ∞ (3.7)

To see this, we multiply ϕ2, where ϕ is a cut-off function, on both sides of the
equation (

∂

∂t
− �

)
u2 = −2|∇u|2

and then integrate by parts. As in [N-T2] we have

2
∫ T

0

∫
M

ϕ2|∇u|2dxdt = −
∫ T

0

∫
M

ϕ2

(
∂

∂t
− �

)
u2

≤
∫

M

ϕ2u2
0(x)dx + 4

∫ T

0

∫
M

ϕu|∇ϕ| |∇u|dxdt

≤
∫

M

ϕ2u2
0(x)dx + 4

∫ T

0

∫
M

|∇ϕ|2u2dxdt

+
∫ T

0

∫
M

ϕ2|∇u|2dxdt.

Now (3.7) follows from (3.3). Now we apply the mean value inequality of
Li-Tam (Theorem 1.1 of [L-T]) and the fact that |∇u|2 is a sub-solution to the
heat equation to obtain the point-wise upper bound (3.5) from an integral one. In
fact one can get the estimate (3.5) for all t > 3δ

2 . Now use (3.1) and repeating the
above argument in the proof of (3.7) we can have that∫ T

3δ
2

∫
M

ϕ2|uαβ̄ |2dxdt ≤
∫

M

ϕ2|∇u|2(x,
3δ

2
)dx + 4

∫ T

3δ
2

∫
M

|∇ϕ|2|∇u|2dxdt.

Hence by (3.5) for t = 3δ
2 we have that∫ T

3δ
2

∫
M

exp(−b2(r
2(x) + 1))|uαβ̄ |2(x) dx dt < ∞ (3.8)

Applying Li and Tam’s mean value theorem again we obtain the point-wise esti-
mate (3.6). ��
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Now we are in the position to prove Theorem 1.1 for the complete noncomapct
case. We use the perturbation techniques from [N-T1].

Proof of Theorem 1.1 (The noncompact case). We first shift the time by 2δ. By
doing so, u(x, t) together with its gradient and complex Hessian satisfy (3.3)–
(3.6). If we can prove the theorem for this case, then we would have (1.2) when
replacing t by t + 2δ. By letting δ → 0 we would complete the proof of Theorem
1.1. Therefore, without loss of generality, we can assume (3.3)–(3.6) hold. By a
similar argument we also can assume u ≥ δ in the proof.

We first construct a function φ(x, t) such that
(

∂

∂t
− �

)
φ = φ

and

φ(x, t) ≥ C1 exp(2b1(r
2(x) + 1))

for some constant C1 > 0. This can be done by Lemma 1.1 of [N-T1].
Let Nαβ̄ be the Hermitian (1,1) tensor defined in (2.1). We consider the (1,1)

tensor Zαβ̄ = t2Nαβ̄ + εφgαβ̄ , where gαβ̄ is the metric tensor. Clearly we only
need to show that Zαβ̄ ≥ 0 for any ε > 0. We shall prove this by contradiction.
Suppose it is not true, then by the growth nature of φ and the fact that Nαβ̄ > 0 at
time t = 0, we know that there exists a first time t0 > 0, and a point x0 ∈ M and
a unit vector V = vα ∂

∂zα
∈ Tx0M such that Zαβ̄(x0, t0)v

αv̄β = 0. Now we choose
a normal coordinate around x0 and extend V to be a local unit vector field near
x0 by parallel translation along the geodesics emanating from x0. It then follows
from the direct calculation that, at point x0,

�
(
Zαβ̄vαv̄β

) = (
�Zαβ̄

)
vαv̄β.

Since Zαβ̄vαv̄β ≥ 0 for all (x, t) with t ≤ t0 and x close to x0, and Zαβ̄vαv̄β =0
at (x0, t0) we see that at (x0, t0),

0 ≥
(

∂

∂t
− �

) (
Zαβ̄vαv̄β

)
.

On the other hand, using (2.5) we also have, at (x0, t0),
(

∂

∂t
− �

) (
Zαβ̄vαv̄β

) =
((

∂

∂t
− �

)
Zαβ̄

)
vαv̄β

≥ t2

(
Rαβ̄γ δ̄Nγ̄ δ − 1

2
Rαs̄Nsβ̄ − 1

2
Rsβ̄Nαs̄

)
vαv̄β

+ t2

u
Rαβ̄γ δ̄uγ̄ uδv

αv̄β + εφ|V |2
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≥ Rαβ̄γ δ̄Zγ̄ δv
αv̄β − 1

2
Rαs̄Zsβ̄vαv̄β

−1

2
Rsβ̄Zαs̄v

αv̄β + εφ|V |2 > 0.

We now have a contradiction. This shows that Zαβ̄ ≥ 0 for all t ≤ 2 − 2δ.
Letting ε → 0, δ → 0 and repeating the argument to the later time (if necessary)
we complete the proof Theorem 1.1 in case M is complete noncompact. ��

Remark 3.1. (i) As we mentioned before, our result does not contain Li-Yau’s gra-
dient estimate even though by taking trace we obtain their estimate (1.3) since we
need to use the Harnack inequality and the mean value inequality of Li-Tam in
Lemma 3.2. The proof of both the Harnack inequality and Li-Tam’s mean value
inequality rely on Li-Yau’s gradient estimate. Also we need to assume nonneg-
ativity of the holomorphic bisectional curvature in stead of the Ricci curvature.
On the other hand our result is about the full Hessian matrix of the function and
therefore is stronger than Li-Yau’s trace estimate.

(ii) Due to the recently established tensor maximum principle [N-T4, Theorem
2.1] we can further simplify the proof a little bit since one can replace the point-
wise control (3.5) and (3.6) by the corresponding weaker integral control (3.7)
and (3.8) in order to apply the maximum principle in [N-T4]. The main advantage
of the tensor maximum principle in [N-T4] is to allow one apply to tensors which
are only nonnegative at the initial time in the weak sense, the situation the current
argument above does not work anymore.

Finally, we consider the matrix gradient estimate for any positive solution u

to the heat equation (1.6) coupled with the Kähler-Ricci flow (1.5). In this case,
(2.2) and (2.3) remain the same but (2.4) and (2.5) become, respectively,

(
∂

∂t
− �

) (u

t
gαβ̄

)
= − u

t2
gαβ̄ − u

t
Rαβ̄ . (2.4′)

and

(
∂

∂t
− �

)
Nαβ̄ = −1

2
Rαs̄Nsβ̄ − 1

2
Nαs̄Rsβ̄ + 1

u
Nαs̄Nsβ̄ − 2

t
Nαβ̄

+1

u

(
uαs − uαus

u

) (
us̄β̄ − us̄uβ̄

u

)
+ Rαβ̄γ δ̄uγ̄ δ. (2.5′)

Notice that under the extra assumption that u(x, t) is plurisubharmonic, the last
term is nonnegative definite. Therefore we can prove a similar result as in Theorem
1.1 for the coupled case:
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Theorem 3.1. Let gαβ̄(x, t) be complete Kähler metrics evolving by the Kähler-
Ricci flow (1.5) on Mm, and u(x, t) be a positive solution to the time-depen-
dent heat equation (1.6). Assume that the holomorphic bisectional curvature of
gαβ̄(x, t) is nonnegative and u(x, t) is plurisubharmonic. Then

uαβ̄ + uαVβ̄ + uβ̄Vα + uVαVβ̄ + u

t
gαβ̄ ≥ 0.

Proof of Theorem 1.3. Apply Theorem 3.1 to the potential function u, which is
plurisubharmonic since its complex Hessian is equal to the Ricci tensor.

As pointed out in the introduction one can replace the nonnegativity of the
bisectional curvature forg(t)by assuming that the bisectional curvature is bounded
for g(t) and nonnegative for g(0), using a result of [Sh,B,M].

Notice in [N-T3], the authors proved that under some average curvature decay
assumption one indeed can obtain the potential function u(x, t) for the Ricci ten-
sor by solving the Poincaré-Lelong equation and utilizing the volume element.
But it is hard to get positive function in this case since the potential function
obtained can not be bounded.

Remark 3.2. (i) Taking the trace in Theorem 3.1, we can obtain the gradient esti-
mate for u obtained before in [N-T1]. Notice again that the gradient estimate in
[N-T1] is not entirely a corollary of Theorem 3.1 since there they only need to
assume that the Ricci curvature is nonnegative while in Theorem 3.1 we need to
assume that the holomorphic bisectional curvature is nonnegative.

(ii) In [N-T1,N-T4], the authors also studied the question under what condi-
tions the plurisubharmonicity of u(x, t) will be preserved by the heat flow in the
time-dependent or independent case. A optimal result was proved in [N-T4]. This
is a separate but technically harder issue which one has to deal with in order to
make use of the Li-Yau-Hamilton inequality.
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